From: Terry S. Singeltary Sr.
Sent: Thursday, July 03, 2014 10:19 AM
Subject: How Chronic Wasting Disease is affecting deer population
and what’s the risk to humans and pets?
Hello Mr. Pollock et al at Missouri.net, and to Editor and Publisher,
see new url ;
http://webarchive.nationalarchives.gov.uk/20130822084033/http://www.defra.gov.uk/animal-diseases/files/qra_chronic-wasting-disease-121029.pdf
I kindly wish to submit the following latest science to you on the CWD TSE
prion disease. the only reason that pets have not been documented with TSE prion
disease from _any_ of the many TSE prion disease in species in North America,
they have NOT tested any felines or canines for these TSE prion disease, yet
they still can include them for feed for food producing animals, and even now,
it’s still legal to feed cervids feed that can contain cervids from cwd infected
zone. I am not kidding. please see DEFRA report. and there are other disturbing
comments as if absolute, but far from it. please see further science
below...thank you kindly, terry
How Chronic Wasting Disease is affecting deer population and what’s the
risk to humans and pets?
July 3, 2014 By Bill Pollock
“As of right now there is no evidence it can infect dogs, cats, even cattle
or horses,” says Straka. “There hasn’t been any examples of it infecting any
other species outside of the deer family.
not so fast. ...please see ;
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration’s BSE Feed Regulation
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin)
from deer and elk is prohibited for use in feed for ruminant animals. With
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may
not be used for any animal feed or feed ingredients. For elk and deer considered
at high risk for CWD, the FDA recommends that these animals do not enter the
animal feed system. However, this recommendation is guidance and not a
requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD
eradication zones and
2) deer and elk that at some time during the 60-month period prior to
slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive
animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from
the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin
processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk
protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data
on the amount of deer and/or elk protein possibly being imported in these
products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of
Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and
behavioural changes that can span weeks or months (Williams, 2005). In addition,
signs might include excessive salivation, behavioural alterations including a
fixed stare and changes in interaction with other animals in the herd, and an
altered stance (Williams, 2005). These signs are indistinguishable from cervids
experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB,
for example, infected deer populations would need to be tested to differentiate
if they were infected with CWD or BSE to minimise the risk of BSE entering the
human food-chain via affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and
can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil
and surrounding environment is contaminated with CWD prions and in a
bioavailable form. In rural areas where CWD has not been reported and deer are
present, there is a greater than negligible risk the soil is contaminated with
CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving
between GB and North America, the probability of at least one person travelling
to/from a CWD affected area and, in doing so, contaminating their clothing,
footwear and/or equipment prior to arriving in GB is greater than negligible.
For deer hunters, specifically, the risk is likely to be greater given the
increased contact with deer and their environment. However, there is significant
uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher
probability of exposure to CWD transferred to the environment than wild deer
given the restricted habitat range and higher frequency of contact with tourists
and returning GB residents.
snip...
see new url ;
http://webarchive.nationalarchives.gov.uk/20130822084033/http://www.defra.gov.uk/animal-diseases/files/qra_chronic-wasting-disease-121029.pdf
Tuesday, January 06, 2015
APHIS Provides Additional Information on Chronic Wasting Disease (CWD)
Indemnity Requests January 5, 2015 05:26 PM EST
Sunday, December 15, 2013
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
Monday, August 8, 2011
*** Susceptibility of Domestic Cats to CWD Infection ***
Oral.29: Susceptibility of Domestic Cats to CWD Infection
Amy Nalls, Nicholas J. Haley, Jeanette Hayes-Klug, Kelly Anderson, Davis M.
Seelig, Dan S. Bucy, Susan L. Kraft, Edward A. Hoover and Candace K.
Mathiason†
Colorado State University; Fort Collins, CO USA†Presenting author; Email:
ckm@lamar.colostate.edu
Domestic and non-domestic cats have been shown to be susceptible to one
prion disease, feline spongiform encephalopathy (FSE), thought to be transmitted
through consumption of bovine spongiform encephalopathy (BSE) contaminated meat.
Because domestic and free ranging felids scavenge cervid carcasses, including
those in CWD affected areas, we evaluated the susceptibility of domestic cats to
CWD infection experimentally. Groups of n = 5 cats each were inoculated either
intracerebrally (IC) or orally (PO) with CWD deer brain homogenate. Between
40–43 months following IC inoculation, two cats developed mild but progressive
symptoms including weight loss, anorexia, polydipsia, patterned motor behaviors
and ataxia—ultimately mandating euthanasia. Magnetic resonance imaging (MRI) on
the brain of one of these animals (vs. two age-matched controls) performed just
before euthanasia revealed increased ventricular system volume, more prominent
sulci, and T2 hyperintensity deep in the white matter of the frontal hemisphere
and in cortical grey distributed through the brain, likely representing
inflammation or gliosis. PrPRES and widely distributed peri-neuronal vacuoles
were demonstrated in the brains of both animals by immunodetection assays. No
clinical signs of TSE have been detected in the remaining primary passage cats
after 80 months pi. Feline-adapted CWD was sub-passaged into groups (n=4 or 5)
of cats by IC, PO, and IP/SQ routes. Currently, at 22 months pi, all five IC
inoculated cats are demonstrating abnormal behavior including increasing
aggressiveness, pacing, and hyper responsiveness.
*** Two of these cats have developed rear limb ataxia. Although the limited
data from this ongoing study must be considered preliminary, they raise the
potential for cervid-to-feline transmission in nature.
AD.63:
Susceptibility of domestic cats to chronic wasting disease
Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin
Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1 1Colorado
State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN
USA
Domestic and nondomestic cats have been shown to be susceptible to feline
spongiform encephalopathy (FSE), almost certainly caused by consumption of
bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and
free-ranging nondomestic felids scavenge cervid carcasses, including those in
areas affected by chronic wasting disease (CWD), we evaluated the susceptibility
of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5
cats each were inoculated either intracerebrally (IC) or orally (PO) with
CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated
cats developed signs consistent with prion disease, including a stilted gait,
weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail
tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from
these two cats were pooled and inoculated into cohorts of cats by IC, PO, and
intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted
CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased
incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the
symptomatic cats by western blotting and immunohistochemistry and abnormalities
were seen in magnetic resonance imaging, including multifocal T2 fluid
attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size
increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4
IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns
consistent with the early stage of feline CWD.
*** These results demonstrate that CWD can be transmitted and adapted to
the domestic cat, thus raising the issue of potential cervid-to- feline
transmission in nature.
www.landesbioscience.com
PO-081: Chronic wasting disease in the cat— Similarities to feline
spongiform encephalopathy (FSE)
FELINE SPONGIFORM ENCEPHALOPATHY FSE
P.28: Modeling prion species barriers and the new host effect using
RT-QuIC
Kristen A Davenport, Davin M Henderson, Candace K Mathiason, and Edward A
Hoover Prion Research Center; Colorado State University; Fort Collins, CO
USA
The propensity for trans-species prion transmission is related to the
structural characteristics of the enciphering and heterologous PrP, but the
exact mechanism remains mostly mysterious. Studies of the effects of primary or
tertiary prion protein www.landesbioscience.com Prion 37 structures on
trans-species prion transmission have relied upon animal bioassays, making the
influence of prion protein structure vs. host co-factors (e.g. cellular
constituents, trafficking, and innate immune interactions) difficult to dissect.
As an alternative strategy, we are using real-time quaking-induced conversion
(RT-QuIC) to investigate the propensity for and the kinetics of trans-species
prion conversion. RT-QuIC has the advantage of providing more defined conditions
of seeded conversion to study the specific role of native PrP:PrPRES
interactions as a component of the species barrier.
We are comparing chronic wasting disease (CWD) and bovine spongiform
encephalopathy (BSE) prions by seeding each prion into its native host recPrP
(full-length bovine recPrP, or white tail deer recPrP) vs. into the heterologous
species. Upon establishing the characteristics of intra-species and
inter-species prion seeding for CWD and BSE prions, we will evaluate the seeding
kinetics and cross-species seeding efficiencies of BSE and CWD passaged into a
common new host—feline—shown to be a permissive host for both CWD and BSE.
*** We hypothesize that both BSE prions and CWD prions passaged through
felines will seed human recPrP more efficiently than BSE or CWD from the
original hosts, evidence that the new host will dampen the species barrier
between humans and BSE or CWD. The new host effect is particularly relevant as
we investigate potential means of trans-species transmission of prion disease.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed
deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture;
Agricultural Research Service, National Animal Disease Center; Ames, IA USA
Interspecies transmission studies afford the opportunity to better
understand the potential host range and origins of prion diseases. The purpose
of these experiments was to determine susceptibility of white-tailed deer (WTD)
to scrapie and to compare the resultant clinical signs, lesions, and molecular
profiles of PrPSc to those of chronic wasting disease (CWD). We inoculated WTD
intracranially (IC; n = 5) and by a natural route of exposure (concurrent oral
and intranasal (IN); n = 5) with a US scrapie isolate. All deer were inoculated
with a 10% (wt/vol) brain homogenate from sheep with scrapie (1ml IC, 1 ml IN,
30 ml oral). All deer inoculated by the intracranial route had evidence of PrPSc
accumulation. PrPSc was detected in lymphoid tissues as early as 7
months-post-inoculation (PI) and a single deer that was necropsied at 15.6
months had widespread distribution of PrPSc highlighting that PrPSc is widely
distributed in the CNS and lymphoid tissues prior to the onset of clinical
signs. IC inoculated deer necropsied after 20 months PI (3/5) had clinical
signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural
and lymphoid tissues. The results of this study suggest that there are many
similarities in the manifestation of CWD and scrapie in WTD after IC inoculation
including early and widespread presence of PrPSc in lymphoid tissues, clinical
signs of depression and weight loss progressing to wasting, and an incubation
time of 21-23 months. Moreover, western blots (WB) done on brain material from
the obex region have a molecular profile similar to CWD and distinct from
tissues of the cerebrum or the scrapie inoculum. However, results of microscopic
and IHC examination indicate that there are differences between the lesions
expected in CWD and those that occur in deer with scrapie: amyloid plaques were
not noted in any sections of brain examined from these deer and the pattern of
immunoreactivity by IHC was diffuse rather than plaque-like. After a natural
route of exposure, 100% of WTD were susceptible to scrapie. Deer developed
clinical signs of wasting and mental depression and were necropsied from 28 to
33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB.
Similar to IC inoculated deer, samples from these deer exhibited two different
molecular profiles: samples from obex resembled CWD whereas those from cerebrum
were similar to the original scrapie inoculum. On further examination by WB
using a panel of antibodies, the tissues from deer with scrapie exhibit
properties differing from tissues either from sheep with scrapie or WTD with
CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive
when probed with mAb P4, however, samples from WTD with scrapie are only weakly
immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from
sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from
WTD with scrapie are strongly positive. This work demonstrates that WTD are
highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is
differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were
susceptible to scrapie. ***
Scrapie in Deer: Comparisons and Contrasts to Chronic Wasting Disease (CWD)
Justin J. Greenlee of the Virus and Prion Diseases Research Unit, National
Animal Disease Center, ARS, USDA, Ames, IA provided a presentation on scrapie
and CWD in inoculated deer.
Interspecies transmission studies afford the opportunity to better
understand the potential host range and origins of prion diseases. We inoculated
white-tailed deer intracranially (IC) and by a natural route of exposure
(concurrent oral and intranasal inoculation) with a US scrapie isolate. All deer
inoculated by the intracranial route had evidence of PrPSc accumulation and
those necropsied after 20 months post-inoculation (PI) (3/5) had clinical signs,
spongiform encephalopathy, and widespread distribution of PrPSc in neural and
lymphoid tissues. A single deer that was necropsied at 15.6 months PI did not
have clinical signs, but had widespread distribution of PrPSc. This highlights
the facts that 1) prior to the onset of clinical signs PrPSc is widely
distributed in the CNS and lymphoid tissues and 2) currently used diagnostic
methods are sufficient to detect PrPSc prior to the onset of clinical signs. The
results of this study suggest that there are many similarities in the
manifestation of CWD and scrapie in white-tailed deer after IC inoculation
including early and widespread presence of PrPSc in lymphoid tissues, clinical
signs of depression and weight loss progressing to wasting, and an incubation
time of 21-23 months. Moreover, western blots (WB) done on brain material from
the obex region have a molecular profile consistent with CWD and distinct from
tissues of the cerebrum or the scrapie inoculum. However, results of microscopic
and IHC examination indicate that there are differences between the lesions
expected in CWD and those that occur in deer with scrapie: amyloid plaques were
not noted in any sections of brain examined from these deer and the pattern of
immunoreactivity by IHC was diffuse rather than plaque-like. After a natural
route of exposure, 100% of white-tailed deer were susceptible to scrapie. Deer
developed clinical signs of wasting and mental depression and were necropsied
from 28 to 33 months PI. Tissues from these deer were positive for scrapie by
IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil,
retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and
spleen. While two WB patterns have been detected in brain regions of deer
inoculated by the natural route, unlike the IC inoculated deer, the pattern
similar to the scrapie inoculum predominates.
Committee Business:
The Committee discussed and approved three resolutions regarding CWD. They
can be found in the report of the Reswolutions Committee. Essentially the
resolutions urged USDA-APHIS-VS to:
Continue to provide funding for CWD testing of captive cervids
Finalize and publish the national CWD rule for Herd Certification and
Interstate Movement
Evaluate live animal test, including rectal mucosal biopsy, for CWD in
cervids
2011 Annual Report
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Unit
2011 Annual Report
In Objective 1, Assess cross-species transmissibility of transmissible
spongiform encephalopathies (TSEs) in livestock and wildlife, numerous
experiments assessing the susceptibility of various TSEs in different host
species were conducted. Most notable is deer inoculated with scrapie, which
exhibits similarities to chronic wasting disease (CWD) in deer suggestive of
sheep scrapie as an origin of CWD.
snip...
4.Accomplishments 1. Deer inoculated with domestic isolates of sheep
scrapie. Scrapie-affected deer exhibit 2 different patterns of disease
associated prion protein. In some regions of the brain the pattern is much like
that observed for scrapie, while in others it is more like chronic wasting
disease (CWD), the transmissible spongiform encephalopathy typically associated
with deer. This work conducted by ARS scientists at the National Animal Disease
Center, Ames, IA suggests that an interspecies transmission of sheep scrapie to
deer may have been the origin of CWD. This is important for husbandry practices
with both captive deer, elk and sheep for farmers and ranchers attempting to
keep their herds and flocks free of CWD and scrapie.
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion
Research Unit, National Animal Disease Center, USDA-ARS
Interspecies transmission studies afford the opportunity to better
understand the potential host range and origins of prion diseases. Previous
experiments demonstrated that white-tailed deer are susceptible to sheep-derived
scrapie by intracranial inoculation. The purpose of this study was to determine
susceptibility of white-tailed deer to scrapie after a natural route of
exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal
(1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep
clinically affected with scrapie. Non-inoculated deer were maintained as
negative controls. All deer were observed daily for clinical signs. Deer were
euthanized and necropsied when neurologic disease was evident, and tissues were
examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and
western blot (WB). One animal was euthanized 15 months post-inoculation (MPI)
due to an injury. At that time, examination of obex and lymphoid tissues by IHC
was positive, but WB of obex and colliculus were negative. Remaining deer
developed clinical signs of wasting and mental depression and were necropsied
from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and
WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal
and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work
demonstrates for the first time that white-tailed deer are susceptible to sheep
scrapie by potential natural routes of inoculation. In-depth analysis of tissues
will be done to determine similarities between scrapie in deer after
intracranial and oral/intranasal inoculation and chronic wasting disease
resulting from similar routes of inoculation.
see full text ;
and please, never say never with the TSE prion disease, including CWD, and
the canine. the only reason the USA has found no TSE prion disease in the feline
and canine, the USA has not looked. ...tss
2005
DEFRA Department for Environment, Food & Rural Affairs
Area 307, London, SW1P 4PQ Telephone: 0207 904 6000 Direct line: 0207 904
6287 E-mail: h.mcdonagh.defra.gsi.gov.uk
GTN: FAX:
Mr T S Singeltary P.O. Box 42 Bacliff Texas USA 77518
21 November 2001
Dear Mr Singeltary
TSE IN HOUNDS
Thank you for e-mail regarding the hounds survey. I am sorry for the long
delay in responding.
As you note, the hound survey remains unpublished. However the Spongiform
Encephalopathy Advisory Committee (SEAC), the UK Government's independent
Advisory Committee on all aspects related to BSE-like disease, gave the hound
study detailed consideration at their meeting in January 1994. As a summary of
this meeting published in the BSE inquiry noted, the Committee were clearly
concerned about the work that had been carried out, concluding that there had
clearly been problems with it, particularly the control on the histology, and
that it was more or less inconclusive. However was agreed that there should be a
re-evaluation of the pathological material in the study.
Later, at their meeting in June 95, The Committee re-evaluated the hound
study to see if any useful results could be gained from it. The Chairman
concluded that there were varying opinions within the Committee on further work.
It did not suggest any further transmission studies and thought that the lack of
clinical data was a major weakness.
Overall, it is clear that SEAC had major concerns about the survey as
conducted. As a result it is likely that the authors felt that it would not
stand up to r~eer review and hence it was never published. As noted above, and
in the detailed minutes of the SEAC meeting in June 95, SEAC considered whether
additional work should be performed to examine dogs for evidence of TSE
infection. Although the Committee had mixed views about the merits of conducting
further work, the Chairman noted that when the Southwood Committee made their
recommendation to complete an assessment of possible spongiform disease in dogs,
no TSEs had been identified in other species and hence dogs were perceived as a
high risk population and worthy of study. However subsequent to the original
recommendation, made in 1990, a number of other species had been identified with
TSE ( e.g. cats) so a study in hounds was less
critical. For more details see- http://www.bseinquiry,
gov.uk/files/yb/1995/06/21005001 .pdf
As this study remains unpublished, my understanding is that the ownership
of the data essentially remains with the original researchers. Thus
unfortunately, I am unable to help with your request to supply information on
the hound survey directly. My only suggestion is that you contact one of the
researchers originally involved in the project, such as Gerald Wells. He can be
contacted at the following address.
Dr Gerald Wells, Veterinary Laboratories Agency, New Haw, Addlestone,
Surrey, KT 15 3NB, UK
You may also wish to be aware that since November 1994 all suspected cases
of spongiform encephalopathy in animals and poultry were made notifiable. Hence
since that date there has been a requirement for vets to report any suspect SE
in dogs for further investigation. To date there has never been positive
identification of a TSE in a dog.
I hope this is helpful
Yours sincerely 4
HUGH MCDONAGH BSE CORRESPONDENCE SECTION
======================================
HOUND SURVEY
I am sorry, but I really could have been a co-signatory of Gerald's
minute.
I do NOT think that we can justify devoting any resources to this study,
especially as larger and more important projects such as the pathogenesis study
will be quite demanding.
If there is a POLITICAL need to continue with the examination of hound
brains then it should be passed entirely to the VI Service.
J W WILESMITH Epidemiology Unit 18 October 1991
Mr. R Bradley
cc: Mr. G A H Wells
3.3. Mr R J Higgins in conjunction with Mr G A Wells and Mr A C Scott would
by the end of the year, indentify the three brains that were from the
''POSITIVE'' end of the lesion spectrum.
TSE in dogs have not been documented simply because OF THE ONLY STUDY,
those brain tissue samples were screwed up too. see my investigation of this
here, and to follow, later follow up, a letter from defra, AND SEE SUSPICIOUS
BRAIN TISSUE SAF's. ...TSS
TSE & HOUNDS
GAH WELLS (very important statement here...TSS)
HOUND STUDY
AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to
other species will invariably present pathology typical of a scrapie-like
disease.
snip...
76 pages on hound study;
snip...
The spongiform changes were not pathognomonic (ie. conclusive proof) for
prion disease, as they were atypical, being largely present in white matter
rather than grey matter in the brain and spinal cord. However, Tony Scott, then
head of electron microscopy work on TSEs, had no doubt that these SAFs were
genuine and that these hounds therefore must have had a scrapie-like disease. I
reviewed all the sections myself (original notes appended) and although the
pathology was not typical, I could not exclude the possibility that this was a
scrapie-like disorder, as white matter vacuolation is seen in TSEs and Wallerian
degeneration was also present in the white matter of the hounds, another feature
of scrapie.
38.I reviewed the literature on hound neuropathology, and discovered that
micrographs and descriptive neuropathology from papers on 'hound ataxia'
mirrored those in material from Robert Higgins' hound survey. Dr Tony Palmer
(Cambridge) had done much of this work, and I obtained original sections from
hound ataxia cases from him. This enabled me provisionally to conclude that
Robert Higgins had in all probability detected hound ataxia, but also that hound
ataxia itself was possibly a TSE. Gerald Wells confirmed in 'blind' examination
of single restricted microscopic fields that there was no distinction between
the white matter vacuolation present in BSE and scrapie cases, and that
occurring in hound ataxia and the hound survey cases.
39.Hound ataxia had reportedly been occurring since the 1930's, and a known
risk factor for its development was the feeding to hounds of downer cows, and
particularly bovine offal. Circumstantial evidence suggests that bovine offal
may also be causal in FSE, and TME in mink. Despite the inconclusive nature of
the neuropathology, it was clearly evident that this putative canine spongiform
encephalopathy merited further investigation.
40.The inconclusive results in hounds were never confirmed, nor was the
link with hound ataxia pursued. I telephoned Robert Higgins six years after he
first sent the slides to CVL. I was informed that despite his submitting a
yearly report to the CVO including the suggestion that the hound work be
continued, no further work had been done since 1991. This was surprising, to say
the very least.
41.The hound work could have provided valuable evidence that a scrapie-like
agent may have been present in cattle offal long before the BSE epidemic was
recognised. The MAFF hound survey remains unpublished.
Histopathological support to various other published MAFF experiments
42.These included neuropathological examination of material from
experiments studying the attempted transmission of BSE to chickens and pigs (CVL
1991) and to mice (RVC 1994).
It was thought likely that at least some, and probably all, of the cases in
zoo animals were caused by the BSE agent. Strong support for this hypothesis
came from the findings of Bruce and others (1994) ( Bruce, M.E., Chree, A.,
McConnell, I., Foster, J., Pearson, G. & Fraser, H. (1994) Transmission of
bovine spongiform encephalopathy and scrapie to mice: strain variation and
species barrier. Philosophical Transactions of the Royal Society B 343, 405-411:
J/PTRSL/343/405 ), who demonstrated that the pattern of variation in incubation
period and lesion profile in six strains of mice inoculated with brain
homogenates from an affected kudu and the nyala, was similar to that seen when
this panel of mouse strains was inoculated with brain from cattle with BSE. The
affected zoo bovids were all from herds that were exposed to feeds that were
likely to have contained contaminated ruminant-derived protein and the zoo
felids had been exposed, if only occasionally in some cases, to tissues from
cattle unfit for human consumption.
snip...
NEW URL ;
Friday, March 8, 2013
Dogs may have been used to make Petfood and animal feed
Envt.11: Swine Are Susceptible to Chronic Wasting Disease by Intracerebral
Inoculation
Chronic Wasting Disease Susceptibility of Four North American Rodents
Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A.
Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel
J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary
Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI
53706, USA 2US Geological Survey, National Wildlife Health Center, 6006
Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural
Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary
Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author
email: cjohnson@svm.vetmed.wisc.edu
We intracerebrally challenged four species of native North American rodents
that inhabit locations undergoing cervid chronic wasting disease (CWD)
epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed
mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles
(Myodes gapperi). The inocula were prepared from the brains of hunter-harvested
white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles
proved to be most susceptible, with a median incubation period of 272 days.
Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the
brains of all challenged meadow voles. Subsequent passages in meadow voles lead
to a significant reduction in incubation period. The disease progression in
red-backed voles, which are very closely related to the European bank vole (M.
glareolus) which have been demonstrated to be sensitive to a number of TSEs, was
slower than in meadow voles with a median incubation period of 351 days. We
sequenced the meadow vole and red-backed vole Prnp genes and found three amino
acid (AA) differences outside of the signal and GPI anchor sequences. Of these
differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is
particularly intriguing due its postulated involvement in "rigid loop" structure
and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5
years post-inoculation, but appear to be exhibiting a high degree of disease
penetrance. White-footed mice have an even longer incubation period but are also
showing high penetrance. Second passage experiments show significant shortening
of incubation periods. Meadow voles in particular appear to be interesting lab
models for CWD. These rodents scavenge carrion, and are an important food source
for many predator species. Furthermore, these rodents enter human and domestic
livestock food chains by accidental inclusion in grain and forage. Further
investigation of these species as potential hosts, bridge species, and
reservoirs of CWD is required.
please see ;
see ;
Friday, November 09, 2012
*** Chronic Wasting Disease CWD in cervidae and transmission to other
species ***
> First transmission of CWD to transgenic mice over-expressing bovine
prion protein gene (TgSB3985)
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping
up the future of prion research
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First
transmission of CWD to transgenic mice over-expressing bovine prion protein gene
(TgSB3985)
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF
THE STUDIES ON CWD TRANSMISSION TO CATTLE ;
CWD to cattle figures CORRECTION
Greetings,
I believe the statement and quote below is incorrect ;
"CWD has been transmitted to cattle after intracerebral inoculation,
although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This
finding raised concerns that CWD prions might be transmitted to cattle grazing
in contaminated pastures."
Please see ;
Within 26 months post inoculation, 12 inoculated animals had lost weight,
revealed abnormal clinical signs, and were euthanatized. Laboratory tests
revealed the presence of a unique pattern of the disease agent in tissues of
these animals. These findings demonstrate that when CWD is directly inoculated
into the brain of cattle, 86% of inoculated cattle develop clinical signs of the
disease.
" although the infection rate was low (4 of 13 animals [Hamir et al.
2001]). "
shouldn't this be corrected, 86% is NOT a low rate. ...
kindest regards,
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518
Thank you!
Thanks so much for your updates/comments. We intend to publish as rapidly
as possible all updates/comments that contribute substantially to the topic
under discussion.
re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author
Affiliations
1Institute for Neurodegenerative Diseases, University of California, San
Francisco, San Francisco, California 94143 2Department of Neurology, University
of California, San Francisco, San Francisco, California 94143 Correspondence:
stanley@ind.ucsf.edu
Mule deer, white-tailed deer, and elk have been reported to develop CWD. As
the only prion disease identified in free-ranging animals, CWD appears to be far
more communicable than other forms of prion disease. CWD was first described in
1967 and was reported to be a spongiform encephalopathy in 1978 on the basis of
histopathology of the brain. Originally detected in the American West, CWD has
spread across much of North America and has been reported also in South Korea.
In captive populations, up to 90% of mule deer have been reported to be positive
for prions (Williams and Young 1980). The incidence of CWD in cervids living in
the wild has been estimated to be as high as 15% (Miller et al. 2000). The
development of transgenic (Tg) mice expressing cervid PrP, and thus susceptible
to CWD, has enhanced detection of CWD and the estimation of prion titers
(Browning et al. 2004; Tamgüney et al. 2006). Shedding of prions in the feces,
even in presymptomatic deer, has been identified as a likely source of infection
for these grazing animals (Williams and Miller 2002; Tamgüney et al. 2009b). CWD
has been transmitted to cattle after intracerebral inoculation, although the
infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding
raised concerns that CWD prions might be transmitted to cattle grazing in
contaminated pastures.
snip...
----- Original Message -----
From: David Colby To: flounder9@verizon.net
Cc: stanley@XXXXXXXX
Sent: Tuesday, March 01, 2011 8:25 AM
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 +
Author Affiliations
Dear Terry Singeltary,
Thank you for your correspondence regarding the review article Stanley
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner
asked that I reply to your message due to his busy schedule. We agree that the
transmission of CWD prions to beef livestock would be a troubling development
and assessing that risk is important. In our article, we cite a peer-reviewed
publication reporting confirmed cases of laboratory transmission based on
stringent criteria. The less stringent criteria for transmission described in
the abstract you refer to lead to the discrepancy between your numbers and ours
and thus the interpretation of the transmission rate. We stand by our assessment
of the literature--namely that the transmission rate of CWD to bovines appears
relatively low, but we recognize that even a low transmission rate could have
important implications for public health and we thank you for bringing attention
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor
Department of Chemical Engineering University of Delaware
===========END...TSS==============
SNIP...SEE FULL TEXT ;
UPDATED DATA ON 2ND CWD STRAIN Wednesday, September 08, 2010 CWD PRION
CONGRESS SEPTEMBER 8-11 2010
Sunday, August 19, 2012
Susceptibility of cattle to the agent of chronic wasting disease from elk
after intracranial inoculation 2012
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Unit
Thursday, November 21, 2013
*** Assessing the susceptibility of transgenic mice over-expressing deer
prion protein to bovine spongiform encephalopathy
The present study was designed to assess the susceptibility of the
prototypic mouse line, Tg(CerPrP)1536+/- to bovine spongiform encephalopathy
(BSE) prions, which have the ability to overcome species barriers.
Tg(CerPrP)1536+/- mice challenged with red deer-adapted BSE resulted in a
90-100% attack rates, BSE from cattle failed to transmit, indicating agent
adaptation in the deer.
Monday, June 23, 2014
PRION 2014 CONFERENCE
CHRONIC WASTING DISEASE CWD
A FEW FINDINGS ;
Conclusions. To our knowledge, this is the first established experimental
model of CWD in TgSB3985. We found evidence for co-existence or divergence of
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice.
Finally, we observed phenotypic differences between cervid-derived CWD and
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway
to characterize these strains.
We conclude that TSE infectivity is likely to survive burial for long time
periods with minimal loss of infectivity and limited movement from the original
burial site. However PMCA results have shown that there is the potential for
rainwater to elute TSE related material from soil which could lead to the
contamination of a wider area. These experiments reinforce the importance of
risk assessment when disposing of TSE risk materials.
The results show that even highly diluted PrPSc can bind efficiently to
polypropylene, stainless steel, glass, wood and stone and propagate the
conversion of normal prion protein. For in vivo experiments, hamsters were ic
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters,
inoculated with 263K-contaminated implants of all groups, developed typical
signs of prion disease, whereas control animals inoculated with non-contaminated
materials did not.
Our data establish that meadow voles are permissive to CWD via peripheral
exposure route, suggesting they could serve as an environmental reservoir for
CWD. Additionally, our data are consistent with the hypothesis that at least two
strains of CWD circulate in naturally-infected cervid populations and provide
evidence that meadow voles are a useful tool for CWD strain typing.
Conclusion. CWD prions are shed in saliva and urine of infected deer as
early as 3 months post infection and throughout the subsequent >1.5 year
course of infection. In current work we are examining the relationship of
prionemia to excretion and the impact of excreted prion binding to surfaces and
particulates in the environment.
Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC)
are shed in urine of infected deer as early as 6 months post inoculation and
throughout the subsequent disease course. Further studies are in progress
refining the real-time urinary prion assay sensitivity and we are examining more
closely the excretion time frame, magnitude, and sample variables in
relationship to inoculation route and prionemia in naturally and experimentally
CWD-infected cervids.
Conclusions. Our results suggested that the odds of infection for CWD is
likely controlled by areas that congregate deer thus increasing direct
transmission (deer-to-deer interactions) or indirect transmission
(deer-to-environment) by sharing or depositing infectious prion proteins in
these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely
controlled by separate factors than found in the Midwestern and endemic areas
for CWD and can assist in performing more efficient surveillance efforts for the
region.
Conclusions. During the pre-symptomatic stage of CWD infection and
throughout the course of disease deer may be shedding multiple LD50 doses per
day in their saliva. CWD prion shedding through saliva and excreta may account
for the unprecedented spread of this prion disease in nature.
Monday, June 23, 2014
*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD
Wednesday, October 17, 2012
Prion Remains Infectious after Passage through Digestive System of American
Crows (Corvus brachyrhynchos)
A CONTRIBUTION TO THE NEUROPATHOLOGY OF THE RED-NECKED OSTRICH (STRUTHIO
CAMELUS) - SPONGIFORM ENCEPHALOPATHY
4.21 Three cases of SE’s with an unknown infectious agent have been
reported in ostriches (Struthio Camellus) in two zoos in north west Germany
(Schoon @ Brunckhorst, 1999, Verh ber Erkeg Zootiere 33:309-314). These birds
showed protracted central nervous symptoms with ataxia, disturbances of balance
and uncoordinated feeding behaviour. The diet of these birds had included
poultry meat meal, some of which came from cattle emergency slaughter
cases.
SE1806
TRANSMISSION STUDIES OF BSE TO DOMESTIC FOWL BY ORAL EXPOSURE TO BRAIN
HOMOGENATE
1 challenged cock bird was necropsied (41 months p.i.) following a period
of ataxia, tremor, limb abduction and other neurological signs.
Histopathological examination failed to reveal any significant lesions of the
central or peripheral nervous systems...
1 other challenged cock bird is also showing ataxia (43 months p.i.).
snip...
94/01.19/7.1
A notification of Spongiform Encephalopathy was introduced in October 1996
in respect of ungulates, poultry and any other animal.
4.23 MAFF have carried out their own transmission experiments with hens. In
these experiments, some of the chickens exposed to the BSE agent showed
neurological symptoms. However MAFF have not so far published details of the
symptoms seen in chickens. Examination of brains from these chickens did not
show the typical pathology seen in other SE’s. 4.24 A farmer in Kent in November
1996 noticed that one of his 20 free range hens, the oldest, aged about 30
months was having difficulty entering its den and appeared frightened and tended
to lose its balance when excited. Having previously experienced BSE cattle on
his farm, he took particular notice of the bird and continued to observe it over
the following weeks. It lost weight, its balance deteriorated and characteristic
tremors developed which were closely associated with the muscles required for
standing. In its attempts to maintain its balance it would claw the ground more
than usual and the ataxia progressively developed in the wings and legs, later
taking a typical form of paralysis with a clumsy involuntary jerky motion.
Violent tremors of the entire body, particularly the legs, became common,
sparked off by the slightest provocation. This is similar to that seen in many
BSE cases where any excitement may result in posterior ataxia, often with
dropping of the pelvis, kicking and a general nervousness. Three other farmers
and a bird breeder from the UK are known to have reported having hens with
similar symptoms. The bird breeder who has been exhibiting his birds for show
purposes for 20 years noticed birds having difficulty getting on to their perch
and holding there for any length of time without falling. Even though the bird
was eating normally, he noticed a weight loss of more than a pound in a bird the
original weight of which was 5 pounds. 4.25 Histological examination of the
brain revealed degenerative pathological changes in hens with a minimal
vacuolation. The presence of PrP immunostaining of the brain sections revealed
PrP-sc positive plaques and this must be regarded as very strong evidence to
demonstrate that the hens had been incubating Spongiform Encephalopathy.
OPINION on : NECROPHAGOUS BIRDS AS POSSIBLE TRANSMITTERS OF TSE/BSE ADOPTED
BY THE SCIENTIFIC STEERING COMMITTEE AT ITS MEETING OF 7-8 NOVEMBER 2002
OPINION
1. Necrophagous birds as possible transmitters of BSE. The SSC considers
that the evaluation of necrophagous birds as possible transmitters of BSE,
should theoretically be approached from a broader perspective of mammals and
birds which prey on, or are carrion eaters (scavengers) of mammalian species.
Thus, carnivorous and omnivorous mammals, birds of prey (vultures, falcons,
eagles, hawks etc.), carrion eating birds (crows, magpies etc.) in general could
be considered possible vectors of transmission and/or spread of TSE infectivity
in the environment. In view also of the occurrence of Chronic Wasting Disease
(CWD) in various deer species it should not be accepted that domestic cattle and
sheep are necessarily the only source of TSE agent exposure for carnivorous
species. While some information is available on the susceptibility of
wild/exotic/zoo animals to natural or experimental infection with certain TSE
agents, nothing is known of the possibility of occurrence of TSE in wild animal
populations, other than among the species of deer affected by CWD in the
USA.
1 The carrion birds are animals whose diet regularly or occasionally
includes the consumption of carcasses, including possibly TSE infected ruminant
carcasses.
C:\WINNT\Profiles\bredagi.000\Desktop\Necrophagous_OPINION_0209_FINAL.doc
snip...
skroll down to the bottom ;
Date: Mon, 11 Jun 2001 16:24:51 –0700
Reply-To: Bovine Spongiform Encephalopathy
Sender: Bovine Spongiform Encephalopathy
From: "Terry S. Singeltary Sr." Subject: The Red-Neck Ostrich & TSEs
'THE AUTOPSY'
*** REPORT OF THE MEETING OF THE OIE TERRESTRIAL ANIMAL HEALTH STANDARDS
COMMISSION Paris, 19–28 February 2013
In response to a Member Country’s detailed justification for listing of
chronic wasting disease of cervids (CWD) against the criteria of Article 1.2.2.,
the Code Commission recommended this disease be reconsidered for listing.
Monday, May 05, 2014
*** Member Country details for listing OIE CWD 2013 against the criteria of
Article 1.2.2., the Code Commission recommends consideration for listing ***
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).
as I said, what if ?
*** our results raise the possibility that CJD cases classified as VV1 may
include cases caused by iatrogenic transmission of sCJD-MM1 prions or food-borne
infection by type 1 prions from animals, e.g., chronic wasting disease prions in
cervid. In fact, two CJD-VV1 patients who hunted deer or consumed venison have
been reported (40, 41). The results of the present study emphasize the need for
traceback studies and careful re-examination of the biochemical properties of
sCJD-VV1 prions. ***
===========================================
Thursday, January 2, 2014
*** CWD TSE Prion in cervids to hTGmice, Heidenhain Variant
Creutzfeldt-Jacob Disease MM1 genotype, and iatrogenic CJD ??? ***
WHAT IF ?
Saturday, April 19, 2014
Exploring the zoonotic potential of animal prion diseases: In vivo and in
vitro approaches
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
HD.13: CWD infection in the spleen of humanized transgenic mice
***These results indicate that the CWD prion may have the potential to
infect human peripheral lymphoid tissues.
Oral.15: Molecular barriers to zoonotic prion transmission: Comparison of
the ability of sheep, cattle and deer prion disease isolates to convert normal
human prion protein to its pathological isoform in a cell-free system
***However, they also show that there is no absolute barrier ro conversion of
human prion protein in the case of chronic wasting disease.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
***Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood,
and mother to offspring transmission
Friday, November 09, 2012
*** Chronic Wasting Disease CWD in cervidae and transmission to other
species
there is in fact evidence that the potential for cwd transmission to humans
can NOT be ruled out.
I thought your readers and hunters and those that consume the venison,
should have all the scientific facts, personally, I don’t care what you eat, but
if it effects me and my family down the road, it should then concern everyone,
and the potential of iatrogenic transmission of the TSE prion is real i.e.
‘friendly fire’, medical, surgical, dental, blood, tissue, and or products there
from...like deer antler velvet and TSE prions and nutritional supplements there
from, all a potential risk factor that should not be ignored or silenced. ...
the prion gods at the cdc state that there is ;
''no strong evidence''
but let's see exactly what the authors of this cwd to human at the cdc
state ;
now, let’s see what the authors said about this casual link, personal
communications years ago. see where it is stated NO STRONG evidence. so, does
this mean there IS casual evidence ????
“Our conclusion stating that we found no strong evidence of CWD
transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To:
Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached
to your email), we did not say CWD in humans will present like variant CJD.
That assumption would be wrong. I encourage you to read the whole article
and call me if you have questions or need more clarification (phone:
404-639-3091). Also, we do not claim that "no-one has ever been infected with
prion disease from eating venison." Our conclusion stating that we found no
strong evidence of CWD transmission to humans in the article you quoted or in
any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From:
Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease
2008 1: Vet Res. 2008 Apr 3;39(4):41
A prion disease of cervids: Chronic wasting disease
Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported
to the Surveillance Center***,
snip...
full text ;
***********CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb***********
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL
REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases
and controls. For both of these meats there was evidence of a trend with
increasing frequency of consumption being associated with increasing risk of
CJD. (not nvCJD, but sporadic CJD...tss)
These associations were largely unchanged when attention was restricted to
pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating
and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to
be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate.
There is no strong evidence that eating veal less than once per year is
associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY
OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker
(p = 0.14). When only controls for whom a relative was interviewed are included,
this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another
exposure, the association between veal and CJD remained statistically
significant (p = < 0.05 for all exposures), while the other exposures ceased
to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical
associations between various meats/animal products and INCREASED RISK OF CJD.
When some account was taken of possible confounding, the association between
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS
STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an
increased risk of CJD, including liver consumption which was associated with an
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3
studies in relation to this particular dietary factor, the risk of liver
consumption became non-significant with an odds ratio of 1.2 (PERSONAL
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
Thursday, October 10, 2013
*************CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb**************
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge
Spencers Lane BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third
annual report from the CJD Surveillance Unit. I am sorry that you are
dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the
Department of Health is committed to publishing their reports as soon as they
become available. In the circumstances it is not the practice to circulate the
report for comment since the findings of the report would not be amended. In
future we can ensure that the British Deer Farmers Association receives a copy
of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed
of the results of any research in respect of CJD. This report was entirely the
work of the unit and was produced completely independantly of the the
Department.
The statistical results reqarding the consumption of venison was put into
perspective in the body of the report and was not mentioned at all in the press
release. Media attention regarding this report was low key but gave a realistic
presentation of the statistical findings of the Unit. This approach to
publication was successful in that consumption of venison was highlighted only
once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical
links between CJD and consumption of venison, would increase, and quite possibly
give damaging credence, to the whole issue. From the low key media reports of
which I am aware it seems unlikely that venison consumption will suffer
adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
Tuesday, July 01, 2014
*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND
POTENTIAL RISK FACTORS THERE FROM ***
layperson
Terry S. Singeltary Sr.
MOM DOD 12/14/97 confirm ‘hvCJD’ just made a promise to mom, NEVER FORGET!
and never let them forget. ...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.