Pages

Friday, October 09, 2015

Texas TWA Chronic Wasting Disease TSE Prion Webinars and Meeting October 2015

 

Greetings, with concern to the following ;
 
 
Chronic Wasting Disease program slated for Oct. 13 in Bandera October 2, 2015
 
Paul Schattenberg, 210-859-5752, paschattenberg@ag.tamu.edu Sam Womble, 830-796-7755, s-womble@tamu.edu BANDERA – The Texas A&M AgriLife Extension Service in cooperation with the Ranchers and Landowners Association and Texas Parks and Wildlife will present a Chronic Wasting Disease program Oct.13 in Bandera.
 
The program will be at the Bandera United Methodist Church Fellowship Hall, 1103 Cedar St. Registration is at 5:30 p.m. with the program starting at 6 p.m.
 
A program on chronic wasting disease will be held Oct. 13 in Bandera (Texas A&M AgriLife Extension Service photo) A program on chronic wasting disease will be held the evening of Oct. 13 at the Bandera Methodist Church Fellowship Hall. (Texas A&M AgriLife Extension Service photo)
 
The program is free to the public.
 
“We hope landowners, as well as anyone interested in deer, deer habitat and deer hunting will plan to be at this informative and educational program,” said Sam Womble, AgriLife Extension agriculture and natural resources agent, Bandera County. “Attendees will learn about chronic wasting disease from its history to clinical signs to prevention techniques.”
 
Chronic wasting disease is a condition that affects the nervous system of deer, elk and moose, said Dr. John Tomecek, AgriLife Extension wildlife specialist at San Angelo and one of the presenters.
 
“It is similar to diseases such as scrapie in sheep and goats and bovine spongiform encephalopathy or BSE in cattle,” Tomecek said. “At this time we have no evidence chronic wasting disease can be transmitted to sheep, goats, cattle or humans.”
 
The disease was first detected in 1967 in a captive mule deer herd in Colorado. Since then, it has been detected in 22 U.S. states and two Canadian provinces. It was detected in far West Texas in 2012, which was the first instance in the state until another confirmation was made in Medina County this summer.
 
Program speakers will include Mitch Lockwood, big game program director, Texas Parks and Wildlife Department.
 
Attendees are requested to RSVP so program coordinators can plan accordingly. To RSVP, contact the AgriLife Extension office in Bandera County by Oct. 9 at 830-796-7755.
 
-30-
 
Print Friendly Article by Paul Schattenberg
 
210-467-6575
 
paschattenberg@ag.tamu.edu
 
 
Oct 13, 2015 12:00 pm Chronic Wasting Disease Webinar - Part 1 Register Oct 16, 2015 12:00 pm Chronic Wasting Disease Webinar - Part 2 Register
 
 
 
CC-I kindly wish to address this to all of the following people as well ;
 
 
 
Greetings again, I kindly wish to submit the following science on the cwd tse prion disease, for obvious reasons. please use as you wish. I just thought you might have missed something, and you might find it here. don’t shoot the messenger. what I think about canned hunting, captive farming, game farms, etc. all aspects of the cervid farming industry, what I think of all that does not matter. seems that industry does not believe it’s had any role in helping to spread cwd tse prion aka mad deer disease. like or not, that’s what I call it. I have wasted over 17 years, literally daily following and putting together all the updated science, and past history of science on blogs for the cwd tse prion. I do not advertise, I do not make money from this, I simply made a promise to mom, dod 12/14/97 confirmed hvCJD, never forget, and never let them forget. I am pro gun, pro hunt, I still eat meat, however, I am anti stupid, and it seems when it comes to the TSE prion, most states have enough stupid to go around. I don’t want to eat tse prions, I don’t want it on my meat, or on surgical tools that work on me, you should not either, tse prions can kill. you only have to watch it one time, you never forget. that’s why I do this, I knew it was here, it’s been here, and it’s (TSE Prion) just getting fired up. we must not flounder any longer...kind regards, terry
 
 
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
 
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
 
In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key inputs for the model in the companion paper published here.
 
 
Friday, August 14, 2015
 
*** Carcass Management During a Mass Animal Health Emergency Draft Programmatic Environmental Impact Statement—August 2015 ***
 
 
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
 
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.
 
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
 
 
98 | Veterinary Record | January 24, 2015
 
EDITORIAL
 
Scrapie: a particularly persistent pathogen
 
Cristina Acín
 
Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’
 
From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).
 
Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.
 
Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.
 
The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).
 
In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.
 
Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).
 
In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.
 
The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).
 
Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).
 
So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?
 
What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.
 
References
 
snip...
 
98 | Veterinary Record | January 24, 2015
 
 
Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination
 
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations
 
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.
 
SNIP...
 
Discussion
 
Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.
 
Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.
 
The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.
 
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014
 
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
 
 
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
 
The infectious agents responsible for transmissible spongiform encephalopathy (TSE) are notoriously resistant to most physical and chemical methods used for inactivating pathogens, including heat. It has long been recognized, for example, that boiling is ineffective and that higher temperatures are most efficient when combined with steam under pressure (i.e., autoclaving). As a means of decontamination, dry heat is used only at the extremely high temperatures achieved during incineration, usually in excess of 600°C. It has been assumed, without proof, that incineration totally inactivates the agents of TSE, whether of human or animal origin.
 
 
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
 
Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.
 
 
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
 
The data presented here demonstrate that sPMCA can detect low levels of PrPCWD in the environment, corroborate previous biological and experimental data suggesting long term persistence of prions in the environment2,3 and imply that PrPCWD accumulation over time may contribute to transmission of CWD in areas where it has been endemic for decades. This work demonstrates the utility of sPMCA to evaluate other environmental water sources for PrPCWD, including smaller bodies of water such as vernal pools and wallows, where large numbers of cervids congregate and into which prions from infected animals may be shed and concentrated to infectious levels.
 
 
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
 
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
 
In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key inputs for the model in the companion paper published here.
 
 
PL1
 
Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
 
Claudio Soto
 
Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
 
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
 
=========================
 
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
 
========================
 
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
 
 
see ;
 
 
 
 
 
 
Saturday, September 12, 2015
 
*** In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk
 
>>>Interestingly, five of fifteen sPMCA positive dams showed no evidence of
 
>>>PrPCWD in either CNS or LRS, sites typically assessed in diagnosing CWD.
 
>>>Analysis of fetal tissues harvested from the fifteen sPMCA positive dams
 
>>>revealed PrPCWD in 80% of fetuses (12/15), regardless of gestational
 
>>>stage. These findings demonstrate that PrPCWD is more abundant in
 
>>>peripheral tissues of CWD exposed elk than current diagnostic methods
 
>>>suggest, and that transmission of prions from mother to offspring may
 
>>>contribute to the efficient transmission of the CWD in naturally exposed
 
>>>cervid populations.<<<
 
 
Sunday, September 13, 2015
 
*** urine, feces, and chronic wasting disease cwd tse prion risk factors, loading up the environment ***
 
 
Captive Propagation of Wild Mule Deer- TWA will seek to repeal legislation that was passed in 2011 that provides for possible implementation of Deer Management Permits (DMP) for mule deer, which allow captured wild mule deer to be placed into pens for propagation purposes. With the state’s first cases of Chronic Wasting Disease detected in 2012 in the mule deer country of far West Texas, such DMP practices create unnecessary risk to our state’s deer resources. DMPs for mule deer have yet to be implemented and TWA believes that this “dormant” permit allowance should be repealed in order to address these unnecessary risks to our important wildlife resources.
 
 
Sunday, December 14, 2014
 
TEXAS 84th Legislature commencing this January, deer breeders are expected to advocate for bills that will seek to further deregulate their industry
 
 
Tuesday, December 16, 2014
 
Texas 84th Legislature 2015 H.R. No. 2597 Kuempel Deer Breeding Industry TAHC TPWD CWD TSE PRION
 
 
Under Texas law, though, breeder deer belong to the state, not the permittee. See, e.g., TEX. PARKS & WILD. CODE §§ 1.011 (“All wild animals . . . inside the borders of this state are the property of the people of this state.”); 43.364 (“All breeder deer . . . are under the full force of the laws of [Texas] pertaining to deer . . . .”). While a permittee may have possession of the breeder deer, the deer are only “held under a permit[.]” Id. § 43.351. Nowhere do the statutes or regulations state that breeder deer become the property of a permit holder.4
 
 
While a permittee may have possession of the breeder deer, the deer are only “held under a permit[.]” Id. § 43.351
 
 
TITLE 4. AGRICULTURE PART 2. TEXAS ANIMAL HEALTH COMMISSION
 
CHAPTER 40. CHRONIC WASTING DISEASE
 
4 TAC §40.6
 
The Texas Animal Health Commission (Commission) adopts new §40.6, concerning CWD Movement Restriction Zone, with changes to the proposed text as published in the July 6, 2012, issue of the Texas Register (37 TexReg 5061) and will be republished.
 
The new section will create a Chronic Wasting Disease (CWD) movement restriction zone(s) in the Trans Pecos Region.
 
There is a task force comprised of members of affected deer and exotic livestock associations, private veterinary practitioners, and wildlife biologists who assisted the Texas Parks and Wildlife Department (TPWD) and Commission staff in the development of a CWD response plan upon detection of the disease in mule deer harvested in New Mexico within 1-2 miles of the Texas border. They recently met and provided both agencies with recommendations on a strategy to address the risk of exposure of CWD to susceptible species in Texas. The recommendations follow the creation of CWD movement restriction zone(s) with restrictions put in place to protect against the exposure and spread of CWD from New Mexico. These recommendations are being taken in a coordinated effort by both TPWD and the Commission.
 
It was recently disclosed that through CWD sampling efforts of New Mexico Game and Fish personnel that CWD has been detected in mule deer in the southern Sacramento Mountains and northern Hueco Mountains, in southern New Mexico. While sample sizes are very small, it seems that the CWD prevalence may be quite high in that location. Several of the animals sampled were located in close proximity to the Texas border. This is significant for the state of Texas, considering basic biology and movement patterns of susceptible species located there, such as mule deer and elk, indicate that the animals may be moving back and forth between Texas and New Mexico.
 
Prions are found ubiquitously throughout the body of an infected animal and can be shed onto soil, where they may remain viable and able to infect other susceptible animals for many years. Suspected additional susceptible species, besides mule deer, white tail deer and elk, include red deer and Sika deer. There is still no evidence that humans or domestic livestock can be infected with CWD.
 
Deer populations in other states where CWD prevalence exceeds 40% have experienced significant (>45%) population declines. As the prevalence rates increase and geographic distribution has expanded in other states, hunters are more likely to alter hunting behaviors which may include avoiding areas with high CWD prevalence. This could have an adverse economic impact on local communities dependent on hunting revenue and could affect TPWD efforts to manage cervid populations through hunter harvest.
 
Considering the seemingly high CWD prevalence rate in the Sacramento and Hueco Mountains of New Mexico, CWD may be well established in the population and in the environment in Texas at this time. The current area of concern was delineated as all land west of the Pecos River and IH 20, and north of IH 10 to Ft. Hancock, and all land west and north of Ft. Hancock, and the Containment Zone (CZ) was delineated as all land west of HWY 62-180 and HWY 54, and north of IH 10 to Ft. Hancock, and all land west and north of Ft. Hancock. Data regarding mule deer population parameters and mule deer movements, knowledge on elk movements, and the geography and habitat types of the area were considered in the delineation of these zones.
 
The Commission received four comments regarding adoption of the new rule, but there is no change to the rule in response to the comments.
 
Two of the commenters told us to "trust experts like Dr. Dan McBride and your advisory committee that was already prepared for this issue. We must at all cost protect the whitetail herd in the dense areas of the Texas Hill Country where any outbreak could lead to panic and economic collapse of these communities where hunting dollars are vital to these communities." The Commission appreciates the support of the task force. Another comment indicated that "it will be tough to contain free ranging deer since they range many miles during breeding season." The Commission agrees that is a tough aspect to fully control the spread of the disease, but the zones were sized in order to take that into account. Lastly, a comment indicated that "in light of the Chronic Wasting Disease (CWD) epidemic, which has jumped the border from New Mexico into Texas, Texas ought to reevaluate its enthusiasm for land spreading sewage sludge bio solids on farm land, grazing ranges, hay fields and dairy pastures where livestock and deer ingest dirt and sludge with their fodder." The Commission has no jurisdiction over that issue and that is not something addressed in this rule.
 
STATUTORY AUTHORITY
 
The new rule is adopted under the following statutory authority as found in Chapter 161 of the Texas Agriculture Code. The Commission is vested by statute, §161.041(a), with the requirement to protect all livestock, domestic animals, and domestic fowl from disease. The Commission is authorized, by §161.041(b), to act to eradicate or control any disease or agent of transmission for any disease that affects livestock. If the Commission determines that a disease listed in §161.041 of this code or an agent of transmission of one of those diseases exists in a place in this state among livestock, or that livestock are exposed to one of those diseases or an agent of transmission of one of those diseases, the Commission shall establish a quarantine on the affected animals or on the affected place. That is found in §161.061.
 
Section 161.054 provides that as a control measure, the Commission by rule may regulate the movement of animals, including feral swine. The Commission may restrict the intrastate movement of animals, including feral swine, even though the movement of the animals is unrestricted in interstate or international commerce. The Commission by rule may prohibit or regulate the movement of animals, into a quarantined herd, premise, or area. In §161.048, a person is presumed to control the animal if the person is the owner or lessee of the pen, pasture, or other place in which the animal is located and has control of that place; or exercises care or control over the animal. That is under §161.002.
 
Section 161.0541, entitled "Elk Disease Surveillance Program", provides that the Commission by rule may establish a disease surveillance program for elk. Section 161.007 provides that if a veterinarian employed by the Commission determines that a communicable disease exists among livestock, domestic animals, or domestic fowl or on certain premises or that livestock, domestic animals, or domestic fowl have been exposed to the agency of transmission of a communicable disease, the exposure or infection is considered to continue until the Commission determines that the exposure or infection has been eradicated through methods prescribed by rule of the Commission. Section 161.005 provides that the Commission may authorize the Executive Director or another employee to sign written instruments on behalf of the Commission. A written instrument, including a quarantine or written notice, signed under that authority has the same force and effect as if signed by the entire Commission.
 
§40.6.CWD Movement Restriction Zone.
 
(a) Definitions:
 
(1) Containment Zone (CZ)--A geographic area which would include a known affected (quarantined) area or area within Texas where there is a high risk of CWD existing.
 
(2) High Risk Zone (HRZ)--Area which serves as a buffer (surveillance) zone separating the Containment Zone from the rest of Texas.
 
(3) Susceptible Species--All white-tailed deer, black-tailed deer, mule deer, elk, or other cervid species determined to be susceptible to Chronic Wasting Disease (CWD), which means an animal of that species has had a diagnosis of CWD confirmed by means of an official test conducted by a laboratory approved by USDA-APHIS.
 
(4) Unnatural Movement--Any artificially induced movement of a live susceptible species or the carcass of a susceptible species.
 
(b) Declaration of Area Restricted for CWD. CWD has been detected in mule deer and/or elk in the southern Sacramento Mountains and northern Hueco Mountains of Southern New Mexico, which creates the high risk that there are susceptible species for CWD that have been exposed or infected to CWD within the state. Considering the seemingly high CWD prevalence rate in the Sacramento and Hueco Mountains of New Mexico, CWD may be well established in the population and in the environment in Texas at this time. The current area of much concern was delineated as all land west of the Pecos River and Interstate Highway (IH) 20, and north of IH 10 to Ft. Hancock, and all land west and north of Ft. Hancock and the CZ was delineated as all land west of HWY 62-180 and HWY 54, and north of IH 10 to Ft. Hancock, and all land west and north of Ft. Hancock. Data regarding mule deer population parameters, movement patterns of mule deer and elk in the area, and the geography and habitat of the area were considered in the delineation of these zones.
 
(c) Zone Boundaries:
 
(1) The CZ is defined as follows: beginning in Culberson County where State Highway 62-180 enters from New Mexico and thence in a southwesterly direction to the intersection with State Highway 54 and thence following that in a southwesterly direction to the intersection with IH 20 and thence following it in a westerly direction until Ft. Hancock to State Highway 20 and thence following it a westerly direction to Farm Road 1088 (east of Ft. Hancock), and thence following it in a southerly direction to the Rio Grande River to where it enters the state of New Mexico.
 
(2) The HRZ is defined as follows: beginning in Reeves County where the Pecos River enters from New Mexico and meanders in a southeasterly direction as the boundary between Reeves County and Loving and Ward Counties to the intersection with IH 20 and thence following it in a westerly direction until the intersection with State Highway 54 and thence following it in a northwesterly direction until the intersection with State Highway 62-180 and thence in a northeasterly direction to the border with the state of New Mexico and Culberson County.
 
(d) Restrictions:
 
(1) Prohibition of Unnatural Movement of Non-Captive Susceptible Species:
 
(A) No susceptible species may be trapped and transported from within the HRZ or the CZ to another location. No susceptible species may be released within the HRZ or the CZ without participating in a monitored herd program in accordance with the requirements of §40.3 of this chapter (relating to Herd Status Plans for Cervidae) and having a herd with Level "C" status of five years or higher as established through §40.3(4)(C) of this chapter or for species under the authority of Texas Parks and Wildlife in accordance with their applicable requirements.
 
(B) No part of a carcass of a susceptible species, either killed or found dead, within the HRZ or CZ may be removed from the HRZ or CZ unless a testable CWD sample from the carcass is collected by or provided to the Commission or TPWD with appropriate contact information provided by the submitter.
 
(2) CWD monitored status within the CZ:
 
(A) Previously Established CWD Monitored Facilities within the CZ. Movement of susceptible species will only be allowed for animals from previously established facilities within the CZ that have obtained a five-year status while in the CZ in accordance with the requirements of §40.3 of this chapter and having a herd with Level "C" status of five years or higher as established through §40.3(4)(C) of this chapter or for species under the authority of Texas Parks and Wildlife in accordance with their applicable requirements.
 
(B) Newly Established CWD Monitored Facilities within the CZ. Susceptible species moving into newly established facilities within the CZ will have their status reset at zero and must be held within the facility until it has received five-year status in accordance with the requirements of §40.3 of this chapter and having a herd with Level "C" status of five years or higher as established through §40.3(4)(C) of this chapter or for species under the authority of Texas Parks and Wildlife in accordance with their applicable requirements.
 
(3) CWD monitored status within the HRZ:
 
(A) Previously Established CWD Monitored Facilities within the HRZ. Movement of susceptible species from previously established facilities within the HRZ is only for animals that have obtained a five-year status in accordance with the requirements of §40.3 of this chapter and having a herd with Level "C" status of five years or higher as established through §40.3(4)(C) of this chapter or for species under the authority of Texas Parks and Wildlife in accordance with their applicable requirements.
 
(B) Newly Established CWD Monitored Facilities within the HRZ. Susceptible species moving into newly established facilities within the HRZ will have their status reset to zero, and movement will be restricted until the facility has gained five-year status in accordance with the requirements of §40.3 of this chapter and having a herd with Level "C" status of five years or higher as established through §40.3(4)(C) of this chapter or for species under the authority of Texas Parks and Wildlife in accordance with their applicable requirements.
 
(e) The Executive Director may authorize movement. If movement is necessary or desirable to promote the objectives of this chapter and/or to minimize the economic impact of the restricted susceptible species without endangering those objectives or the health and safety of other susceptible species within the state, the Executive Director may authorize movement in a manner that creates minimal risk to the other susceptible animals in the state.
 
(f) Notice of High Risk Designation. The Executive Director shall give notice of the restrictions by publishing notice in a newspaper published in the county where the restrictions will be established, or by other accepted practices or publications which circulate information in the county or counties.
 
This agency hereby certifies that the adoption has been reviewed by legal counsel and found to be a valid exercise of the agency's legal authority.
 
Filed with the Office of the Secretary of State on September 20, 2012.
 
TRD-201204977
 
Gene Snelson
 
General Counsel
 
Texas Animal Health Commission
 
Effective date: October 10, 2012
 
Proposal publication date: July 6, 2012
 
For further information, please call: (512) 719-0724
 
 
PRION CONFERENCE 2014 HELD IN ITALY RECENTLY CWD BSE TSE UPDATE
 
> First transmission of CWD to transgenic mice over-expressing bovine prion protein gene (TgSB3985)
 
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping up the future of prion research
 
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First transmission of CWD to transgenic mice over-expressing bovine prion protein gene (TgSB3985)
 
 
Friday, August 14, 2015
 
*** Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation
 
 
Friday, August 28, 2015
 
*** Chronic Wasting Disease CWD TSE Prion Diagnostics and subclinical infection ***
 
 
Tuesday, September 22, 2015
 
*** Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype
 
 
Wednesday, October 07, 2015
 
*** Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains
 
 
congregation of cervid over bait enhances the spread of cwd...good luck with that !
 
CDC
 
October 2012
 
Synopsis Occurrence, Transmission, and Zoonotic Potential of Chronic Wasting Disease
 
Controlling the spread of CWD, especially by human action, is a more attainable goal than eradication. Human movement of cervids has likely led to spread of CWD in facilities for captive animals, which has most likely contributed to establishment of new disease foci in free-ranging populations (Figure 1, panel A). Thus, restrictions on human movement of cervids from disease-endemic areas or herds continue to be warranted. Anthropogenic factors that increase cervid congregation such as baiting and feeding should also be restricted to reduce CWD transmission. Appropriate disposal of carcasses of animals with suspected CWD is necessary to limit environmental contamination (20), and attractive onsite disposal options such as composting and burial require further investigation to determine contamination risks. The best options for lowering the risk for recurrence in facilities for captive animals with outbreaks are complete depopulation, stringent exclusion of free-ranging cervids, and disinfection of all exposed surfaces. However, even the most extensive decontamination measures may not be sufficient to eliminate the risk for disease recurrence (20; S.E. Saunders et al. unpub. data)
 
 
PRICE OF CWD TSE PRION POKER GOES UP $$$
 
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
 
Title: Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus)
 
Authors
 
item Moore, S - item Kunkle, Robert item Nicholson, Eric item Richt, Juergen item Hamir, Amirali item Waters, Wade item Greenlee, Justin
 
Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A
 
Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, but CWD has not been reported in free-ranging caribou (Rangifer tarandus caribou) or farmed reindeer. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWD-wtd), mule deer (Odocoileus hemionus; CWD-md), or elk (Cervus elaphus nelsoni; CWD-elk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWD-wtd, CWD-md, or CWD-elk. Two years after challenge of inoculated reindeer, non-inoculated control reindeer were introduced into the same pen as the CWD-wtd inoculated reindeer (n=4) or into a pen adjacent to the CWD-md inoculated reindeer (n=2). Reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrP-CWD). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (MPI). ***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
 
 
***PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed clinical disease during the study period (<57 and="" are="" both="" can="" cervid="" cwd="" directly="" div="" from="" have="" indirectly.="" mpi="" naive="" reindeer="" shown="" sources="" susceptible="" that="" to="" transmit="" various="" we="">
 
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES
 
snip...see more here;
 
Tuesday, September 29, 2015
 
*** Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus) can transmit CWD to naive reindeer both directly and indirectly
 
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
 
 
Thursday, September 24, 2015
 
TEXAS Hunters Asked to Submit Samples for Chronic Wasting Disease CWD TSE Prion Testing
 
*** I cannot stress enough to all of you, for the sake of your family and mine, before putting anything in the freezer, have those deer tested for CWD. ...terry
 
 
Saturday, October 03, 2015
 
*** TEXAS CHRONIC WASTING DISEASE CWD TSE PRION GOD MUST NOT BE A TEXAN 2002 TO 2015
 
 
Tuesday, October 06, 2015
 
*** TAHC 393rd Commission Meeting Chronic Wasting Disease CWD TSE Prion October 6, 2015
 
 
Wednesday, March 25, 2015
 
*** Chronic Wasting Disease CWD Cases Confirmed In New Mexico 2013 and 2014 UPDATE 2015 ***
 
 
Wednesday, March 18, 2015
 
*** Chronic Wasting Disease CWD Confirmed Texas Trans Pecos March 18, 2015 ***
 
 
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
 
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
 
O18
 
Zoonotic Potential of CWD Prions
 
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 3Encore Health Resources, Houston, Texas, USA
 
*** These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.
 
==================
 
***These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.***
 
==================
 
P.105: RT-QuIC models trans-species prion transmission
 
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA
 
Conversely, FSE maintained sufficient BSE characteristics to more efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was competent for conversion by CWD and fCWD.
 
***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.
 
================
 
***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.***
 
================
 
 
PRION2013 CONGRESSIONAL ABSTRACTS CWD
 
Sunday, August 25, 2013
 
HD.13: CWD infection in the spleen of humanized transgenic mice
 
Liuting Qing and Qingzhong Kong
 
Case Western Reserve University; Cleveland, OH USA
 
Chronic wasting disease (CWD) is a widespread prion disease in free-ranging and captive cervid species in North America, and there is evidence suggesting the existence of multiple CWD strains. The susceptibility of human CNS and peripheral organs to the various CWD prion strains remains largely unclear. Current literature suggests that the classical CWD strain is unlikely to infect human brain, but the potential for peripheral infection by CWD in humans is unknown. We detected protease-resistant PrpSc in the spleens of a few humanized transgenic mice that were intracerebrally inoculated with natural CWD isolates, but PrpSc was not detected in the brains of any of the CWD-inoculated mice. ***Our ongoing bioassays in humanized Tg mice indicate that intracerebral challenge with such PrpSc-positive humanized mouse spleen already led to prion disease in most animals. ***These results indicate that the CWD prion may have the potential to infect human peripheral lymphoid tissues.
 
Oral.15: Molecular barriers to zoonotic prion transmission: Comparison of the ability of sheep, cattle and deer prion disease isolates to convert normal human prion protein to its pathological isoform in a cell-free system
 
Marcelo A.Barria,1 Aru Balachandran,2 Masanori Morita,3 Tetsuyuki Kitamoto,4 Rona Barron,5 Jean Manson,5 Richard Kniqht,1 James W. lronside1 and Mark W. Head1
 
1National CJD Research and Surveillance Unit; Centre for Clinical Brain Sciences; School of Clinical Sciences; The University of Edinburgh; Edinburgh, UK; 2National and OIE Reference Laboratory for Scrapie and CWD; Canadian Food Inspection Agency; Ottawa Laboratory; Fallowfield. ON Canada; 3Infectious Pathogen Research Section; Central Research Laboratory; Japan Blood Products Organization; Kobe, Japan; 4Department of Neurological Science; Tohoku University Graduate School of Medicine; Sendai. Japan; 5Neurobiology Division; The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian; Edinburgh, UK
 
Background. Bovine spongiform encephalopathy (BSE) is a known zoonotic prion disease, resulting in variant Creurzfeldt- Jakob disease (vCJD) in humans. In contrast, classical scrapie in sheep is thought to offer little or no danger to human health. However, a widening range of prion diseases have been recognized in cattle, sheep and deer. The risks posed by individual animal prion diseases to human health cannot be determined a priori and are difficult to assess empirically. The fundamemal event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein (PrPC) to its pathological isoform (PrPSc). Here we report the use of a rapid molecular conversion assay to test whether brain specimens from different animal prion diseases are capable of seeding the conversion of human PrPC ro PrPSc.
 
Material and Methods. Classical BSE (C-type BSE), H-type BSE, L-type BSE, classical scrapie, atypical scrapie, chronic wasting disease and vCJD brain homogenates were tested for their ability to seed conversion of human PrPC to PrPSc in protein misfolding cyclic amplification (PMCA) reactions. Newly formed human PrPSc was detected by protease digestion and western blotting using the antibody 3F4.
 
Results. C-type BSE and vCJD were found to efficiently convert PrPC to PrPSc. Scrapie failed to convert human PrPC to PrPSc. Of the other animal prion diseases tested only chronic wasting disease appeared to have the capability ro convert human PrPC to PrPSc. The results were consistent whether the human PrPC came from human brain, humanised transgenic mouse brain or from cultured human cells and the effect was more pronounced for PrPC with methionine at codon 129 compared with that with valine.
 
Conclusion. Our results show that none of the tested animal prion disease isolates are as efficient as C-type BSE and vCJD in converting human prion protein in this in vitro assay. ***However, they also show that there is no absolute barrier ro conversion of human prion protein in the case of chronic wasting disease.
 
PRION2013 CONGRESSIONAL ABSTRACTS CWD
 
Sunday, August 25, 2013
 
***Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood, and mother to offspring transmission
 
 
cwd to humans ???
 
there has been no official documentation of cwd to humans on paper, to date.
 
cwd transmission studies on humans are illegal.
 
cwd transmits freely to the squirrel monkey, but not yet to the macaque, and the macaque is a bit closer to humans than the squirrel monkey.
 
still, with cwd freely transmitting to the squirrel monkey, scientist are very concerned about the cwd to human risk factor, exposure, and potential iatrogenic transmission there from.
 
85% of human TSE is sporadic cjd, and each and every one of them are up for debate as to route and source. I believe that friendly fire (iatrogenic) or the pass it forward mode of the TSE prion will be a large portion of that. all iatrogenic cjd is, is sporadic cjd until the iatrogenic event is discovered, documented, put into the academic and then the public domain, which very seldom happens due to lack of trace back efforts.
 
see what the authors said about this casual link with cwd to human with the case of Jeffrey Schwan 26 year old, and personal communications years ago with cdc about that case. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
 
From: Terry S. Singeltary Sr.
 
Sent: Saturday, November 15, 2014 9:29 PM
 
To: Terry S. Singeltary Sr.
 
Subject: THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE R. G. WILL 1984
 
THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE
 
R. G. WILL
 
1984
 
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). (SEE LINK IN REPORT HERE...TSS) PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
 
snip...
 
 
July's Milwaukee Journal Sentinel article did prod state officials to ask CDC to investigate the cases of the three men who shared wild game feasts. The two men the CDC is still investigating were 55 and 66 years old. But there's also Kevin Boss, a Minnesota hunter who ate Barron County venison and died of CJD at 41. And there's Jeff Schwan, whose Michigan Tech fraternity brothers used to bring venison sausage back to the frat house. His mother, Terry, says that in May 2001, Jeff, 26, began complaining about his vision. A friend noticed misspellings in his e-mail, which was totally unlike him. Jeff began losing weight. He became irritable and withdrawn. By the end of June, he couldn't remember the four-digit code to open the garage door or when and how to feed his parents' cats. At a family gathering in July, he stuck to his parents and girlfriend, barely talking. "On the night we took him to the hospital, he was speaking like he was drunk or high and I noticed his pupils were so dilated I couldn't see the irises," his mother says. By then, Jeff was no longer able to do even simple things on his computer at work, and "in the hospital, he couldn't drink enough water." When he died on September 27, 2001, an autopsy confirmed he had sporadic CJD.
 
In 2000, Belay looked into three CJD cases reported by The Denver Post, two hunters who ate meat from animals killed in Wyoming and the daughter of a hunter who ate venison from a plant that processed Colorado elk. All three died of CJD before they were 30 years old. The CDC asked the USDA to kill 1,000 deer and elk in the area where the men hunted. Belay and others reported their findings in the Archives of Neurology, writing that although "circumstances suggested a link between the three cases and chronic wasting disease, they could find no 'causal' link." Which means, says Belay, "not a single one of those 1,000 deer tested positive for CWD. For all we know, these cases may be CWD. What we have now doesn't indicate a connection. That's reassuring, but it would be wrong to say it will never happen."
 
So far, says NIH researcher Race, the two Wisconsin cases pinpointed by the newspaper look like spontaneous CJD. "But we don't know how CWD would look in human brains. It probably would look like some garden-variety sporadic CJD." What the CDC will do with these cases and four others (three from Colorado and Schwan from Upper Michigan), Race says, is "sequence the prion protein from these people, inject it into mice and wait to see what the disease looks like in their brains. That will take two years."
 
CJD is so rare in people under age 30, one case in a billion (leaving out medical mishaps), that four cases under 30 is "very high," says Colorado neurologist Bosque. "Then, if you add these other two from Wisconsin [cases in the newspaper], six cases of CJD in people associated with venison is very, very high." Only now, with Mary Riley, there are at least seven, and possibly eight, with Steve, her dining companion. "It's not critical mass that matters," however, Belay says. "One case would do it for me." The chance that two people who know each other would both contact CJD, like the two Wisconsin sportsmen, is so unlikely, experts say, it would happen only once in 140 years.
 
Given the incubation period for TSEs in humans, it may require another generation to write the final chapter on CWD in Wisconsin. "Does chronic wasting disease pass into humans? We'll be able to answer that in 2022," says Race. Meanwhile, the state has become part of an immense experiment.
 
 
I urge everyone to watch this video closely...terry
 
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
 
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. ***
 
 
*** IF CWD is not a risk factor for humans, then I guess the FDA et al recalled all this CWD tainted elk tenderloin (2009 Exotic Meats USA of San Antonio, TX) for the welfare and safety of the dead elk. ...tss
 
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease
 
Contact: Exotic Meats USA 1-800-680-4375
 
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.
 
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.
 
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.
 
Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.
 
#
 
RSS Feed for FDA Recalls Information11 [what's this?12]
 
 
Thursday, May 26, 2011
 
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
 
 
now, let’s see what the authors said about this casual link, personal communications years ago. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
 
From: TSS (216-119-163-189.ipset45.wt.net)
 
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
 
Date: September 30, 2002 at 7:06 am PST
 
From: "Belay, Ermias"
 
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
 
Sent: Monday, September 30, 2002 9:22 AM
 
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Dear Sir/Madam,
 
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
 
Ermias Belay, M.D. Centers for Disease Control and Prevention
 
-----Original Message-----
 
From: Sent: Sunday, September 29, 2002 10:15 AM
 
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
 
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
 
Thursday, April 03, 2008
 
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
 
snip...
 
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
 
snip... full text ;
 
 
==============================
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
 
 
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
 
Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and Robert Kunkle1 1National Animal Disease Center; Ames, IA USA; 2Iowa State University; Ames, IA USA
 
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
 
 
2012
 
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
 
snip... The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like. *** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
 
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
 
 
2011
 
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
 
 
Scrapie in Deer: Comparisons and Contrasts to Chronic Wasting Disease (CWD) Justin J. Greenlee of the Virus and Prion Diseases Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA
 
snip... This highlights the facts that 1) prior to the onset of clinical signs PrPSc is widely distributed in the CNS and lymphoid tissues and
 
2) currently used diagnostic methods are sufficient to detect PrPSc prior to the onset of clinical signs. The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in white-tailed deer after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile consistent with CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like. After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie. Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. While two WB patterns have been detected in brain regions of deer inoculated by the natural route, unlike the IC inoculated deer, the pattern similar to the scrapie inoculum predominates.
 
 
2011 Annual Report Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research Unit
 
2011 Annual Report In Objective 1, Assess cross-species transmissibility of transmissible spongiform encephalopathies (TSEs) in livestock and wildlife, numerous experiments assessing the susceptibility of various TSEs in different host species were conducted. Most notable is deer inoculated with scrapie, which exhibits similarities to chronic wasting disease (CWD) in deer suggestive of sheep scrapie as an origin of CWD.
 
snip...
 
4. Accomplishments 1. Deer inoculated with domestic isolates of sheep scrapie. Scrapie-affected deer exhibit 2 different patterns of disease associated prion protein. In some regions of the brain the pattern is much like that observed for scrapie, while in others it is more like chronic wasting disease (CWD), the transmissible spongiform encephalopathy typically associated with deer.
 
his work conducted by ARS scientists at the National Animal Disease Center, Ames, IA suggests that an interspecies transmission of sheep scrapie to deer may have been the origin of CWD. This is important for husbandry practices with both captive deer, elk and sheep for farmers and ranchers attempting to keep their herds and flocks free of CWD and scrapie.
 
 
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
 
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS
 
snip... This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.
 
see full text ;
 
 
Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation
 
Amir N. Hamir,1 Robert A. Kunkle, Randall C. Cutlip, Janice M. Miller, Elizabeth S. Williams, Juergen A. Richt
 
Abstract. To determine the transmissibility of chronic wasting disease (CWD) to sheep, 8 Suffolk lambs of various prion protein genotypes (4 ARQ/ARR, 3 ARQ/ARQ, 1 ARQ/VRQ at codons 136, 154, and 171, respectively) were inoculated intracerebrally with brain suspension from mule deer with CWD (CWDmd). Two other lambs were kept as noninoculated controls. Within 36 months postinoculation (MPI), 2 inoculated animals became sick and were euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were consistent with those described for scrapie. Microscopic lesions of spongiform encephalopathy (SE) were only seen in this sheep, and its tissues were determined to be positive for the abnormal prion protein (PrPres) by immunohistochemistry and Western blot. Three other inoculated sheep were euthanized (36 to 60 MPI) because of conditions unrelated to TSE. The 3 remaining inoculated sheep and the 2 control sheep did not have clinical signs of disease at the termination of the study (72 MPI) and were euthanized. Of the 3 remaining inoculated sheep, 1 was found to have SE, and its tissues were positive for PrPres. The sheep with clinical prion disease (euthanized at 35 MPI) was of the heterozygous genotype (ARQ/VRQ), and the sheep with subclinical disease (euthanized at 72 MPH) was of the homozygous ARQ/ARQ genotype. These findings demonstrate that transmission of the CWDmd agent to sheep via the intracerebral route is possible. Interestingly, the host genotype may play a notable part in successful transmission and incubation period of CWDmd.
 
snip.
 
This study involved intracerebral inoculation of CWDmd agent to sheep. This is an unnatural route and is only an oblique reflection of the potential for sheep to become infected under natural conditions of exposure. Based on the low attack rate of the current intracerebral inoculation (IC) study, it is likely that transmission of CWD to sheep by a more natural route, such as per os would likely require a much larger dose of inoculum and may be much more difficult to accomplish within the normal life span of the animal. On the other hand, experimental studies of CWD from other cervid species (elk and whitetailed deer) have not been documented in livestock.
 
Preliminary studies (Hamir et al., unpublished data, 2006) of intracerebral inoculation of CWD from white-tailed deer into cattle suggests that this source is much more efficient at causing disease (as indicated by the attack rate) than CWDmd.
 
At this time a final assessment of relative risk for CWD transmission to sheep is not possible. However, results of this study show that the diagnostic confirmatory tests used for scrapie surveillance in the United States would also allow detection of CWD in sheep, should it occur in this country.
 
Thus far, among domestic animals, CWDmd has been transmitted by the intracerebral route to a goat18 and cattle.5–7 The present findings demonstrate that it is also possible to transmit CWDmd agent to sheep via the intracerebral route. However, the only sheep to develop clinical TSE within 35 MPI was genotypically AV at PRNP codon 136, suggesting that host genotype may play a notable part in successful transmission of the disease in this species. Although in Suffolk sheep the AV variant at codon 136 is very rare,17 selective breeding of Suffolk sheep with this codon has begun in the hope of testing this differential susceptibility hypothesis in a future study of CWDmd transmission to sheep.
 
 
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
 
 
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
 
 
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES
 
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011
 
The CWD infection rate was nearly 80%, the highest ever in a North American captive herd.
 
RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.
 
SUMMARY:
 
 
For Immediate Release Thursday, October 2, 2014
 
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov
 
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease
 
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD).
 
 
*** see history of this CWD blunder here ;
 
 
On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had been cut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.
 
 
The overall incidence of clinical CWD in white-tailed deer was 82%
 
Species (cohort) CWD (cases/total) Incidence (%) Age at CWD death (mo)
 
 
CWD, spreading it around...
 
for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;
 
===========================================
 
spreading cwd around...
 
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.
 
***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.
 
 
spreading cwd around...
 
Friday, May 13, 2011
 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
 
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea
 
Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.
 
On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.
 
All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.
 
Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
 
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.
 
Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).
 
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.
 
Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
 
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.
 
Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.
 
In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.
 
In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.
 
 
 
 
 
 
***S P O N T A N E O U S***S P O R A D I C***
 
spontaneous atypical BSE ???
 
if that's the case, then France is having one hell of an epidemic of atypical BSE, probably why they stopped testing for BSE, problem solved $$$
 
As of December 2011, around 60 atypical BSE cases have currently been reported in 13 countries, *** with over one third in France.
 
 
so 20 cases of atypical BSE in France, compared to the remaining 40 cases in the remaining 12 Countries, divided by the remaining 12 Countries, about 3+ cases per country, besides Frances 20 cases. you cannot explain this away with any spontaneous BSe. ...TSS
 
Sunday, October 5, 2014
 
France stops BSE testing for Mad Cow Disease
 
 
*** spontaneous TSE prion, that's wishful thinking. on the other hand, if spontaneous did ever happen (never once documented in the field), it would be our worst nightmare, due to feed. just saying.
 
*** We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
 
***>>> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <<<***
 
 
 
cwd to humans, consumption, exposure, sub-clinical, iatrogenic, what if ?
 
 
Friday, February 14, 2014
 
Creutzfeldt-Jakob disease (CJD) biannual update (February 2014), with briefing on novel human prion disease National CJD Research and Surveillance Unit NCJDRSU
 
 
Terry S. Singeltary Sr. Doctor Antonio Ruiz Villaespesa, pathologist and CJD researcher deceased because of Creutzfeldt-Jakob Disease SPAIN. 21 Apr 2009. [Accessed 11 Apr 2012]. In: Monitoring the occurrence of emerging forms of CJD [blog]. Available from: http://cjdusa.blogspot.com.es/2009/04/doctor-antonio-ruiz-villaespesa.html
 
see references...
 
 
Saturday, February 12, 2011
 
*** Another Pathologists dies from CJD, another potential occupational death ? ***
 
another happenstance of bad luck, a spontaneous event from nothing, or friendly fire ???
 
 
*** GLOBAL CLUSTERS OF CREUTZFELDT JAKOB DISEASE - A REVIEW 2010 ***
 
 
 
From: TSS (216-119-163-189.ipset45.wt.net)
 
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
 
Date: September 30, 2002 at 7:06 am PST
 
From: "Belay, Ermias"
 
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
 
Sent: Monday, September 30, 2002 9:22 AM
 
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Dear Sir/Madam,
 
In the Archives of Neurology you quoted (the abstract of which was attached to your email),
 
***we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091).
 
***Also, we do not claim that "no-one has ever been infected with prion disease from eating venison."
 
***Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
 
Ermias Belay, M.D. Centers for Disease Control and Prevention
 
-----Original Message-----
 
From: Sent: Sunday, September 29, 2002 10:15 AM
 
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
 
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
 
Thursday, April 03, 2008
 
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
 
snip...
 
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
 
snip... full text ;
 
 
==============================
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
 
 
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
 
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.
 
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
 
 
Thursday, October 1, 2015
 
H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation
 
Master Obi-Wan Kenobi, Kemosabe...THIS IS NOT GOOD GOOSE!...grasshopper...tonto...tss
 
 
Friday, October 09, 2015
 
An alarming presentation level II trauma center of Creutzfeldt-Jakob disease following a self-inflicted gunshot wound to the head
 
 
layperson
 
wasted days and wasted nights...Freddy Fender
 
 
Terry S. Singeltary Sr.
Galveston Bay
 

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.