Pages

Tuesday, October 06, 2015

TAHC 393rd Commission Meeting Chronic Wasting Disease CWD TSE Prion October 6, 2015

TAHC 393rd Commission Meeting, mums the word, wait until February 2016...Texas has waited too long. ...terry

 


 


 


 

IT MIGHT be interesting to know, the cash payout from lobbyist from game farming industry, all parts of the industry, to the politicians making the scientific decisions on the CWD TSE PRION aka mad deer disease here in Texas, kinda see who’s been or who is greasing who’s wheel, past and present. the media needs to look into that, and see how this cwd tse prion sound science works in Texas. just a thought, I’m not accusing anyone, just curious to know.

 

North Carolina found out recently how that money machine works. probably works that way everywhere. it’s all about money now folks, nothing else matters in my opinion. science took a backdoor a long time ago. ...terry

 

Deer farm authority passes to N.C. Dept of Agriculture after legislature reverses decision

 

Heavy lobbying, influence from deer farmers create Senate rewrite as session end looms

 

Craig Holt October 02 at 6:45 am |

 

Responsibility for North Carolina deer farms has moved from the NCWRC to the Dept. of Agriculture.

 

The state legislature made a 180-degree turnaround early this week and handed over management of deer farms in North Carolina to the N.C. Department of Agriculture and Consumer Services, taking authority from the N.C. Wildlife Resources Commission.

 

On Thursday, Sept. 24, the N.C. House had dropped a section of the Agriculture Bill of 2015-16 that turned over management of penned-in whitetail deer from the Commission to the Ag agency and passed the bill by an 86-13 margin. Another vote on Monday, Sept. 28, was 90-11 for the bill that kept the Commission in control. That same day, however, a seven-person conference committee of Republican members of the Senate and House rewrote the bill and put back in the section that had been dropped. The bill was quickly approved 70-44 on Tuesday, Sept. 29, in the House and 42-4 in the Senate and needed only Gov. Pat McCrory’s signature to become law.

 

Fifty-five members of the N.C. House – 42 Republicans and 13 Democrats – who have voted to keep management of deer farms with the Commission changed their minds and voted for the last version of the bill that stripped the Commission of management authority.

 

“Now whitetail deer and elk are classified as farm animals instead of wildlife,” said Richard B. Hamilton, executive director of the N.C. Wildlife Federation’s Camo Coalition and a former executive director of the Commission.

 

House Republicans apparently responded to pressure from legislative leadership and other legislators who received campaign donations from a small group of deer farmers led by Tom Smith, the former CEO of the Food Lion grocery chain. According to sources, the need to end an over-long legislative session also was a factor in the fast reversal.

 

Legislators who supported the Commission pointed out that the agency’s strict rules on importing and transporting farm-raised deer had kept the deadly Chronic Wasting Disease out of the state’s deer farms and wild deer population for almost 12 years. Deer in 23 states and two Canadian provinces have been certified to have had CWD in either wild or pen-raised populations – or both.

 

Conservation organizations and hunting organizations including the NC Wildlife Federation, the Camo Coalition and the Quality Deer Management Association were disappointed in the turn over events – and the state legislators.

 

“The conference committee was stacked,” said Hamilton, who served 37 years with the Commission, including nine as executive director. “The outcome was pre-ordained because conference committee members were selected by the leadership of the House and Senate. All of them favored deer farming because (leadership) put no opponents on the conference committee. It took them a half- hour to meet and put the (section) back in the bill.”

 

Rep. Tim Moore (R-Cleveland), the speaker of the House, appointed to the conference committee Rep. Jimmy Dixon (R-Duplin/Wayne), Rep. Roger West (R-Cherokee/Clay/Graham/Macon), Rep. Chris Whitmore (R-Henderson/Polk/Transylvania) and Rept. Mark Brody (R-Anson/Union). Sen. Phil Berger (R-Guilford/Rockingham), the president pro tempore of the Senate, appointed Sen. Brent Jackson (R-Duplin/Johnston/Sampson), Sen. Trudy Wade (R-Guilford) and Sen. Andrew Brock (R-Davie/Iredell/Rowan).

 

Rep. Jay Adams (R-Catawba), who led the effort to keep deer farms managed by the Commission, gave an impassioned speech before the final votes in both chambers.

 

“I tried to illuminate (that) we have a public-trust doctrine in North Carolina, that wildlife belongs to all of us,” he said. “My problem with the Agriculture Department overseeing deer is it violates a system we’ve had in place since 1947 when the Wildlife Commission was tasked with protecting the public trust that includes deer. You can put a deer in a pen, but it doesn’t turn into a cow.

 

“If (CWD) hits North Carolina, cleaning up and condemning land will become very expensive,” he said.

 

Normally a major rewrite of a bill’s section, especially one so different from original legislation, takes days or weeks. Adams said a major lobbying effort and backroom political tactics turned this change into one that came about almost overnight.

 

“John Cooper (lobbyist for the N.C. Deer and Elk Farmers Association) took Smith around to meet legislators in their offices,” Adams said. “It was obvious there was heavy lobbying. Arms were twisted and people intimidated.

 

“We had a good bill, but (the process) had a poison pill. (Deer-farm supporters) knew Sen. Jackson would take care of it there — and he did. He restored all the provisions. I knew then (it) would swing in favor of passage. There was very aggressive lobbying by Jackson, John Cooper, Tom Smith and Dixon. A big tipping point was Farm Bureau lobbying.”

 

Hamilton said taking deer-farm oversight away from the Commission “was politics and money.

 

“Steve Troxler (the commissioner or agriculture) wanted to get along with Sen. Jackson, who is chairman of important committees. He also wanted to get along with the (Moore) and to help Tom Smith, who had given him $17,000 to $18,000 over the years. But initially, he didn’t want the responsibility thrust upon him.”

 

Hamilton pointed out the farm bill that was adopted doesn’t allow for deer-shooting pens, but U.S. Department of Agriculture rules apply only to public-shooting areas, not private hunting pens.

 

“The Ag Department may now allow private shooting pens, so a guy with trophy deer can invite his friends over to shoot big deer,” he said. “Will that happen? No one knows.”

 


 

 

Subject: TEXAS Chronic Wasting Disease CWD TSE Prion Update URGENT !

 

Tuesday, September 29, 2015

 

*** Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus) can transmit CWD to naive reindeer both directly and indirectly ***

 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus) can transmit CWD to naive reindeer both directly and indirectly

 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

Title: Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus)

 

Authors

 

item Moore, S - item Kunkle, Robert item Nicholson, Eric item Richt, Juergen item Hamir, Amirali item Waters, Wade item Greenlee, Justin

 

Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A

 

Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, but CWD has not been reported in free-ranging caribou (Rangifer tarandus caribou) or farmed reindeer. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWD-wtd), mule deer (Odocoileus hemionus; CWD-md), or elk (Cervus elaphus nelsoni; CWD-elk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWD-wtd, CWD-md, or CWD-elk. Two years after challenge of inoculated reindeer, non-inoculated control reindeer were introduced into the same pen as the CWD-wtd inoculated reindeer (n=4) or into a pen adjacent to the CWD-md inoculated reindeer (n=2). Reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrP-CWD). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (MPI). ***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
 


 

***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
 

HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES

 

snip...see more here;

 

Tuesday, September 29, 2015

 

Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus) can transmit CWD to naive reindeer both directly and indirectly

 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 


 


 

 

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.

 


 

 

PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS

 

*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***

 

O18

 

Zoonotic Potential of CWD Prions

 

Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 3Encore Health Resources, Houston, Texas, USA

 

*** These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.

 

==================

 

***These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.***

 

==================

 

P.105: RT-QuIC models trans-species prion transmission

 

Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA

 

Conversely, FSE maintained sufficient BSE characteristics to more efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was competent for conversion by CWD and fCWD.

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.

 

================

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.***

 

================

 


 

 

PRION2013 CONGRESSIONAL ABSTRACTS CWD

 

Sunday, August 25, 2013

 

HD.13: CWD infection in the spleen of humanized transgenic mice

 

Liuting Qing and Qingzhong Kong

 

Case Western Reserve University; Cleveland, OH USA

 

Chronic wasting disease (CWD) is a widespread prion disease in free-ranging and captive cervid species in North America, and there is evidence suggesting the existence of multiple CWD strains. The susceptibility of human CNS and peripheral organs to the various CWD prion strains remains largely unclear. Current literature suggests that the classical CWD strain is unlikely to infect human brain, but the potential for peripheral infection by CWD in humans is unknown. We detected protease-resistant PrpSc in the spleens of a few humanized transgenic mice that were intracerebrally inoculated with natural CWD isolates, but PrpSc was not detected in the brains of any of the CWD-inoculated mice. ***Our ongoing bioassays in humanized Tg mice indicate that intracerebral challenge with such PrpSc-positive humanized mouse spleen already led to prion disease in most animals. ***These results indicate that the CWD prion may have the potential to infect human peripheral lymphoid tissues.

 

Oral.15: Molecular barriers to zoonotic prion transmission: Comparison of the ability of sheep, cattle and deer prion disease isolates to convert normal human prion protein to its pathological isoform in a cell-free system

 

Marcelo A.Barria,1 Aru Balachandran,2 Masanori Morita,3 Tetsuyuki Kitamoto,4 Rona Barron,5 Jean Manson,5 Richard Kniqht,1 James W. lronside1 and Mark W. Head1

 

1National CJD Research and Surveillance Unit; Centre for Clinical Brain Sciences; School of Clinical Sciences; The University of Edinburgh; Edinburgh, UK; 2National and OIE Reference Laboratory for Scrapie and CWD; Canadian Food Inspection Agency; Ottawa Laboratory; Fallowfield. ON Canada; 3Infectious Pathogen Research Section; Central Research Laboratory; Japan Blood Products Organization; Kobe, Japan; 4Department of Neurological Science; Tohoku University Graduate School of Medicine; Sendai. Japan; 5Neurobiology Division; The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian; Edinburgh, UK

 

Background. Bovine spongiform encephalopathy (BSE) is a known zoonotic prion disease, resulting in variant Creurzfeldt- Jakob disease (vCJD) in humans. In contrast, classical scrapie in sheep is thought to offer little or no danger to human health. However, a widening range of prion diseases have been recognized in cattle, sheep and deer. The risks posed by individual animal prion diseases to human health cannot be determined a priori and are difficult to assess empirically. The fundamemal event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein (PrPC) to its pathological isoform (PrPSc). Here we report the use of a rapid molecular conversion assay to test whether brain specimens from different animal prion diseases are capable of seeding the conversion of human PrPC ro PrPSc.

 

Material and Methods. Classical BSE (C-type BSE), H-type BSE, L-type BSE, classical scrapie, atypical scrapie, chronic wasting disease and vCJD brain homogenates were tested for their ability to seed conversion of human PrPC to PrPSc in protein misfolding cyclic amplification (PMCA) reactions. Newly formed human PrPSc was detected by protease digestion and western blotting using the antibody 3F4.

 

Results. C-type BSE and vCJD were found to efficiently convert PrPC to PrPSc. Scrapie failed to convert human PrPC to PrPSc. Of the other animal prion diseases tested only chronic wasting disease appeared to have the capability ro convert human PrPC to PrPSc. The results were consistent whether the human PrPC came from human brain, humanised transgenic mouse brain or from cultured human cells and the effect was more pronounced for PrPC with methionine at codon 129 compared with that with valine.

 

Conclusion. Our results show that none of the tested animal prion disease isolates are as efficient as C-type BSE and vCJD in converting human prion protein in this in vitro assay. ***However, they also show that there is no absolute barrier ro conversion of human prion protein in the case of chronic wasting disease.

 

PRION2013 CONGRESSIONAL ABSTRACTS CWD

 

Sunday, August 25, 2013

 

***Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood, and mother to offspring transmission

 


 

cwd to humans ???

 

there has been no official documentation of cwd to humans on paper, to date.

 

cwd transmission studies on humans are illegal.

 

cwd transmits freely to the squirrel monkey, but not yet to the macaque, and the macaque is a bit closer to humans than the squirrel monkey.

 

still, with cwd freely transmitting to the squirrel monkey, scientist are very concerned about the cwd to human risk factor, exposure, and potential iatrogenic transmission there from.

 

85% of human TSE is sporadic cjd, and each and every one of them are up for debate as to route and source. I believe that friendly fire (iatrogenic) or the pass it forward mode of the TSE prion will be a large portion of that. all iatrogenic cjd is, is sporadic cjd until the iatrogenic event is discovered, documented, put into the academic and then the public domain, which very seldom happens due to lack of trace back efforts.

 

see what the authors said about this casual link with cwd to human with the case of Jeffrey Schwan 26 year old, and personal communications years ago with cdc about that case. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

 

From: Terry S. Singeltary Sr.

 

Sent: Saturday, November 15, 2014 9:29 PM

 

To: Terry S. Singeltary Sr.

 

Subject: THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE R. G. WILL 1984

 

THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE

 

R. G. WILL

 

1984

 

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). (SEE LINK IN REPORT HERE...TSS) PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;

 

snip...

 


 

July's Milwaukee Journal Sentinel article did prod state officials to ask CDC to investigate the cases of the three men who shared wild game feasts. The two men the CDC is still investigating were 55 and 66 years old. But there's also Kevin Boss, a Minnesota hunter who ate Barron County venison and died of CJD at 41. And there's Jeff Schwan, whose Michigan Tech fraternity brothers used to bring venison sausage back to the frat house. His mother, Terry, says that in May 2001, Jeff, 26, began complaining about his vision. A friend noticed misspellings in his e-mail, which was totally unlike him. Jeff began losing weight. He became irritable and withdrawn. By the end of June, he couldn't remember the four-digit code to open the garage door or when and how to feed his parents' cats. At a family gathering in July, he stuck to his parents and girlfriend, barely talking. "On the night we took him to the hospital, he was speaking like he was drunk or high and I noticed his pupils were so dilated I couldn't see the irises," his mother says. By then, Jeff was no longer able to do even simple things on his computer at work, and "in the hospital, he couldn't drink enough water." When he died on September 27, 2001, an autopsy confirmed he had sporadic CJD.

 

In 2000, Belay looked into three CJD cases reported by The Denver Post, two hunters who ate meat from animals killed in Wyoming and the daughter of a hunter who ate venison from a plant that processed Colorado elk. All three died of CJD before they were 30 years old. The CDC asked the USDA to kill 1,000 deer and elk in the area where the men hunted. Belay and others reported their findings in the Archives of Neurology, writing that although "circumstances suggested a link between the three cases and chronic wasting disease, they could find no 'causal' link." Which means, says Belay, "not a single one of those 1,000 deer tested positive for CWD. For all we know, these cases may be CWD. What we have now doesn't indicate a connection. That's reassuring, but it would be wrong to say it will never happen."

 

So far, says NIH researcher Race, the two Wisconsin cases pinpointed by the newspaper look like spontaneous CJD. "But we don't know how CWD would look in human brains. It probably would look like some garden-variety sporadic CJD." What the CDC will do with these cases and four others (three from Colorado and Schwan from Upper Michigan), Race says, is "sequence the prion protein from these people, inject it into mice and wait to see what the disease looks like in their brains. That will take two years."

 

CJD is so rare in people under age 30, one case in a billion (leaving out medical mishaps), that four cases under 30 is "very high," says Colorado neurologist Bosque. "Then, if you add these other two from Wisconsin [cases in the newspaper], six cases of CJD in people associated with venison is very, very high." Only now, with Mary Riley, there are at least seven, and possibly eight, with Steve, her dining companion. "It's not critical mass that matters," however, Belay says. "One case would do it for me." The chance that two people who know each other would both contact CJD, like the two Wisconsin sportsmen, is so unlikely, experts say, it would happen only once in 140 years.

 

Given the incubation period for TSEs in humans, it may require another generation to write the final chapter on CWD in Wisconsin. "Does chronic wasting disease pass into humans? We'll be able to answer that in 2022," says Race. Meanwhile, the state has become part of an immense experiment.

 


 

I urge everyone to watch this video closely...terry

 

*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***

 


 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. ***

 


 

*** IF CWD is not a risk factor for humans, then I guess the FDA et al recalled all this CWD tainted elk tenderloin (2009 Exotic Meats USA of San Antonio, TX) for the welfare and safety of the dead elk. ...tss

 

Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease

 

Contact: Exotic Meats USA 1-800-680-4375

 

FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.

 

Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.

 

Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.

 

Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.

 

#

 

RSS Feed for FDA Recalls Information11 [what's this?12]

 


 

Thursday, May 26, 2011

 

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.

 


 

now, let’s see what the authors said about this casual link, personal communications years ago. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

 

From: TSS (216-119-163-189.ipset45.wt.net)

 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

 

Date: September 30, 2002 at 7:06 am PST

 

From: "Belay, Ermias"

 

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

 

Sent: Monday, September 30, 2002 9:22 AM

 

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

 

Dear Sir/Madam,

 

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

 

Ermias Belay, M.D. Centers for Disease Control and Prevention

 

-----Original Message-----

 

From: Sent: Sunday, September 29, 2002 10:15 AM

 

To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV

 

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

 

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

 

Thursday, April 03, 2008

 

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

 

snip...

 

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

 

snip... full text ;

 


 

==============================

 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum

 

Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and Robert Kunkle1 1National Animal Disease Center; Ames, IA USA; 2Iowa State University; Ames, IA USA

 

The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip... The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like. *** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

Scrapie in Deer: Comparisons and Contrasts to Chronic Wasting Disease (CWD) Justin J. Greenlee of the Virus and Prion Diseases Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA

 

snip... This highlights the facts that 1) prior to the onset of clinical signs PrPSc is widely distributed in the CNS and lymphoid tissues and

 

2) currently used diagnostic methods are sufficient to detect PrPSc prior to the onset of clinical signs. The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in white-tailed deer after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile consistent with CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like. After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie. Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. While two WB patterns have been detected in brain regions of deer inoculated by the natural route, unlike the IC inoculated deer, the pattern similar to the scrapie inoculum predominates.

 


 

2011 Annual Report Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research Unit

 

2011 Annual Report In Objective 1, Assess cross-species transmissibility of transmissible spongiform encephalopathies (TSEs) in livestock and wildlife, numerous experiments assessing the susceptibility of various TSEs in different host species were conducted. Most notable is deer inoculated with scrapie, which exhibits similarities to chronic wasting disease (CWD) in deer suggestive of sheep scrapie as an origin of CWD.

 

snip...

 

4. Accomplishments 1. Deer inoculated with domestic isolates of sheep scrapie. Scrapie-affected deer exhibit 2 different patterns of disease associated prion protein. In some regions of the brain the pattern is much like that observed for scrapie, while in others it is more like chronic wasting disease (CWD), the transmissible spongiform encephalopathy typically associated with deer.

 

his work conducted by ARS scientists at the National Animal Disease Center, Ames, IA suggests that an interspecies transmission of sheep scrapie to deer may have been the origin of CWD. This is important for husbandry practices with both captive deer, elk and sheep for farmers and ranchers attempting to keep their herds and flocks free of CWD and scrapie.

 


 

White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection

 

Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS

 

snip... This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.

 

see full text ;

 


 

Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation

 

Amir N. Hamir,1 Robert A. Kunkle, Randall C. Cutlip, Janice M. Miller, Elizabeth S. Williams, Juergen A. Richt

 

Abstract. To determine the transmissibility of chronic wasting disease (CWD) to sheep, 8 Suffolk lambs of various prion protein genotypes (4 ARQ/ARR, 3 ARQ/ARQ, 1 ARQ/VRQ at codons 136, 154, and 171, respectively) were inoculated intracerebrally with brain suspension from mule deer with CWD (CWDmd). Two other lambs were kept as noninoculated controls. Within 36 months postinoculation (MPI), 2 inoculated animals became sick and were euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were consistent with those described for scrapie. Microscopic lesions of spongiform encephalopathy (SE) were only seen in this sheep, and its tissues were determined to be positive for the abnormal prion protein (PrPres) by immunohistochemistry and Western blot. Three other inoculated sheep were euthanized (36 to 60 MPI) because of conditions unrelated to TSE. The 3 remaining inoculated sheep and the 2 control sheep did not have clinical signs of disease at the termination of the study (72 MPI) and were euthanized. Of the 3 remaining inoculated sheep, 1 was found to have SE, and its tissues were positive for PrPres. The sheep with clinical prion disease (euthanized at 35 MPI) was of the heterozygous genotype (ARQ/VRQ), and the sheep with subclinical disease (euthanized at 72 MPH) was of the homozygous ARQ/ARQ genotype. These findings demonstrate that transmission of the CWDmd agent to sheep via the intracerebral route is possible. Interestingly, the host genotype may play a notable part in successful transmission and incubation period of CWDmd.

 

snip.

 

This study involved intracerebral inoculation of CWDmd agent to sheep. This is an unnatural route and is only an oblique reflection of the potential for sheep to become infected under natural conditions of exposure. Based on the low attack rate of the current intracerebral inoculation (IC) study, it is likely that transmission of CWD to sheep by a more natural route, such as per os would likely require a much larger dose of inoculum and may be much more difficult to accomplish within the normal life span of the animal. On the other hand, experimental studies of CWD from other cervid species (elk and whitetailed deer) have not been documented in livestock.

 

Preliminary studies (Hamir et al., unpublished data, 2006) of intracerebral inoculation of CWD from white-tailed deer into cattle suggests that this source is much more efficient at causing disease (as indicated by the attack rate) than CWDmd.

 

At this time a final assessment of relative risk for CWD transmission to sheep is not possible. However, results of this study show that the diagnostic confirmatory tests used for scrapie surveillance in the United States would also allow detection of CWD in sheep, should it occur in this country.

 

Thus far, among domestic animals, CWDmd has been transmitted by the intracerebral route to a goat18 and cattle.5–7 The present findings demonstrate that it is also possible to transmit CWDmd agent to sheep via the intracerebral route. However, the only sheep to develop clinical TSE within 35 MPI was genotypically AV at PRNP codon 136, suggesting that host genotype may play a notable part in successful transmission of the disease in this species. Although in Suffolk sheep the AV variant at codon 136 is very rare,17 selective breeding of Suffolk sheep with this codon has begun in the hope of testing this differential susceptibility hypothesis in a future study of CWDmd transmission to sheep.

 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.

 


 

 

HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES

 

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011

 

The CWD infection rate was nearly 80%, the highest ever in a North American captive herd.

 

RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

 

SUMMARY:

 


 

For Immediate Release Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD).

 


 

*** see history of this CWD blunder here ;

 


 

On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had been cut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.

 


 

The overall incidence of clinical CWD in white-tailed deer was 82%

 

Species (cohort) CWD (cases/total) Incidence (%) Age at CWD death (mo)

 


 

CWD, spreading it around...

 

for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;

 

===========================================

 

spreading cwd around...

 

Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.

 

***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.

 


 

spreading cwd around...

 

Friday, May 13, 2011

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea

 

Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.

 

On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.

 

All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.

 

Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.

 

Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.

 

Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).

 

In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.

 

Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.

 

All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.

 

Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.

 

In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.

 

In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.

 


 


 


 


 

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

 

The infectious agents responsible for transmissible spongiform encephalopathy (TSE) are notoriously resistant to most physical and chemical methods used for inactivating pathogens, including heat. It has long been recognized, for example, that boiling is ineffective and that higher temperatures are most efficient when combined with steam under pressure (i.e., autoclaving). As a means of decontamination, dry heat is used only at the extremely high temperatures achieved during incineration, usually in excess of 600°C. It has been assumed, without proof, that incineration totally inactivates the agents of TSE, whether of human or animal origin.

 


 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

 

Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.

 


 

Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

 

The data presented here demonstrate that sPMCA can detect low levels of PrPCWD in the environment, corroborate previous biological and experimental data suggesting long term persistence of prions in the environment2,3 and imply that PrPCWD accumulation over time may contribute to transmission of CWD in areas where it has been endemic for decades. This work demonstrates the utility of sPMCA to evaluate other environmental water sources for PrPCWD, including smaller bodies of water such as vernal pools and wallows, where large numbers of cervids congregate and into which prions from infected animals may be shed and concentrated to infectious levels.

 


 

A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing

 

Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE

 

In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key inputs for the model in the companion paper published here.

 


 

PL1

 

Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.

 

Claudio Soto

 

Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.

 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

 

=========================

 

***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

 

========================

 

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.

 


 

see ;

 


 


 


 


 


 

98 | Veterinary Record | January 24, 2015

 

EDITORIAL

 

Scrapie: a particularly persistent pathogen

 

Cristina Acín

 

Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’

 

From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).

 

Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.

 

Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.

 

The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).

 

In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.

 

Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).

 

In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.

 

The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).

 

Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).

 

So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?

 

What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.

 

References

 

snip...

 

98 | Veterinary Record | January 24, 2015

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

Contamination of Plants with Prions Excreted in Urine and Feces

 

Under natural conditions, it is likely that the main source of prions in the environment comes from secretory and excretory fluids, such as saliva, urine, and feces. We and others have shown that PrPSc is released in these fluids and excretions in various animal species (Gonzalez-Romero et al., 2008; Haley et al., 2009, 2011; Maddison et al., 2010; Terry et al., 2011; Moda et al., 2014). It has been estimated that the amount of infectious prions spread by excreta during the animals’ lifespan could match or even surpass the quantity present in the brain of a symptomatic individual (Tamgu¨ ney et al., 2009). To study whether plant tissue can be contaminated by waste products excreted from prion-infected hamsters and deer, leaves and roots were incubated with samples of urine and feces and the presence of PrPSc analyzed by serial rounds of PMCA. For these experiments, plant tissues were incubated for 1 hr with urine or feces homogenates obtained either from 263K-infected hamsters or CWD-affected cervids. This time was chosen because longer incubation with these biological fluids affected the integrity of the plant tissue. After being thoroughly washed and dried, PrPSc attached to leaves and roots was detected by PMCA. The results clearly show that PrPSc was readily detectable after three or four rounds of PMCA in samples of wheat grass leaves and roots exposed to both urine and feces from 263K sick hamsters (Figure 3A) and CWD-affected cervids (Figure 3B). Comparing these results with studies of the direct detection of PrPSc in urine and feces (Figures 3A and 3B), it seems that the majority of PrPSc present in these waste products was effectively attached to leaves and roots. No signal was observed in plant tissue exposed to urine or feces coming from non-infected hamsters.

 

Prions Bind to Living Plants

 

To investigate a more natural scenario for prion contamination of living plants, we sprayed the leaves of wheat grass with a preparation containing 1% 263K hamster brain homogenate. Plants were let to grow for different times after exposure, and PrPSc was detected in the leaves by PMCA in duplicates for each time point. The results show that PrPSc was able to bind to leaves and remained attached to the living plants for at least 49 days after exposure (Figure 4). Considering that PrPSc signal was detectable normally in the second or third round of PMCA without obvious trend in relation to time, we conclude that the relative amount of PrPSc present in leaves did not appear to change substantially over time. These data indicate that PrPSc can be retained in living plants for at least several weeks after a simple contact with prion contaminated materials, and PrPSc remains competent to drive prion replication.

 

DISCUSSION

 

This study shows that plants can efficiently bind prions contained in brain extracts from diverse prion infected animals, including CWD-affected cervids. PrPSc attached to leaves and roots from wheat grass plants remains capable of seeding prion replication in vitro. Surprisingly, the small quantity of PrPSc naturally excreted in urine and feces from sick hamster or cervids was enough to efficiently contaminate plant tissue. Indeed, our results suggest that the majority of excreted PrPSc is efficiently captured by plants’ leaves and roots. Moreover, leaves can be contaminated by spraying them with a prion-containing extract, and PrPSc remains detectable in living plants for as long as the study was performed (several weeks). Remarkably, prion contaminated plants transmit prion disease to animals upon ingestion, producing a 100% attack rate and incubation periods not substantially longer than direct oral administration of sick brain homogenates. Finally, an unexpected but exciting result was that plants were able to uptake prions from contaminated soil and transport them to aerial parts of the plant tissue. Although it may seem farfetched that plants can uptake proteins from the soil and transport it to the parts above the ground, there are already published reports of this phenomenon (McLaren et al., 1960; Jensen and McLaren, 1960; Paungfoo-Lonhienne et al., 2008). The high resistance of prions to degradation and their ability to efficiently cross biological barriers mayplay a role in this process. The mechanism by which plants bind, retain, uptake, and transport prions is unknown. Weare currently studying the way in which prions interact with plants using purified, radioactively labeled PrPSc to determine specificity of the interaction, association constant, reversibility, saturation, movement, etc.

 

Epidemiological studies have shown numerous instances of scrapie or CWD recurrence upon reintroduction of animals on pastures previously exposed to prion-infected animals. Indeed, reappearance of scrapie has been documented following fallow periods of up to 16 years (Georgsson et al., 2006), and pastures were shown to retain infectious CWD prions for at least 2 years after exposure (Miller et al., 2004). It is likely that the environmentally mediated transmission of prion diseases depends upon the interaction of prions with diverse elements, including soil, water, environmental surfaces, various invertebrate animals, and plants.

 

However, since plants are such an important component of the environment and also a major source of food for many animal species, including humans, our results may have far-reaching implications for animal and human health. Currently, the perception of the risk for animal-to-human prion transmission has been mostly limited to consumption or exposure to contaminated meat; our results indicate that plants might also be an important vector of transmission that needs to be considered in risk assessment.

 


 

SNIP...SEE FULL TEXT ;

 

Saturday, October 03, 2015

 

*** TEXAS CHRONIC WASTING DISEASE CWD TSE PRION GOD MUST NOT BE A TEXAN 2002 TO 2015

 


 

Wednesday, September 16, 2015

 

WISCONSIN CAPTIVE CERVID INDUSTRY RUNNING WILD AND ON THE LOOSE RISKING FURTHER SPREAD OF CWD

 


 

Thursday, September 24, 2015

 

TEXAS Hunters Asked to Submit Samples for Chronic Wasting Disease CWD TSE Prion Testing

 

*** I cannot stress enough to all of you, for the sake of your family and mine, before putting anything in the freezer, have those deer tested for CWD.

 

*** see past warnings about cwd from Shannon Tompkins of the Houston Chronicle

 

*** see video and latest transmission studies and warnings below.

 


 

CENSORED, RAW, UNCUT...it’s getting nasty in the pits...sometimes you can’t fix stupid...wasted days and wasted nights...

 

Sunday, July 26, 2015

 

*** TEXAS IN MELT DOWN MODE OVER CAPTIVE CWD AND THEY ARE PUTTING LIPSTICK ON THAT PIG AND TAKING HER TO THE DANCE LIKE MAD COW DISEASE ***

 


 

Sunday, August 02, 2015

 

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if?

 


 

Thursday, October 1, 2015

 

H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation

 

Master Obi-Wan Kenobi, Kemosabe...THIS IS NOT GOOD GOOSE!...grasshopper...tonto...tss

 


 

Friday, August 28, 2015

 

*** Chronic Wasting Disease CWD TSE Prion Diagnostics and subclinical infection

 


 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.

 

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.

 


 

Wednesday, September 23, 2015

 

NIH Availability for Licensing AGENCY: [FR Doc. 2015–24117 Filed 9–22–15; 8:45 am] Detection and Discrimination of Classical and Atypical L-Type BSE Strains by RT-QuIC

 


 

Thursday, October 1, 2015

 

H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation

 


 

re-FDA orders duodenoscope manufacturers to conduct postmarket surveillance studies in health care facilities October 6, 2015

 


 

Monday, August 17, 2015

 

FDA Says Endoscope Makers Failed to Report Superbug Problems OLYMPUS

 

I told Olympus 15 years ago about these risk factors from endoscopy equipment, disinfection, even spoke with the Doctor at Olympus, this was back in 1999. I tried to tell them that they were exposing patients to dangerous pathogens such as the CJD TSE prion, because they could not properly clean them. even presented my concern to a peer review journal GUT, that was going to publish, but then it was pulled by Professor Michael Farthing et al... see ;

 


 

Thursday, October 1, 2015

 

Alzheimergate, re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy, Singeltary Submission to Nature

 


 

From: Terry S. Singeltary Sr.

 

Sent: Thursday, October 01, 2015 4:44 PM

 

To: nindspressteam@ninds.nih.gov Cc:xxx...

 

Subject: NIH invests $85 million for BRAIN Initiative research and not a mention of the TSE prion disease or was it secretly hiden there by Alzheimer's ?

 


 

 

wasted days and wasted nights...Freddy Fender

 

 

Terry S. Singeltary Sr.

 

on the bottom, Galveston Bay

 


 

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.