From: Terry S. Singeltary Sr.
Sent: Friday, October 23, 2015 4:39 PM
Subject: Ohio Wildlife Council Passes Rule to Help Monitor
CWD
Ohio Wildlife Council Passes Rule to Help Monitor CWD
Posted on 10/22/2015 by Division of Wildlife COLUMBUS, OH - The Ohio
Wildlife Council passed a rule change that will allow the creation of disease
surveillance areas to monitor chronic wasting disease (CWD) at its regularly
scheduled meeting Wednesday, Oct. 21, according to the Ohio Department of
Natural Resources (ODNR).
The rule permits the ODNR Division of Wildlife to establish a disease
surveillance area when CWD has been detected. This designation, when enacted,
will include all areas within a minimum of 6 miles surrounding a location where
the disease has been detected. The designation will remain in effect for a
minimum of three years and will be posted at wildohio.gov.
These regulations would apply within any CWD designated surveillance area:
• Required submission of harvested deer carcasses to ODNR Division of
Wildlife inspection stations for sampling during the deer-gun and
deer-muzzleloading seasons; • Prohibit the placement of or use of salt, mineral
supplement, grain, fruit, vegetables or other feed to attract or feed deer; •
Prohibit the hunting of deer by the aid of salt, mineral supplement, grain,
fruit, vegetables or other feed; and • Prohibit the removal of a deer carcass
killed by a motor vehicle, unless the carcass complies with the deer carcass
regulations.
Normal agricultural activities, including feeding of domestic animals would
not be affected. Hunting deer over food plots, naturally occurring or cultivated
plants and agriculture crops would still be allowed.
Also on Wednesday, the council passed a rule to include the Eurasian
collared-dove in the definition of migratory game birds and game birds. The
council also amended a rule to permit the possession of Eurasian collared-doves
in the field, consistent with the exemption for mourning doves. The Eurasian
collared-dove is a non-native species that has spread rapidly across North
America. In flight, it is very similar in appearance to mourning doves.
The council also voted to amend rules to require trotlines used in the
inland fishing district, and all float lines used statewide, be tagged by the
user with their name and address or their unique ODNR Division of Wildlife
customer identification number.
In addition, rules were amended to update the list of areas owned by
American Electric Power that require a special permit to fish under an agreement
with the ODNR Division of Wildlife, and amend the language for possession of
fish and fish fillets at Pymatuning Lake.
The council voted to establish a daily bag limit of 30 fish, combined for
striped bass, hybrid-striped bass or white bass from waters other than in the
Lake Erie sport fishing district. Of these 30 fish, a daily limit of four fish
longer than 15 inches in length was approved. The location specific daily bag
limits for hybrid-striped bass taken from East Fork Lake, and striped bass from
Senecaville Lake and Kiser Lake were removed.
The northern long-eared bat is now listed as threatened in Ohio because of
a change in its federal status to threatened.
The next Ohio Wildlife Council meeting will be on Wednesday, Nov. 18.
Council meetings are open to the public. Individuals who want to provide
comments to the council should preregister at least two days prior to the
meeting by calling 614-265-6304. All comments must be three minutes or less. The
next ODNR Division of Wildlife public open house will be Saturday, March 5,
2016. ODNR Division of Wildlife staff will be available to answer questions and
listen to concerns. For more information, visit wildohio.gov or call
800-WILDLIFE (945-3543).
The Ohio Wildlife Council is an eight-member board that approves all ODNR
Division of Wildlife proposed rules and regulations. Appointed by the Governor,
no more than four members may be of the same political party, and two of the
council members must represent agriculture. Each term of office is four years.
ODNR ensures a balance between wise use and protection of our natural
resources for the benefit of all. Visit the ODNR website at ohiodnr.gov.
http://wildlife.ohiodnr.gov/wildlife-home/post/ohio-wildlife-council-passes-rule-to-help-monitor-cwd
PrPSc Detection and Infectivity in Semen from Scrapie-Infected Sheep
Richard Rubenstein1,5, Marie S Bulgin2, Binggong Chang1, Sharon
Sorensen-Melson2, Robert B Petersen3 and Giuseppe LaFauci4 + Author Affiliations
1 SUNY Downstate Medical Center, Brooklyn, NY, USA; 2 University of Idaho,
Caldwell, ID, USA; 3 Case Western Reserve University, Cleveland, OH, USA; 4 NYS
Institute for Basic Research in Developmental Disabilities, Staten Island, NY,
USA ↵5 E-mail: richard.rubenstein@downstate.edu Received 13 October 2011.
Accepted 3 February 2012.
Abstract
A scrapie-positive ewe was found in a flock that had been scrapie free for
13 years, but housed adjacent to scrapie-positive animals, separated by a wire
fence. Live animal testing of the entire flock of 24 animals revealed 7 more
subclinical scrapie-positive ewes. We hypothesized that they may have contracted
the disease from scrapie-positive rams used for breeding four months prior,
possibly through the semen. The genotypes of the ewe flock were highly
scrapie-susceptible and the rams were infected with the "Caine" Scrapie Strain
having a short incubation time of 4.3-14.6 mo. in sheep with 136/171 VQ/VQ and
AQ/VQ genotypes. PrPSc accumulates in a variety of tissues in addition to the
central nervous system. Although transmission of prion diseases, or
transmissible spongiform encephalopathies, has been achieved via peripheral
organ or tissue homogenates as well as by blood transfusion, neither infectivity
nor PrPSc have been found in semen from scrapie-infected animals. Using serial
protein misfolding cyclic amplification followed by a surround optical fiber
immunoassay, we demonstrate that semen from rams infected with a short
incubation time scrapie strain contains prion disease-associated seeding
activity that generated PrPSc in sPMCA. Injection of the ovinized transgenic
mouse line TgSShpPrP with semen from scrapie-infected sheep resulted in PrPSc
seeding activity in clinical and, probably as a result of the low titer,
nonclinical mouse brain. These results suggest that the transmissible agent, or
at least the seeding activity, for sheep scrapie is present in semen. This may
be a strain specific phenomenon.
*** Spraker suggested an interesting explanation for the occurrence of CWD.
The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr.
Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at
this site. When deer were introduced to the pens they occupied ground that had
previously been occupied by sheep.
$$$ PRICE OF CWD TSE PRION mad cow POKER GOES UP $$$
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: Transmission of chronic wasting disease to sentinel reindeer
(Rangifer tarandus tarandus)
Authors
item Moore, S - item Kunkle, Robert item Nicholson, Eric item Richt,
Juergen item Hamir, Amirali item Waters, Wade item Greenlee, Justin
Submitted to: American College of Veterinary Pathologists Meeting
Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015
Publication Date: N/A
Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring,
fatal neurodegenerative disease of North American cervids. Reindeer (Rangifer
tarandus tarandus) are susceptible to CWD following oral challenge, but CWD has
not been reported in free-ranging caribou (Rangifer tarandus caribou) or farmed
reindeer. Potential contact between CWD-affected cervids and Rangifer species
that are free-ranging or co-housed on farms presents a potential risk of CWD
transmission. The aims of this study were to 1) investigate the transmission of
CWD from white-tailed deer (Odocoileus virginianus; CWD-wtd), mule deer
(Odocoileus hemionus; CWD-md), or elk (Cervus elaphus nelsoni; CWD-elk) to
reindeer via the intracranial route, and 2) to assess for direct and indirect
horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer
fawns were challenged intracranially with CWD-wtd, CWD-md, or CWD-elk. Two years
after challenge of inoculated reindeer, non-inoculated control reindeer were
introduced into the same pen as the CWD-wtd inoculated reindeer (n=4) or into a
pen adjacent to the CWD-md inoculated reindeer (n=2). Reindeer were allowed to
develop clinical disease. At death/euthanasia a complete necropsy examination
was performed, including immunohistochemical testing of tissues for
disease-associated CWD prion protein (PrP-CWD). Intracranially challenged
reindeer developed clinical disease from 21 months post-inoculation (MPI).
***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed
clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6
developed clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
57>
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES
snip...see more here;
Tuesday, September 29, 2015
*** Transmission of chronic wasting disease to sentinel reindeer (Rangifer
tarandus tarandus) can transmit CWD to naive reindeer both directly and
indirectly
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
*** Infectious agent of sheep scrapie may persist in the environment for at
least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
*** Spraker suggested an interesting explanation for the occurrence of CWD.
The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr.
Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at
this site. When deer were introduced to the pens they occupied ground that had
previously been occupied by sheep.
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm
Update DECEMBER 2011
The CWD infection rate was nearly 80%, the highest ever in a North American
captive herd.
RECOMMENDATION: That the Board approve the purchase of 80 acres of land for
$465,000 for the Statewide Wildlife Habitat Program in Portage County and
approve the restrictions on public use of the site.
SUMMARY:
For Immediate Release Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or
Dustin.VandeHoef@IowaAgriculture.gov
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE
RELEASED 79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today
announced that the test results from the depopulation of a quarantined captive
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the
herd, tested positive for Chronic Wasting Disease (CWD).
*** see history of this CWD blunder here ;
On June 5, 2013, DNR conducted a fence inspection, after gaining approval
from surrounding landowners, and confirmed that the fenced had been cut or
removed in at least four separate locations; that the fence had degraded and was
failing to maintain the enclosure around the Quarantined Premises in at least
one area; that at least three gates had been opened;and that deer tracks were
visible in and around one of the open areas in the sand on both sides of the
fence, evidencing movement of deer into the Quarantined Premises.
The overall incidence of clinical CWD in white-tailed deer was 82%
Species (cohort) CWD (cases/total) Incidence (%) Age at CWD death (mo)
”The occurrence of CWD must be viewed against the contest of the locations
in which it occurred. It was an incidental and unwelcome complication of the
respective wildlife research programmes. Despite it’s subsequent recognition as
a new disease of cervids, therefore justifying direct investigation, no specific
research funding was forthcoming. The USDA veiwed it as a wildlife problem and
consequently not their province!” page 26.
Sunday, January 06, 2013
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
CWD, spreading it around...
for the game farm industry, and their constituents, to continue to believe
that they are _NOT_, and or insinuate that they have _NEVER_ been part of the
problem, will only continue to help spread cwd. the game farming industry, from
the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet
mills, shooting pens, to large ranches, are not the only problem, but it is
painfully obvious that they have been part of the problem for decades and
decades, just spreading it around, as with transportation and or exportation and
or importation of cervids from game farming industry, and have been proven to
spread cwd. no one need to look any further than South Korea blunder ;
===========================================
spreading cwd around...
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of
farmed elk in Saskatchewan in a single epidemic. All of these herds were
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease
eradication program. Animals, primarily over 12 mo of age, were tested for the
presence CWD prions following euthanasia. Twenty-one of the herds were linked
through movements of live animals with latent CWD from a single infected source
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily
infected herds.
***The source herd is believed to have become infected via importation of
animals from a game farm in South Dakota where CWD was subsequently diagnosed
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation
of these herds was observed. Within-herd transmission was observed on some
farms, while the disease remained confined to the introduced animals on other
farms.
spreading cwd around...
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim,
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research
Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion
disease in native North America deer and Rocky mountain elks. The disease is a
unique member of the transmissible spongiform encephalopathies (TSEs), which
naturally affects only a few species. CWD had been limited to USA and Canada
until 2000.
On 28 December 2000, information from the Canadian government showed that a
total of 95 elk had been exported from farms with CWD to Korea. These consisted
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72
elk in 1997, which had been held in pre export quarantine at the “source
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD
surveillance program was initiated by the Ministry of Agriculture and Forestry
(MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994
were impossible to identify. CWD control measures included stamping out of all
animals in the affected farm, and thorough cleaning and disinfection of the
premises. In addition, nationwide clinical surveillance of Korean native
cervids, and improved measures to ensure reporting of CWD suspect cases were
implemented.
Total of 9 elks were found to be affected. CWD was designated as a
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and
2005.
Since February of 2005, when slaughtered elks were found to be positive,
all slaughtered cervid for human consumption at abattoirs were designated as
target of the CWD surveillance program. Currently, CWD laboratory testing is
only conducted by National Reference Laboratory on CWD, which is the Foreign
Animal Disease Division (FADD) of National Veterinary Research and Quarantine
Service (NVRQS).
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the
human consumption was confirmed as positive. Consequently, all cervid – 54 elks,
41 Sika deer and 5 Albino deer – were culled and one elk was found to be
positive. Epidemiological investigations were conducted by Veterinary
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary
services.
Epidemiologically related farms were found as 3 farms and all cervid at
these farms were culled and subjected to CWD diagnosis. Three elks and 5
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and
confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were
linked to the importation of elks from Canada in 1994 based on circumstantial
evidences.
In December 2010, one elk was confirmed as positive at Farm 5.
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer –
were culled and one Manchurian Sika deer and seven Sika deer were found to be
positive. This is the first report of CWD in these sub-species of deer.
Epidemiological investigations found that the owner of the Farm 2 in CWD
outbreaks in July 2010 had co-owned the Farm 5.
In addition, it was newly revealed that one positive elk was introduced
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as
negative.
New studies on the heat resistance of hamster-adapted scrapie agent:
Threshold survival after ashing at 600°C suggests an inorganic template of
replication
The infectious agents responsible for transmissible spongiform
encephalopathy (TSE) are notoriously resistant to most physical and chemical
methods used for inactivating pathogens, including heat. It has long been
recognized, for example, that boiling is ineffective and that higher
temperatures are most efficient when combined with steam under pressure (i.e.,
autoclaving). As a means of decontamination, dry heat is used only at the
extremely high temperatures achieved during incineration, usually in excess of
600°C. It has been assumed, without proof, that incineration totally inactivates
the agents of TSE, whether of human or animal origin.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel
Production
Histochemical analysis of hamster brains inoculated with the solid residue
showed typical spongiform degeneration and vacuolation. Re-inoculation of these
brains into a new cohort of hamsters led to onset of clinical scrapie symptoms
within 75 days, suggesting that the specific infectivity of the prion protein
was not changed during the biodiesel process. The biodiesel reaction cannot be
considered a viable prion decontamination method for MBM, although we observed
increased survival time of hamsters and reduced infectivity greater than 6 log
orders in the solid MBM residue. Furthermore, results from our study compare for
the first time prion detection by Western Blot versus an infectivity bioassay
for analysis of biodiesel reaction products. We could show that biochemical
analysis alone is insufficient for detection of prion infectivity after a
biodiesel process.
Detection of protease-resistant cervid prion protein in water from a
CWD-endemic area
The data presented here demonstrate that sPMCA can detect low levels of
PrPCWD in the environment, corroborate previous biological and experimental data
suggesting long term persistence of prions in the environment2,3 and imply that
PrPCWD accumulation over time may contribute to transmission of CWD in areas
where it has been endemic for decades. This work demonstrates the utility of
sPMCA to evaluate other environmental water sources for PrPCWD, including
smaller bodies of water such as vernal pools and wallows, where large numbers of
cervids congregate and into which prions from infected animals may be shed and
concentrated to infectious levels.
A Quantitative Assessment of the Amount of Prion Diverted to Category 1
Materials and Wastewater During Processing
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
In this article the development and parameterization of a quantitative
assessment is described that estimates the amount of TSE infectivity that is
present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for
cattle and classical/atypical scrapie for sheep and lambs) and the amounts that
subsequently fall to the floor during processing at facilities that handle
specified risk material (SRM). BSE in cattle was found to contain the most oral
doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to
a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep
infected with classical and atypical scrapie, respectively. Lambs contained the
least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie
and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity
falling to the floor and entering the drains from slaughtering a whole carcass
at SRM facilities were found to be from cattle infected with BSE at rendering
and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate
plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and
collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains
are from lambs infected with classical and atypical scrapie at intermediate
plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO
ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key
inputs for the model in the companion paper published here.
PL1
Using in vitro prion replication for high sensitive detection of prions and
prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto
Mitchell Center for Alzheimer's diseases and related Brain disorders,
Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the
ability to selfpropagate to spread disease between cells, organs and in some
cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m
encephalopathies (TSEs), prions are mostly composed by a misfolded form of the
prion protein (PrPSc), which propagates by transmitting its misfolding to the
normal prion protein (PrPC). The availability of a procedure to replicate prions
in the laboratory may be important to study the mechanism of prion and
prion-like spreading and to develop high sensitive detection of small quantities
of misfolded proteins in biological fluids, tissues and environmental samples.
Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient
methodology to mimic prion replication in the test tube. PMCA is a platform
technology that may enable amplification of any prion-like misfolded protein
aggregating through a seeding/nucleation process. In TSEs, PMCA is able to
detect the equivalent of one single molecule of infectious PrPSc and propagate
prions that maintain high infectivity, strain properties and species
specificity. Using PMCA we have been able to detect PrPSc in blood and urine of
experimentally infected animals and humans affected by vCJD with high
sensitivity and specificity. Recently, we have expanded the principles of PMCA
to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in
Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to
study the utility of this technology to detect Aβ and α-syn aggregates in
samples of CSF and blood from patients affected by these diseases.
=========================
***Recently, we have been using PMCA to study the role of environmental
prion contamination on the horizontal spreading of TSEs. These experiments have
focused on the study of the interaction of prions with plants and
environmentally relevant surfaces. Our results show that plants (both leaves and
roots) bind tightly to prions present in brain extracts and excreta (urine and
feces) and retain even small quantities of PrPSc for long periods of time.
Strikingly, ingestion of prioncontaminated leaves and roots produced disease
with a 100% attack rate and an incubation period not substantially longer than
feeding animals directly with scrapie brain homogenate. Furthermore, plants can
uptake prions from contaminated soil and transport them to different parts of
the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety
of environmentally relevant surfaces, including stones, wood, metals, plastic,
glass, cement, etc. Prion contaminated surfaces efficiently transmit prion
disease when these materials were directly injected into the brain of animals
and strikingly when the contaminated surfaces were just placed in the animal
cage. These findings demonstrate that environmental materials can efficiently
bind infectious prions and act as carriers of infectivity, suggesting that they
may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental
questions of prion propagation and has broad applications in research areas
including the food industry, blood bank safety and human and veterinary disease
diagnosis.
see ;
98 | Veterinary Record | January 24, 2015
EDITORIAL
Scrapie: a particularly persistent pathogen
Cristina Acín
Resistant prions in the environment have been the sword of Damocles for
scrapie control and eradication. Attempts to establish which physical and
chemical agents could be applied to inactivate or moderate scrapie infectivity
were initiated in the 1960s and 1970s,with the first study of this type focusing
on the effect of heat treatment in reducing prion infectivity (Hunter and
Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate
the prion protein are based on the method developed by Kimberlin and
collaborators (1983). This procedure consists of treatment with 20,000 parts per
million free chlorine solution, for a minimum of one hour, of all surfaces that
need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so
on). Despite this, veterinarians and farmers may still ask a range of questions,
such as ‘Is there an official procedure published somewhere?’ and ‘Is there an
international organisation which recommends and defines the exact method of
scrapie decontamination that must be applied?’
From a European perspective, it is difficult to find a treatment that could
be applied, especially in relation to the disinfection of surfaces in lambing
pens of affected flocks. A 999/2001 EU regulation on controlling spongiform
encephalopathies (European Parliament and Council 2001) did not specify a
particular decontamination measure to be used when an outbreak of scrapie is
diagnosed. There is only a brief recommendation in Annex VII concerning the
control and eradication of transmissible spongiform encephalopathies (TSE
s).
Chapter B of the regulation explains the measures that must be applied if
new caprine animals are to be introduced to a holding where a scrapie outbreak
has previously been diagnosed. In that case, the statement indicates that
caprine animals can be introduced ‘provided that a cleaning and disinfection of
all animal housing on the premises has been carried out following
destocking’.
Issues around cleaning and disinfection are common in prion prevention
recommendations, but relevant authorities, veterinarians and farmers may have
difficulties in finding the specific protocol which applies. The European Food
and Safety Authority (EFSA ) published a detailed report about the efficacy of
certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and
even a formulation of copper or iron metal ions in combination with hydrogen
peroxide, against prions (EFSA 2009). The report was based on scientific
evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006,
Solassol and others 2006) but unfortunately the decontamination measures were
not assessed under outbreak conditions.
The EFSA Panel on Biological Hazards recently published its conclusions on
the scrapie situation in the EU after 10 years of monitoring and control of the
disease in sheep and goats (EFSA 2014), and one of the most interesting findings
was the Icelandic experience regarding the effect of disinfection in scrapie
control. The Icelandic plan consisted of: culling scrapie-affected sheep or the
whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of
stables, sheds, barns and equipment with high pressure washing followed by
cleaning with 500 parts per million of hypochlorite; drying and treatment with
300 ppm of iodophor; and restocking was not permitted for at least two years.
Even when all of these measures were implemented, scrapie recurred on several
farms, indicating that the infectious agent survived for years in the
environment, even as many as 16 years after restocking (Georgsson and others
2006).
In the rest of the countries considered in the EFSA (2014) report,
recommendations for disinfection measures were not specifically defined at the
government level. In the report, the only recommendation that is made for sheep
is repopulation with sheep with scrapie-resistant genotypes. This reduces the
risk of scrapie recurrence but it is difficult to know its effect on the
infection.
Until the EFSA was established (in May 2003), scientific opinions about TSE
s were provided by the Scientific Steering Committee (SSC) of the EC, whose
advice regarding inactivation procedures focused on treating animal waste at
high temperatures (150°C for three hours) and high pressure alkaline hydrolysis
(SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory
Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe
working and the prevention of TSE infection. Annex C of the ACDP report
established that sodium hypochlorite was considered to be effective, but only if
20,000 ppm of available chlorine was present for at least one hour, which has
practical limitations such as the release of chlorine gas, corrosion,
incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its
active chemicals and the stability of dilutions (ACDP 2009).
In an international context, the World Organisation for Animal Health (OIE)
does not recommend a specific disinfection protocol for prion agents in its
Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General
recommendations on disinfection and disinsection (OIE 2014), focuses on
foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on
prion disinfection. Nevertheless, the last update published by the OIE on bovine
spongiform encephalopathy (OIE 2012) indicates that few effective
decontamination techniques are available to inactivate the agent on surfaces,
and recommends the removal of all organic material and the use of sodium
hydroxide, or a sodium hypochlorite solution containing 2 per cent available
chlorine, for more than one hour at 20ºC.
The World Health Organization outlines guidelines for the control of TSE s,
and also emphasises the importance of mechanically cleaning surfaces before
disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO
1999).
Finally, the relevant agencies in both Canada and the USA suggest that the
best treatments for surfaces potentially contaminated with prions are sodium
hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution,
while most commercial household bleaches contain 5.25 per cent sodium
hypochlorite. It is therefore recommended to dilute one part 5.25 per cent
bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency
2013).
So what should we do about disinfection against prions? First, it is
suggested that a single protocol be created by international authorities to
homogenise inactivation procedures and enable their application in all
scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available
chlorine seems to be the procedure used in most countries, as noted in a paper
summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015).
But are we totally sure of its effectiveness as a preventive measure in a
scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease
be needed?
What we can conclude is that, if we want to fight prion diseases, and
specifically classical scrapie, we must focus on the accuracy of diagnosis,
monitoring and surveillance; appropriate animal identification and control of
movements; and, in the end, have homogeneous and suitable protocols to
decontaminate and disinfect lambing barns, sheds and equipment available to
veterinarians and farmers. Finally, further investigations into the resistance
of prion proteins in the diversity of environmental surfaces are required.
References
snip...
98 | Veterinary Record | January 24, 2015
Persistence of ovine scrapie infectivity in a farm environment following
cleaning and decontamination
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc
MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C.
Maddison, BSc, PhD3 + Author Affiliations
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey
KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of
Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS
UK, School of Veterinary Medicine and Science, The University of Nottingham,
Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for
correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and
chronic wasting disease of deer/elk are contagious prion diseases where
environmental reservoirs are directly implicated in the transmission of disease.
In this study, the effectiveness of recommended scrapie farm decontamination
regimens was evaluated by a sheep bioassay using buildings naturally
contaminated with scrapie. Pens within a farm building were treated with either
20,000 parts per million free chorine solution for one hour or were treated with
the same but were followed by painting and full re-galvanisation or replacement
of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype
VRQ/VRQ were reared within these pens and their scrapie status was monitored by
recto-anal mucosa-associated lymphoid tissue. All animals became infected over
an 18-month period, even in the pen that had been subject to the most stringent
decontamination process. These data suggest that recommended current guidelines
for the decontamination of farm buildings following outbreaks of scrapie do
little to reduce the titre of infectious scrapie material and that environmental
recontamination could also be an issue associated with these premises.
SNIP...
Discussion
Thorough pressure washing of a pen had no effect on the amount of
bioavailable scrapie infectivity (pen B). The routine removal of prions from
surfaces within a laboratory setting is treatment for a minimum of one hour with
20,000 ppm free chlorine, a method originally based on the use of brain
macerates from infected rodents to evaluate the effectiveness of decontamination
(Kimberlin and others 1983). Further studies have also investigated the
effectiveness of hypochlorite disinfection of metal surfaces to simulate the
decontamination of surgical devices within a hospital setting. Such treatments
with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower
than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous
treatment of the pen surfaces did not effectively remove the levels of scrapie
infectivity over that of the control pens, indicating that this method of
decontamination is not effective within a farm setting. This may be due to the
high level of biological matrix that is present upon surfaces within the farm
environment, which may reduce the amount of free chlorine available to
inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had
also became scrapie positive within nine months, with all animals in this pen
being RAMALT positive by 18 months of age. Pen D was no further away from the
control pen (pen A) than any of the other pens within this barn. Localised hot
spots of infectivity may be present within scrapie-contaminated environments,
but it is unlikely that pen D area had an amount of scrapie contamination that
was significantly different than the other areas within this building.
Similarly, there were no differences in how the biosecurity of pen D was
maintained, or how this pen was ventilated compared with the other pens. This
observation, perhaps, indicates the slower kinetics of disease uptake within
this pen and is consistent with a more thorough prion removal and
recontamination. These observations may also account for the presence of
inadvertent scrapie cases within other studies, where despite stringent
biosecurity, control animals have become scrapie positive during challenge
studies using barns that also housed scrapie-affected animals (Ryder and others
2009). The bioassay data indicate that the exposure of the sheep to a farm
environment after decontamination efforts thought to be effective in removing
scrapie is sufficient for the animals to become infected with scrapie. The main
exposure routes within this scenario are likely to be via the oral route, during
feeding and drinking, and respiratory and conjunctival routes. It has been
demonstrated that scrapie infectivity can be efficiently transmitted via the
nasal route in sheep (Hamir and others 2008), as is the case for CWD in both
murine models and in white-tailed deer (Denkers and others 2010, 2013).
Recently, it has also been demonstrated that CWD prions presented as dust when
bound to the soil mineral montmorillonite can be infectious via the nasal route
(Nichols and others 2013). When considering pens C and D, the actual source of
the infectious agent in the pens is not known, it is possible that biologically
relevant levels of prion survive on surfaces during the decontamination regimen
(pen C). With the use of galvanising and painting (pen D) covering and sealing
the surface of the pen, it is possible that scrapie material recontaminated the
pens by the movement of infectious prions contained within dusts originating
from other parts of the barn that were not decontaminated or from other areas of
the farm.
Given that scrapie prions are widespread on the surfaces of affected farms
(Maddison and others 2010a), irrespective of the source of the infectious prions
in the pens, this study clearly highlights the difficulties that are faced with
the effective removal of environmentally associated scrapie infectivity. This is
likely to be paralleled in CWD which shows strong similarities to scrapie in
terms of both the dissemination of prions into the environment and the facile
mode of disease transmission. These data further contribute to the understanding
that prion diseases can be highly transmissible between susceptible individuals
not just by direct contact but through highly stable environmental reservoirs
that are refractory to decontamination.
The presence of these environmentally associated prions in farm buildings
make the control of these diseases a considerable challenge, especially in
animal species such as goats where there is lack of genetic resistance to
scrapie and, therefore, no scope to re-stock farms with animals that are
resistant to scrapie.
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE)
Accepted October 12, 2014. Published Online First 31 October 2014
Monday, November 3, 2014
Persistence of ovine scrapie infectivity in a farm environment following
cleaning and decontamination
PPo3-22:
Detection of Environmentally Associated PrPSc on a Farm with Endemic
Scrapie
Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh
Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of
Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories
Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University
of Nottingham; Sutton Bonington, Loughborough UK
Key words: scrapie, evironmental persistence, sPMCA
Ovine scrapie shows considerable horizontal transmission, yet the routes of
transmission and specifically the role of fomites in transmission remain poorly
defined. Here we present biochemical data demonstrating that on a
scrapie-affected sheep farm, scrapie prion contamination is widespread. It was
anticipated at the outset that if prions contaminate the environment that they
would be there at extremely low levels, as such the most sensitive method
available for the detection of PrPSc, serial Protein Misfolding Cyclic
Amplification (sPMCA), was used in this study. We investigated the distribution
of environmental scrapie prions by applying ovine sPMCA to samples taken from a
range of surfaces that were accessible to animals and could be collected by use
of a wetted foam swab. Prion was amplified by sPMCA from a number of these
environmental swab samples including those taken from metal, plastic and wooden
surfaces, both in the indoor and outdoor environment. At the time of sampling
there had been no sheep contact with these areas for at least 20 days prior to
sampling indicating that prions persist for at least this duration in the
environment. These data implicate inanimate objects as environmental reservoirs
of prion infectivity which are likely to contribute to disease transmission.
Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls,
and Candace Mathiason Colorado State University; Fort Collins, CO USA
Chronic wasting disease (CWD) is the transmissible spongiform
encephalopathy (TSE), of free-ranging and captive cervids (deer, elk and moose).
The presence of infectious prions in the tissues, bodily fluids and
environments of clinical and preclinical CWD-infected animals is thought to
account for its high transmission efficiency. Recently it has been recognized
that mother to offspring transmission may contribute to the facile transmission
of some TSEs. Although the mechanism behind maternal transmission is not yet
known, the extended asymptomatic TSE carrier phase (lasting years to decades)
suggests that it may have implications in the spread of prions.
Placental trafficking and/or secretion in milk are 2 means by which
maternal prion transmission may occur. In these studies we explore these avenues
during early and late infection using a transgenic mouse model expressing cervid
prion protein. Na€ıve and CWD-infected dams were bred at both timepoints, and
were allowed to bear and raise their offspring. Milk was collected from the dams
for prion analysis, and the offspring were observed for TSE disease progression.
Terminal tissues harvested from both dams and offspring were analyzed for
prions.
We have demonstrated that
(1) CWDinfected TgCerPRP females successfully breed and bear offspring, and
(2) the presence of PrPCWD in reproductive and mammary tissue from
CWD-infected dams.
We are currently analyzing terminal tissue harvested from offspring born to
CWD-infected dams for the detection of PrPCWD and amplification competent
prions. These studies will provide insight into the potential mechanisms and
biological significance associated with mother to offspring transmission of
TSEs.
==============
P.157: Uptake of prions into plants
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole
Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife
Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI
USA
Soil may preserve chronic wasting disease (CWD) and scrapie infectivity in
the environment, making consumption or inhalation of soil particles a plausible
mechanism whereby na€ıve animals can be exposed to prions. Plants are known to
absorb a variety of substances from soil, including whole proteins, yet the
potential for plants to take up abnormal prion protein (PrPTSE) and preserve
prion infectivity is not known. In this study, we assessed PrPTSE uptake into
roots using laser scanning confocal microscopy with fluorescently tagged PrPTSE
and we used serial protein misfolding cyclic amplification (sPMCA) and detect
and quantify PrPTSE levels in plant aerial tissues. Fluorescence was identified
in the root hairs of the model plant Arabidopsis thaliana, as well as the crop
plants alfalfa (Medicago sativa), barley (Hordeum vulgare) and tomato (Solanum
lycopersicum) upon exposure to tagged PrPTSE but not a tagged control
preparation. Using sPMCA, we found evidence of PrPTSE in aerial tissues of A.
thaliana, alfalfa and maize (Zea mays) grown in hydroponic cultures in which
only roots were exposed to PrPTSE. Levels of PrPTSE in plant aerial tissues
ranged from approximately 4 £ 10 ¡10 to 1 £ 10 ¡9 g PrPTSE g ¡1 plant dry weight
or 2 £ 105 to 7 £ 106 intracerebral ID50 units g ¡1 plant dry weight. Both stems
and leaves of A. thaliana grown in culture media containing prions are
infectious when intracerebrally-injected into mice. ***Our results suggest that
prions can be taken up by plants and that contaminated plants may represent a
previously unrecognized risk of human, domestic species and wildlife exposure to
prions.
===========
***Our results suggest that prions can be taken up by plants and that
contaminated plants may represent a previously unrecognized risk of human,
domestic species and wildlife exposure to prions.***
SEE ;
Friday, May 15, 2015
Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions
Report
============
P.19: Characterization of chronic wasting disease isolates from freeranging
deer (Odocoileus sp) in Alberta and Saskatchewan, Canada
Camilo Duque Velasquez1, Chiye Kim1, Nathalie Daude1, Jacques van der
Merwe1, Allen Herbst1, Trent Bollinger2, Judd Aiken1, and Debbie McKenzie1
1Centre for Prions and Protein Folding Diseases; University of Alberta;
Edmonton, Canada; 2Western College of Veterinary Medicine; University of
Saskatchewan; Saskatoon, Canada
Chronic wasting disease (CWD) is an emerging prion disease of free ranging
and captive species of Cervidae. In North America, CWD is enzootic in some wild
cervid populations and can circulate among different deer species. The
contagious nature of CWD prions and the variation of cervid PRNP alleles, which
influence host susceptibility, can result in the emergence and adaptation of
different CWD strains. These strains may impact transmission host range, disease
diagnosis, spread dynamics and efficacy of potential vaccines. We are
characterizing different CWD agents by biochemical analysis of the PrPCWD
conformers, propagation in vitro cell assays1 and by comparing transmission
properties and neuropathology in Tg33 (Q95G96) and Tg60 (Q95S96) mice.2 Although
Tg60 mice expressing S96- PrPC have been shown resistant to CWD infectivity from
various cervid species,2,3
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived
from experimental infection of deer expressing H95G96-PrPC. The diversity of
strains present in free-ranging mule deer (Odocoileus hemionus) and white-tailed
deer (Odocoileus virginianus) from Alberta and Saskatchewan is being determined
and will allow us to delineate the properties of CWD agents circulating in CWD
enzootic cervid populations of Canada.
References
1. van der Merwe J, Aiken J, Westaway D, McKenzie D. The standard scrapie
cell assay: Development, utility and prospects. Viruses 2015; 7(1):180–198;
PMID:25602372; http://dx.doi.org/10.3390/v7010180
2. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller
M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting
disease in transgenic mice expressing a naturally occurring allelic variant of
deer prion protein. J Virol 2007; 81(9):4533–4539; PMID: 17314157; http://dx. doi.org/10.1128/JVI.02762-06
3. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison
of chronic wasting disease infectivity from deer with variation at prion protein
residue 96. J Virol 2011; 85(17):9235–9238; PMID: 21697479; http://dx.doi.org/10.1128/JVI.00790-11
=========
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived
from experimental infection of deer expressing H95G96-PrPC.
==========
P.136: Mother to offspring transmission of CWD—Detection in fawn tissues
using the QuIC assay
Amy Nalls, Erin McNulty, Clare Hoover, Jeanette Hayes-Klug, Kelly Anderson,
Edward Hoover, and Candace Mathiason Colorado State University; Fort Collins, CO
USA
To investigate the role mother to offspring transmission plays in chronic
wasting disease (CWD), we have employed a small, polyestrous breeding, indoor
maintainable cervid model, the Reeves’ muntjac deer. Muntjac doe were inoculated
with CWD and tested positive by lymphoid biopsy at 4 months post inoculation.
From these CWD-infected doe, we obtained 3 viable fawns. These fawns tested
IHC-positive for CWD by lymphoid biopsy as early as 40 d post birth, and all
have been euthanized due to clinical disease at 31, 34 and 59 months post birth.
The QuIC assay demonstrates sensitivity and specificity in the detection of
conversion competent prions in peripheral IHC-positive tissues including tonsil,
mandibular, partotid, retropharyngeal, and prescapular lymph nodes, adrenal
gland, spleen and liver. In summary, using the muntjac deer model, we have
demonstrated CWD clinical disease in offspring born to CWD-infected doe and
found that the QuIC assay is an effective tool in the detection of prions in
peripheral tissues. ***Our findings demonstrate that transmission of prions from
mother to offspring can occur, and may be underestimated for all prion
diseases.
===============
***Our findings demonstrate that transmission of prions from mother to
offspring can occur, and may be underestimated for all prion diseases.
===============
***our findings suggest that possible transmission risk of H-type BSE to
sheep and human. ***
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants
and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama
National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and
humans at the molecular level, we investigated the ability of abnormal prion
protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical
scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to
proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding
cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from
transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc
seed from typical and atypical BSE- or typical scrapie-infected brain
homogenates from native host species. In the conventional PMCA, the conversion
of PrPC to PrPres was observed only when the species of PrPC source and PrPSc
seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA
and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested
prion strains. On the other hand, human PrPC was converted by PrPSc from typical
and H-type BSE in this PMCA condition.
Although these results were not compatible with the previous reports
describing the lack of transmissibility of H-type BSE to ovine and human
transgenic mice, ***our findings suggest that possible transmission risk of
H-type BSE to sheep and human. Bioassay will be required to determine whether
the PMCA products are infectious to these animals.
================
P.97: Scrapie transmits to white-tailed deer by the oral route and has a
molecular profile similar to chronic wasting disease and distinct from the
scrapie inoculum
Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and
Robert Kunkle1 1National Animal Disease Center; Ames, IA USA; 2Iowa State
University; Ames, IA USA
The purpose of this work was to determine susceptibility of white-tailed
deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to
that of the original inoculum and chronic wasting disease (CWD). We inoculated
WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5)
with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc
accumulation. PrPSc was detected in lymphoid tissues at preclinical time points,
and deer necropsied after 28 months post-inoculation had clinical signs,
spongiform encephalopathy, and widespread distribution of PrPSc in neural and
lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular
profiles. WB on cerebral cortex had a profile similar to the original scrapie
inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc
with a higher profile resembling CWD. Homogenates with the 2 distinct profiles
from WTD with clinical scrapie were further passaged to mice expressing cervid
prion protein and intranasally to sheep and WTD. In cervidized mice, the 2
inocula have distinct incubation times. Sheep inoculated intranasally with WTD
derived scrapie developed disease, but only after inoculation with the inoculum
that had a scrapie-like profile. The WTD study is ongoing, but deer in both
inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary,
this work demonstrates that WTD are susceptible to the agent of scrapie, 2
distinct molecular profiles of PrPSc are present in the tissues of affected
deer, and inoculum of either profile readily passes to deer.
Saturday, January 31, 2015
European red deer (Cervus elaphus elaphus) are susceptible to Bovine
Spongiform Encephalopathy BSE by Oral Alimentary route
I strenuously once again urge the FDA and its industry constituents, to
make it MANDATORY that all ruminant feed be banned to all ruminants, and this
should include all cervids as soon as possible for the following
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from
deer and elk is prohibited for use in feed for ruminant animals. With regards to
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used
for any animal feed or feed ingredients. For elk and deer considered at high
risk for CWD, the FDA recommends that these animals do not enter the animal feed
system.
***However, this recommendation is guidance and not a requirement by law.
======
31 Jan 2015 at 20:14 GMT
*** Ruminant feed ban for cervids in the United States? ***
31 Jan 2015 at 20:14 GMT
Saturday, September 12, 2015
In utero transmission and tissue distribution of chronic wasting
disease-associated prions in free-ranging Rocky Mountain elk
>>>Interestingly, five of fifteen sPMCA positive dams showed no
evidence of PrPCWD in either CNS or LRS, sites typically assessed in diagnosing
CWD. Analysis of fetal tissues harvested from the fifteen sPMCA positive dams
revealed PrPCWD in 80% of fetuses (12/15), regardless of gestational stage.
These findings demonstrate that PrPCWD is more abundant in peripheral tissues of
CWD exposed elk than current diagnostic methods suggest, and that transmission
of prions from mother to offspring may contribute to the efficient transmission
of the CWD in naturally exposed cervid populations.<<<
***S P O N T A N E O U S***S P O R A D I C***
spontaneous atypical BSE ???
if that's the case, then France is having one hell of an epidemic of
atypical BSE, probably why they stopped testing for BSE, problem solved
$$$
As of December 2011, around 60 atypical BSE cases have currently been
reported in 13 countries, *** with over one third in France.
so 20 cases of atypical BSE in France, compared to the remaining 40 cases
in the remaining 12 Countries, divided by the remaining 12 Countries, about 3+
cases per country, besides Frances 20 cases. you cannot explain this away with
any spontaneous BSe. ...TSS
Sunday, October 5, 2014
France stops BSE testing for Mad Cow Disease
*** spontaneous TSE prion, that's wishful thinking. on the other hand, if
spontaneous did ever happen (never once documented in the field), it would be
our worst nightmare, due to feed. just saying.
*** We describe the transmission of spongiform encephalopathy in a
non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie.
Because of this extended incubation period in a facility in which other prion
diseases are under study, we are obliged to consider two alternative
possibilities that might explain its occurrence. We first considered the
possibility of a sporadic origin (like CJD in humans). Such an event is
extremely improbable because the inoculated animal was 14 years old when the
clinical signs appeared, i.e. about 40% through the expected natural lifetime of
this species, compared to a peak age incidence of 60–65 years in human sporadic
CJD, or about 80% through their expected lifetimes. ***Moreover, sporadic
disease has never been observed in breeding colonies or primate research
laboratories, most notably among hundreds of animals over several decades of
study at the National Institutes of Health25, and in nearly twenty older animals
continuously housed in our own facility.***
***>>> Moreover, sporadic disease has never been observed in
breeding colonies or primate research laboratories, most notably among hundreds
of animals over several decades of study at the National Institutes of Health25,
and in nearly twenty older animals continuously housed in our own facility.
<<<***
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
Additionally, human rPrP was competent for conversion by CWD and fCWD.
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
From: Terry S. Singeltary Sr.
Sent: Saturday, November 15, 2014 9:29 PM
To: Terry S. Singeltary Sr.
Subject: THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE R. G. WILL 1984
THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE
R. G. WILL
1984
*** The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04). (SEE LINK IN REPORT HERE...TSS) PLUS, THE CDC DID NOT PUT
THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
snip...
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
now, let’s see what the authors said about this casual link, personal
communications years ago. see where it is stated NO STRONG evidence. so, does
this mean there IS casual evidence ???? “Our conclusion stating that we found no
strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached
to your email), we did not say CWD in humans will present like variant CJD. That
assumption would be wrong. I encourage you to read the whole article and call me
if you have questions or need more clarification (phone: 404-639-3091). Also, we
do not claim that "no-one has ever been infected with prion disease from eating
venison." Our conclusion stating that we found no strong evidence of CWD
transmission to humans in the article you quoted or in any other forum is
limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008
Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported
to the Surveillance Center***,
snip... full text ;
July's Milwaukee Journal Sentinel article did prod state officials to ask
CDC to investigate the cases of the three men who shared wild game feasts. The
two men the CDC is still investigating were 55 and 66 years old. But there's
also Kevin Boss, a Minnesota hunter who ate Barron County venison and died of
CJD at 41. And there's Jeff Schwan, whose Michigan Tech fraternity brothers used
to bring venison sausage back to the frat house. His mother, Terry, says that in
May 2001, Jeff, 26, began complaining about his vision. A friend noticed
misspellings in his e-mail, which was totally unlike him. Jeff began losing
weight. He became irritable and withdrawn. By the end of June, he couldn't
remember the four-digit code to open the garage door or when and how to feed his
parents' cats. At a family gathering in July, he stuck to his parents and
girlfriend, barely talking. "On the night we took him to the hospital, he was
speaking like he was drunk or high and I noticed his pupils were so dilated I
couldn't see the irises," his mother says. By then, Jeff was no longer able to
do even simple things on his computer at work, and "in the hospital, he couldn't
drink enough water." When he died on September 27, 2001, an autopsy confirmed he
had sporadic CJD.
In 2000, Belay looked into three CJD cases reported by The Denver Post, two
hunters who ate meat from animals killed in Wyoming and the daughter of a hunter
who ate venison from a plant that processed Colorado elk. All three died of CJD
before they were 30 years old. The CDC asked the USDA to kill 1,000 deer and elk
in the area where the men hunted. Belay and others reported their findings in
the Archives of Neurology, writing that although "circumstances suggested a link
between the three cases and chronic wasting disease, they could find no 'causal'
link." Which means, says Belay, "not a single one of those 1,000 deer tested
positive for CWD. For all we know, these cases may be CWD. What we have now
doesn't indicate a connection. That's reassuring, but it would be wrong to say
it will never happen."
So far, says NIH researcher Race, the two Wisconsin cases pinpointed by the
newspaper look like spontaneous CJD. "But we don't know how CWD would look in
human brains. It probably would look like some garden-variety sporadic CJD."
What the CDC will do with these cases and four others (three from Colorado and
Schwan from Upper Michigan), Race says, is "sequence the prion protein from
these people, inject it into mice and wait to see what the disease looks like in
their brains. That will take two years."
CJD is so rare in people under age 30, one case in a billion (leaving out
medical mishaps), that four cases under 30 is "very high," says Colorado
neurologist Bosque. "Then, if you add these other two from Wisconsin [cases in
the newspaper], six cases of CJD in people associated with venison is very, very
high." Only now, with Mary Riley, there are at least seven, and possibly eight,
with Steve, her dining companion. "It's not critical mass that matters,"
however, Belay says. "One case would do it for me." The chance that two people
who know each other would both contact CJD, like the two Wisconsin sportsmen, is
so unlikely, experts say, it would happen only once in 140 years.
Given the incubation period for TSEs in humans, it may require another
generation to write the final chapter on CWD in Wisconsin. "Does chronic wasting
disease pass into humans? We'll be able to answer that in 2022," says Race.
Meanwhile, the state has become part of an immense experiment.
I urge everyone to watch this video closely...terry
*** you can see video here and interview with Jeff's Mom, and scientist
telling you to test everything and potential risk factors for humans ***
O.05: Transmission of prions to primates after extended silent incubation
periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Val erie Durand, Sophie Luccantoni,
Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys
Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies
reputed to be transmissible under field conditions since decades. The
transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that
an animal PD might be zoonotic under appropriate conditions. Contrarily, in the
absence of obvious (epidemiological or experimental) elements supporting a
transmission or genetic predispositions, PD, like the other proteinopathies, are
reputed to occur spontaneously (atpical animal prion strains, sporadic CJD
summing 80% of human prion cases). Non-human primate models provided the first
evidences supporting the transmissibiity of human prion strains and the zoonotic
potential of BSE. Among them, cynomolgus macaques brought major information for
BSE risk assessment for human health (Chen, 2014), according to their
phylogenetic proximity to humans and extended lifetime. We used this model to
assess the zoonotic potential of other animal PD from bovine, ovine and cervid
origins even after very long silent incubation periods. *** We recently observed
the direct transmission of a natural classical scrapie isolate to macaque after
a 10-year silent incubation period, ***with features similar to some reported
for human cases of sporadic CJD, albeit requiring fourfold longe incubation than
BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), ***is the
third potentially zoonotic PD (with BSE and L-type BSE), ***thus questioning the
origin of human sporadic cases. We will present an updated panorama of our
different transmission studies and discuss the implications of such extended
incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases...TSS
===============
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes
contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of Neurological
Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a
middle aged woman with progressive dementia were previously implicated in the
accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger
patients. The diagnoses of CJD have been confirmed for all three cases. More
than two years after their last use in humans, after three cleanings and
repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were
implanted in the cortex of a chimpanzee. Eighteen months later the animal became
ill with CJD. This finding serves to re-emphasise the potential danger posed by
reuse of instruments contaminated with the agents of spongiform
encephalopathies, even after scrupulous attempts to clean them.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8006664&dopt=Abstract
Tuesday, May 26, 2015
*** Minimise transmission risk of CJD and vCJD in healthcare settings
***
Last updated 15 May 2015
*** Creutzfeldt-Jakob Disease *** Public Health Crisis VIDEO
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14,
2001 JAMA
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor: In their Research Letter, Dr Gibbons and colleagues1
reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD)
has been stable since 1985. These estimates, however, are based only on reported
cases, and do not include misdiagnosed or preclinical cases. It seems to me that
misdiagnosis alone would drastically change these figures. An unknown number of
persons with a diagnosis of Alzheimer disease in fact may have CJD, although
only a small number of these patients receive the postmortem examination
necessary to make this diagnosis. Furthermore, only a few states have made CJD
reportable. Human and animal transmissible spongiform encephalopathies should be
reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob
disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.
cwd to humans, consumption, exposure, sub-clinical, iatrogenic, what if
?
Sunday, August 23, 2015
TAHC Chronic Wasting Disease CWD TSE Prion and how to put lipstick on a pig
and take her to the dance in Texas
from the other side of the fence... today’s Singeltary Sunday School class
‘thinking outside of the box, God’s Wrath’ at the bottom. ...tss
TEXAS DEER CZAR SENT TO WISCONSIN TO SOLVE CWD CRISIS, WHILE ROME (TEXAS)
BURNS
Tuesday, August 11, 2015
Wisconsin doing what it does best, procrastinating about CWD yet again
thanks to Governor Walker
Wednesday, March 18, 2015
*** Chronic Wasting Disease CWD Confirmed Texas Trans Pecos March 18, 2015
Wednesday, March 25, 2015
*** Chronic Wasting Disease CWD Cases Confirmed In New Mexico 2013 and 2014
UPDATE 2015
Wednesday, July 01, 2015
*** TEXAS Chronic Wasting Disease Detected in Medina County Captive Deer
Tuesday, July 21, 2015
*** Texas CWD Medina County Herd Investigation Update July 16, 2015 ***
Thursday, August 06, 2015
*** WE HAVE LOST TEXAS TO CWD TASK FORCE CATERING TO INDUSTRY
Friday, August 07, 2015
*** Texas CWD Captive, and then there were 4 ?
Thursday, September 24, 2015
TEXAS Hunters Asked to Submit Samples for Chronic Wasting Disease CWD TSE
Prion Testing
*** I cannot stress enough to all of you, for the sake of your family and
mine, before putting anything in the freezer, have those deer tested for CWD.
...terry
Saturday, October 03, 2015
TEXAS CHRONIC WASTING DISEASE CWD TSE PRION GOD MUST NOT BE A TEXAN 2002 TO
2015
Friday, October 09, 2015
Texas TWA Chronic Wasting Disease TSE Prion Webinars and Meeting October
2015
Monday, August 24, 2015
Ohio wildlife officials ramp up fight against fatal deer brain disease
after 17 more positive tests CWD
Sunday, October 18, 2015
*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans
Singeltary 2002 from speaking A smelly situation UPDATED 2015
Monday, August 31, 2015
Illinois Loosing Ground to Chronic Wasting Disease CWD cases mounting with
71 confirmed in 2015 and 538 confirmed cases to date
Saturday, September 05, 2015
Missouri Captive Cervid Industry, CWD TSE Prion, and Procrastinating for
Money, while mad deer and elk disease silently spreads
Friday, August 14, 2015
*** Susceptibility of cattle to the agent of chronic wasting disease from
elk after intracranial inoculation
Friday, August 14, 2015
Carcass Management During a Mass Animal Health Emergency Draft Programmatic
Environmental Impact Statement—August 2015
Tuesday, September 22, 2015
*** Host Determinants of Prion Strain Diversity Independent of Prion
Protein Genotype
Friday, August 28, 2015
Chronic Wasting Disease CWD TSE Prion Diagnostics and subclinical infection
Sunday, October 18, 2015
*** World Organisation for Animal Health (OIE) and the Institut Pasteur
Cooperating on animal disease and zoonosis research ***
Wednesday, August 05, 2015
*** Ohio confirms to me Chronic Wasting Disease CWD Spreads 19 confirmed
cases to date ***
Just got off the phone with Christy Clevenger of Ohio
Ohio Department of Agriculture March 2012 – Present (3 years 6
months)Reynoldsburg, Ohio CWD program
Ms. Clevenger confirmed, to date, from the Yoder debacle, 1 confirmed case
of CWD from the Hunting Preserve, 2 confirmed cases from the Breeding Farm, and
16 confirmed cases of CWD from the Breeder Depopulation, with a total to date of
19 cases of CWD in Ohio...
Terry
Thursday, April 02, 2015
OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's
properties near Millersburg
Second Ohio white-tailed deer tests positive for deadly brain disease
Print Email D'Arcy Egan, The Plain Dealer By D'Arcy Egan, The Plain Dealer
Email the author | Follow on Twitter on April 01, 2015 at 2:10 PM, updated April
01, 2015 at 3:09 PM
Ohio Dept. of Agriculture.jpg CLEVELAND, Ohio -- As state officials try to
legally force Holmes County deer farmer Daniel Yoder to euthanize a herd of
expensive white-tailed deer, a second deer has tested positive for chronic
wasting disease (CWD) on Yoder's properties near Millersburg.
The first positive test ever for CWD in Ohio was from a deer killed Oct. 22
at Yoder's hunting preserve, World Class Whitetails. The second positive result
came a few days ago while testing another Yoder deer that had died.
The National Veterinary Services Laboratories in Ames, Iowa confirmed the
results.
"It has always been a case of not if, but when another deer would test
positive on those properties," said Communications Director Erica Hawkins of the
Ohio Department of Agriculture. "This wasn't unexpected. We expected to find
positives at his facilities and, with de-population, we expect to find more."
Yoder's two breeding farms and hunting preserve were quarantined a year ago
after it was discovered an infected Pennsylvania deer had been shipped there. It
has become common for the breeding and hunting operations to ship deer to other
states.
In Ohio, the ODA manages captive deer herds. The Ohio Division of Wildlife
manages the wild deer herd.
Breeding large-antlered deer to supply the fenced deer-hunting operations
has become a booming business. The price for a deer sporting trophy antlers can
range from a few thousands dollars to more than $50,000.
Because the disease is highly contagious and almost impossible to
eradicate, Yoder's breeding farms and fenced deer hunting operation was shut
down and all deer 12 months and older that die on the properties were required
to be tested for CWD, regardless of the circumstances, said Hawkins.
While CWD has become a major problem in Wisconsin and many western states,
Yoder's captive deer have been the only Ohio animals to test positive for the
always-fatal brain disease. CWD is found in the wild, but spreads far more
quickly among crowded herds of captive deer or elk.
The ODOW constantly tests road-killed deer and deer killed by hunters for
the disease. Because of the positive test in Holmes County, wildlife officials
focused on deer harvested from that area during the recent hunting seasons.
The disease is related to mad cow disease, but has never been contracted by
humans, according to the Centers for Disease Control and Prevention.
The ODOW reported last fall at least two deer had escaped from Yoder's
farms and were killed by sport hunters. There have also been other instances of
deer escaping from fenced hunting operations around state.
Hawkins said discussions are still underway to determine the best way to
eliminate the herd because of the high cost of destruction and disposal of the
deer.
"A lot of questions still need to be answered," Hawkins said. "This is the
first situation like this in Ohio."
Yoder was charged in Holmes County Common Pleas Court on Feb. 25 with two
counts of tampering with evidence, reported the Wooster Daily Record. Yoder had
given a customer packages of venison obtained from a doe after the trophy buck
he had killed appeared to be ill. The customer received the antlers, but Yoder
disposed of the buck's head and carcass without performing the required tests,
charged ODA enforcement agent William Lesho.
Three West Virginia hunters had paid to kill three deer on the preserve on
another date and the required samples of the deer were not collected. In order
to determine if a deer has CWD, the brain or brain stem must be tested
First Case of Chronic Wasting Disease Confirmed in Ohio on Private Preserve
10/23/2014 Ohio DNR in Wildlife
Active steps taken to control further spread; no evidence the disease
affects humans
REYNOLDSBURG, OHIO – The Ohio Department of Agriculture (ODA) and the Ohio
Department of Natural Resources (ODNR) today confirmed the first positive case
of Chronic Wasting Disease (CWD) in the state in a captive deer herd in Holmes
County. The state continues to take quarantine action to control the further
spread of the disease. There is no evidence that CWD has affected the wild deer
population in the state.
The positive sample was taken from a single buck on a hunting preserve in
Millersburg and tested as part of Ohio’s CWD monitoring program for captive
white-tailed deer operations. The preserve had been under quarantine since April
24, 2014, and was subject to intensive monitoring and sampling protocols because
of a known connection to a captive deer operation in Pennsylvania that tested
positive for CWD earlier this year. The quarantine will remain enforced until
the state is satisfied that disease transference can no longer occur.
“Ohio’s captive white-tail deer licensing program was enacted two years ago
for the purpose of continuously monitoring the heath of the captive deer
populations in the state to manage the spread of and exposure to diseases such
as CWD. We have worked closely with the Pennsylvania Department of Agriculture
to identify and trace back positive cases,” said State Veterinarian Dr. Tony
Forshey. “We will continue to take aggressive steps to ensure that CWD does not
pose a threat to the state’s wild deer population.”
The state has quarantined 43 captive deer operations in Ohio since April
15, 2014, for receiving approximately 125 deer from operations in Pennsylvania
that later tested positive for CWD. Twenty-two of those quarantines were lifted
after negative CWD test results were confirmed in 53 of the suspect animals from
Pennsylvania. ODA will continue to enforce quarantine restrictions on 21
operations, including five hunting preserves, until the department is satisfied
that the threat of disease transference has passed.
The disease is fatal in deer, elk and moose, but there is no evidence CWD
can be transmitted to humans, according to the Centers for Disease Control and
Prevention (CDC) and The World Health Organization. Though no human disease has
been associated with CWD, the CDC recommends, as a precaution, that people or
other animals do not eat any part of an animal diagnosed with or showing signs
of CWD.
“We have no reason to believe that there has been transference to the
state’s wild deer population,” said Scott Zody, chief of the ODNR Division of
Wildlife. “With hunting season in progress, there are no CWD concerns that
should prevent anyone from enjoying wild deer hunting in Ohio or from consuming
meat from healthy animals.”
The ODNR Division of Wildlife is recommending that hunters continue to take
standard precautions such as shooting only animals that appear healthy, wearing
rubber gloves when field-dressing their deer and washing thoroughly when
finished. If hunters should observe a deer that appears unhealthy, they are
encouraged to contact their local wildlife office or officer.
Since 2002, the state has conducted surveillance throughout Ohio for the
disease. State and federal officials will continue this regular sampling and
testing throughout the hunting season to continue to monitor the health of the
state’s wild deer population. Tissue samples from 753 deer killed on Ohio’s
roads were collected from September 2013 through March 2014 and were tested for
CWD. An additional 88 hunter-harvested mature white-tailed deer and nine deer
displaying symptoms consistent with CWD were tested as well and were all
negative.
In response to this positive finding, the ODNR Division of Wildlife will
increase sampling efforts in the wild deer population within six miles of the
hunting preserve from which the CWD-positive deer came as well as near the other
captive operations that are under quarantine. Those samples will include
high-risk animals such as those killed on roads or exhibiting neurological
symptoms as well as hunter-harvested deer in the area.
CWD, first discovered in captive mule deer in Colorado in 1967, attacks the
brains of infected deer, elk and moose, producing small lesions that eventually
result in death. It is transmitted by direct animal-to-animal contact through
saliva, feces and urine. Signs of the disease include weight loss, excessive
salivation, increased drinking and urination, and abnormal behavior like
stumbling, trembling and depression. Infected deer and elk may also allow
unusually close approach by humans or natural predators. The disease is fatal in
deer, and there is no known treatment or vaccine.
FOR IMMEDIATE RELEASE
Media Contacts:
Erica Hawkins, ODA, (614) 752‐9817, erica.hawkins@agri.ohio.gov
Susie Vance, ODNR, (614) 265‐6335, susie.vance@dnr.state.oh.us
FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE
PRESERVE
Active steps taken to control further spread; no evidence the disease
affects humans
REYNOLDSBURG, Ohio (Oct. 23, 2014) – The Ohio Department of Agriculture and
the Ohio Department of Natural Resources today confirmed the first positive case
of Chronic Wasting Disease (CWD) in the state in a captive deer operation in
Holmes County. The state continues to take quarantine action to control the
further spread of the disease. There is no evidence that CWD has affected the
wild deer population in the state.
The positive sample was taken from a single buck on a hunting preserve in
Millersburg and tested as part of Ohio’s CWD monitoring program for captive
white‐tailed deer operations. The preserve had been under quarantine since April
24, 2014, and was subject to intensive monitoring and sampling protocols because
of a known connection to a captive deer operation in Pennsylvania that tested
positive for CWD earlier this year. The quarantine will remain enforced until
the state is satisfied that disease transference can no longer occur.
“Ohio’s captive white‐tail deer licensing program was enacted two years ago
for the purpose of continuously monitoring the heath of the captive deer
populations in the state to manage the spread of and exposure to diseases such
as CWD. We have worked closely with the Pennsylvania Department of Agriculture
to identify and trace back positive cases,” said State Veterinarian Dr. Tony
Forshey. “We will continue to take aggressive steps to ensure that CWD does not
pose a threat to the state’s wild deer population.”
The state has quarantined 43 captive deer operations in Ohio since April
15, 2014 for receiving approximately 125 deer from operations in Pennsylvania
that later tested positive for CWD. Twenty‐two of those quarantines were lifted
after negative CWD test results were confirmed in 53 of the suspect animals from
Pennsylvania. ODA will continue to enforce quarantine restrictions on 21
operations, including five hunting preserves, until the department is satisfied
that the threat of disease transference has passed.
The disease is fatal in deer, elk and moose, but there is no evidence CWD
can be transmitted to humans, according to the Centers for Disease Control and
Prevention (CDC) and The World Health Organization. Though no human disease has
been associated with CWD, the CDC recommends, as a precaution, that people or
other animals do not eat any part of an animal diagnosed with or showing signs
of CWD. “We have no reason to believe that there has been transference to the
state’s wild deer population,” said Scott Zody, Chief of the Ohio Department of
Natural Resources’ Division of Wildlife. “With hunting season in progress, there
are no CWD concerns that should prevent anyone from enjoying wild deer hunting
in Ohio or from consuming meat from healthy animals.”
The Division of Wildlife is recommending that hunters continue to take
standard precautions such as shooting only animals that appear healthy, wearing
rubber gloves when field‐dressing their deer, and washing thoroughly when
finished. If hunters should observe a deer that appears unhealthy, they are
encouraged to contact their local wildlife office or officer.
Since 2002, the state has conducted surveillance throughout Ohio for the
disease. State and federal officials will continue this regular sampling and
testing throughout the hunting season to continue to monitor the health of the
state’s wild deer population. Tissue samples from 753 deer killed on Ohio’s
roads were collected from September 2013 through March 2014 and were tested for
CWD. An additional 88 hunter‐harvested mature white‐tailed deer and nine deer
displaying symptoms consistent with CWD were tested as well and were all
negative.
In response to this positive finding, the Division of Wildlife will
increase sampling efforts in the wild deer population within six miles of the
hunting preserve from which the CWD‐positive deer came as well as near the other
captive operations that are under quarantine. Those samples will include
high‐risk animals such as those killed on roads or exhibiting neurological
symptoms as well as hunter‐harvested deer in the area.
CWD, first discovered in captive mule deer in Colorado in 1967, attacks the
brains of infected deer, elk and moose, producing small lesions that eventually
result in death. It is transmitted by direct animal‐toanimal contact through
saliva, feces and urine. Signs of the disease include weight loss, excessive
salivation, increased drinking and urination, and abnormal behavior like
stumbling, trembling and depression. Infected deer and elk may also allow
unusually close approach by humans or natural predators. The disease is fatal in
deer and there is no known treatment or vaccine.
‐‐ 30 ‐‐
Thursday, October 23, 2014
*** FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE
PRESERVE
Wednesday, February 11, 2015
World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with
two counts of tampering with evidence
Sunday, October 18, 2015
*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans
Singeltary 2002 from speaking A smelly situation UPDATED 2015
Wednesday, October 21, 2015
TAHC CHRONIC WASTING DISEASE CWD TSE PRION REPORT OCTOBER 2015
Monday, August 31, 2015
*** Illinois Loosing Ground to Chronic Wasting Disease CWD cases mounting
with 71 confirmed in 2015 and 538 confirmed cases to date ***
Saturday, September 05, 2015
Missouri Captive Cervid Industry, CWD TSE Prion, and Procrastinating for
Money, while mad deer and elk disease silently spreads
Friday, August 14, 2015
*** Susceptibility of cattle to the agent of chronic wasting disease from
elk after intracranial inoculation
Friday, August 14, 2015
Carcass Management During a Mass Animal Health Emergency Draft Programmatic
Environmental Impact Statement—August 2015
Tuesday, September 22, 2015
*** Host Determinants of Prion Strain Diversity Independent of Prion
Protein Genotype
Friday, August 28, 2015
Chronic Wasting Disease CWD TSE Prion Diagnostics and subclinical infection
Terry S. Singeltary Sr.
57>
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.