Pages

Thursday, January 10, 2019

Minnesota 2019 Legislation CWD TSE Prion Buying Out Game Farms while Texas Legislators are asleep at the wheel

Minnesota 2019 Legislation CWD TSE Prion Buying Out Game Farms while Texas Legislators are asleep at the wheel

Chronic wasting disease


Chronic wasting disease — a brain disease in deer and elk with no vaccine and no cure currently — will be an issue again this year.
DFL House lawmakers are expected to push bills they introduced last year but failed to pass, including one to establish and fund a program to buy out deer and elk farms in Minnesota.
A 2018 legislative auditor’s report said the Minnesota Board of Animal Health failed to adequately regulate deer and elk farms.

Rapid recontamination of a farm building occurs after attempted prion removal


Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2

Author affiliations

School of Veterinary Medicine and Science, The University of Nottingham, Loughborough, UK ADAS, School of Veterinary Medicine and Science, The University of Nottingham, Loughborough, UK Animal Sciences Unit, Pathology Department, Animal & Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, UK E-mail for correspondence; ben.maddison@adas.co.uk

Abstract

The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. 

Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. 

Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. 

Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). 

A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. 

Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3. 

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

PrPC is ubiquitous in its distribution in vivo2 and with both scrapie and CWD the in vivo dissemination of infectivity is also widespread with PrPSc usually accumulating within peripheral lymphatic tissues before the CNS.3 4 With scrapie, PrPSc can be secreted/ excreted via a multiplicity of routes including saliva,5 6 milk,7 faeces,8 skin9 and urine.10 The accumulation of this material within the environment (particularly the built farm environment),11 12 creates levels of infectivity that can be transmitted to naïve animals. These reservoirs of infectivity can remain infectious for prolonged periods of time, in one such recorded incident at least 16 years.13 The advent of high sensitivity prion replication assays such as protein misfolding cyclic amplification (PMCA) with application to sheep/goat scrapie14 15 has allowed the monitoring of prions within environments.11

Attempts to decontaminate pens on a scrapie-affected farm and measuring efficacy using a sheep bioassay were previously reported.12 It was concluded that the failure of effective decontamination within that study was likely to have been due to the incomplete farm decontamination and the presence of dust containing infectious prions that recontaminated the pen surfaces. The serial protein misfolding cyclic amplification (sPMCA) technique was recently used to confirm the presence of prions within extracts prepared from dust samples that had settled on sterile surfaces.16 Given the presence of mobile infectious prions within dust, it was proposed that for effective scrapie decontamination emphasis should be given to the removal of all sources of dust within the decontamination strategy for a farm. More recently, the sPMCA technique has been used by the authors' laboratory to look at effective methods of decontaminating prions bound to concrete surfaces within the laboratory setting.17 This study demonstrated that current methodology based on a one-hour exposure to 20000 ppm free chlorine was likely to be ineffective at removing surface-bound scrapie prion. However, there was an enhanced effectiveness of this chemical decontamination when using multiple applications over four hours. Here, a study is described where a scrapie-affected farm was decontaminated using four applications of 20000 ppm free chlorine to livestock barns and concreted areas. The decontamination also included a high-level clean of the buildings that had housed sheep to remove all traces of dust as far as practicable before the chemical decontamination procedure. Following these treatments the surfaces within the barn were demonstrably free from prion using a sensitive sPMCA assay. The presence of any residual infectivity was then evaluated by sheep bioassay and dust samples collected during the bioassay were assayed for prion seeding activity by sPMCA.

snip...

Discussion

The authors' previous work on this farm indicated that dust harbours low levels of mobile scrapie prions that can accumulate on surfaces16 and this is likely to perpetuate transmission of scrapie within such a farm environment.12 In addition, previous in vitro modelling of scrapie prions bound to a concrete ‘fomite’ demonstrated that prion seeding activity could be inactivated by four applications of 20,000 ppm free chlorine as measured by a sPMCA assay. This previous modelling demonstrated that residual contamination of the swab extract with hypochlorite at levels which would inhibit the sPMCA are unlikely, and the authors consider these results as reduction in seeding titre.17 Here, this same decontamination methodology was tested within a farm-scale study which also included steps to remove dust within the barns. This study demonstrated that this thorough decontamination method applied to a farm with a high incidence of naturally acquired scrapie was sufficient to remove scrapie prions on surfaces to levels that were undetectable by sPMCA, one of the most sensitive biochemical assays for prions. The authors' sPMCA assay has an limit of detection of around 1–10pg scrapie-infected sheep brain per sPMCA reaction. The authors assume that the samples negative by sPMCA had less than this amount (of brain equivalent) within the extracts that were prepared. This treatment together with measures designed to minimise the amount of dust retained within the buildings (vacuuming all surfaces, pressure washing and then hypochlorite treatment) was expected to have removed all infectivity from the buildings and the concrete areas surrounding them, and it was anticipated that the sheep bioassay would confirm absence of infective prion.

However, the introduction into this decontaminated barn of 25 VRQ/VRQ sheep (a genotype highly susceptible to classical scrapie) demonstrated that all animals, with the exception of 1 lamb that died at 122 dpe, had detectable PrPSc in lymphoid tissue, indicating infection with the scrapie agent. This included 14 animals (54 per cent) that were PrPSc-positive on the first RAMALT analysis at 372 dpe or 419 dpe. Although infected sheep were removed based on a positive RAMALT result, it is possible that lateral transmission or subsequent contamination of the environment from infected sheep had contributed to the rapid spread of scrapie in nearly all sheep. It has been shown previously that objects in contact with scrapie-infected sheep, such as water troughs and fence posts, can act as a reservoir for infection.23 As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.

Funding This study was funded by DEFRA within project SE1865. 

Competing interests None declared. 


THURSDAY, JANUARY 03, 2019 

Minnesota CWD discovery in Houston County prompts additional late-season deer hunts


SOMEBODY better build a border to protect against mad deer disease..oh that's right, they can't$

what will the Texas 86 Legislative pay to play CWD TSE PRION SESSION bring us $$$

WELL, after me trying to tell the powers that be @ TAHC that CWD TSE was waltzing into Texas from the WSMR there about the Trans Pecos region starting back around 2001 and 2002, and there after year after year, after decades of legislative sessions where the captive cervid industry kept on and kept on trying to water down said regulations about Chronic Wasting Disease CWD TSE Prion, thus the outbreak in Medina and beyond, Texas is pretty much now saturated with the CWD TSE Prion, Scrapie and mad cow disease, and humans there from, all documented right here in the Great State of Texas.

you die hard idiots that follow ted nugent for your science deserve what you get. you keep following bs like that, you will lose your cervid herd as you know in the long run. your children will not know it as you do. so what is it, uncle ted theology which is horse shit, or sound science. listen to the scientist.

WITH the recent findings that Scrapie will transmit to Macaque by oral route, that Scrapie and CWD TSE Prion will transit to pigs orally, recent outbreak documented of TSE Prion Disease in Dromedary Camels, Algeria, atypical TSE Prion still being documented, and again just recently in the USA, of another atypical BSE case, and this discovery was only documented by testing 20k head of cattle from some 100M head of cattle in any given year in the USA, the continued denial that atypical BSE and atypical Scrapie are a transmissible disease (science has shown otherwise) this is concerning to me. 

Science and scientific policy makers have forgotten what Gibbs, Gajdusek, Hadlow, Alper, Zigas, even Gordon with the infamous Scrapie vaccine blunder, a discovery of valuable importance, and so many others i am failing to remember now, what some found long ago, like Dr. Gibbs, he tried to warn us about scrapie zoonosis potential, yet that went ignored for decades and decades. 

we/scientist/officials/the world, knows the USA FDA PART 589 TSE PRION FEED ban has failed terribly, the BSE testing has failed terribly, and the surveillance there from has failed, SRM removal breaches, all proven by the OIG or the GAO, and others. 

But yet, we find ourselves now debating the issue of these same risk factors for scrapie, the same risk factors that we all knew were there, with science staring us in the face, we still deny scientific facts all in the name of corporate interest. 

let's not continue to make these same mistakes. human and animal life is at stake here. we must remove corporate/government/lobbyist interest from the scientific policy making and regulations there from for the TSE Prion, all of them.

I urge you all to take a good look at the most recent science i have put together here for you. this is a free full course of the tse prion disease, and it's not fake news...

FRIDAY, JANUARY 04, 2019 

TEXAS TPWD CONFIRMED CWD TSE PRION 3 WTD in Medina, Dallam, and Hartley Counties, and in 3 MD in Hudspeth, Hartley, and El Paso Counties


Wednesday, May 04, 2016 

TPWD proposes the repeal of §§65.90 -65.94 and new §§65.90 -65.99 Concerning Chronic Wasting Disease - Movement of Deer Singeltary Comment Submission 


*** Hartley County Sheep with Scrapie, and CWD in Hartley county ??? 

*** Friday, April 22, 2016 

*** Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer 


SUNDAY, MAY 14, 2017 

85th Legislative Session 2017 AND THE TEXAS TWO STEP Chronic Wasting Disease CWD TSE Prion, and paying to play


TUESDAY, DECEMBER 16, 2014

Texas 84th Legislature 2015 H.R. No. 2597 Kuempel Deer Breeding Industry TAHC TPWD CWD TSE PRION 


SUNDAY, DECEMBER 14, 2014

TEXAS 84th Legislature commencing this January, deer breeders are expected to advocate for bills that will seek to further deregulate their industry


MONDAY, AUGUST 14, 2017 

***> Singeltary on Texas Chronic Wasting Disease CWD TSE Prion History


THURSDAY, OCTOBER 04, 2018 

Cervid to human prion transmission 5R01NS088604-04 Update


FRIDAY, DECEMBER 28, 2018 

***> Chronic Wasting Disease CWD TSE Prion 2019 Where The Rubber Meets The Road 


Saturday, December 15, 2018 

***> ADRD Summit RFI Singeltary COMMENT SUBMISSION BSE, SCRAPIE, CWD, AND HUMAN TSE PRION DISEASE December 14, 2018


SATURDAY, JANUARY 5, 2019 

Low levels of classical BSE infectivity in rendered fat tissue 


FRIDAY, DECEMBER 14, 2018 MAD COW USA FLASHBACK 

FRIDAY DECEMBER 14, 2018 


THURSDAY, JANUARY 3, 2019 

MAD COW USDA DISEASE BSE TSE Prion 


TUESDAY, JANUARY 1, 2019 

CHILDHOOD EXPOSURE TO CADAVERIC DURA




Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.