this is such a sad, sad, state of affairs, thanks to man. i am deeply saddened it has come to his, but no one else to blame except man imo...with sad regards, terry p.s. this article was translated by online language translator, so could be errors...end
The executioner in Nordfjella
The helicopter hangs over the villrein flock. On board its state with rifle. Petter Braaten will not give up before everyone is shot.
PUBLISHED 27.03.2018, KL. 19.30 Asgeir Heimdal Reksnes Journalist Håvard Heggen Journalist Sondre Dalaker Photo and video
The vast mountain scenery has been the world of big wildlife species for 10,000 years.
November 2017: Breistølen on Hemsedalsfjellet
Nordfjella is covered with snowy snow. Perfect for finding animal tracks.
In the next month, the state will do everything to eradicate them.
Petter Braaten will hire the team. They have snowmen and helicopters.It's going to be a rough party to wild animals.
"I have veins that do not talk so much to me. I am the victim then. He who will defend this here. It's hard to cope with, I'll admit.
Never before have we thought of doing something like this here.
"To eradicate over 2000 reindeer is rather sad. But it would be even more sad if the disease was spreading.
- Cows are they sure to get hold of everyone?
"It's hard to beat. One thing that is certain is that this is uncertain.
It all starts randomly. One and a half years early.
March 2016: The sick animal on the mountain
Simla lies an ally in the snow. The feed goes unchecked. The body shakes. Three men are approaching carefully.
"What's this?"
This sunny day in Nordfjella is the wild ministry at work to mark wildlife.
From the air shoot a veterinarian an anesthetic game against a refugee reindeer. He's banging. The routine is to land and search for the arrows.
Just a few yards from the landing spot, they are swimming in the snow.Beina kicks and kicks.
They go to hi, turn the little animal around to investigate. Then the door is over their eyes.
They have never seen such a thing.
March 17, 2016: Veterinary Institute in Oslo
Simla from Nordfjella will be investigated.
In the laboratory, senior seniors Sylvie Benestad publish a small part of the brain stem.
The goal is to test against a disease that is not possible. But the side he is so serious, they test them anyway.
Benestad cooks a kind of soup of the part. Then they bind to a substrate that gives color.
The negative samples have no color. The positive are yellow.
No, it lights yellow.
- I'm just kidding sleep. For quite a few nights, defeat Benestad.
Simla died of contagious scant disease, one of the most feared animal diseases in the world. No, it's coming to Europe.
– Det er rett og slett eit mareritt. Det er den mest smittsame av sjukdomane. Har vi ein så har vi berre starten.
Researchers know what chronic wasting disease (CWD) is. They have the disease in Canada and in South Korea. In the United States, CWD is detected in 25 states, and the number is wicked.
Deer animals after deer are sick before they die. The brain connects.Expensive do not know when they go. They can not eat.
Infection goes through the ground, or via saliva, urine and stools. It's not a virus, bacterium or parasite.
This is what the researchers fear most of all. One contagious prion disease. A defective protein that accumulates and damages the brain.It's a horrible slow death.
Desse hjortedyra i USA er smitta av CWD. Sjukdomen spreiar seg sakte, men skremmande sikkert. (Foto: Terry Kreeger og CWD-Alliance)
The disease is unwise to stop if he gets a foothold. No, he has come to the inner fillet of Norwegian nature.
At the Norwegian Institute for Nature Research (Nina) in Trondheim, senior researcher Bjørnar Ytrehus feels serious.
"The big scare is that scary disease infects deer, moose and deer.Sucking animals will be normal to see. To eat game meat will be a good deal. It will change our nature.
One year later, the Food Safety Authority, the Veterinary Institute, and the Food Safety Committee for Food Safety together. The government decided that the villagery should be extinct.
Nordfjella wildlife area is divided into two zones with two different villages. It is over 2000 expensive in the northern zone 1 that may be dying.
No one promises that this is right. It may be too late. But expert meiner this is what we can do with.
November 2017. The last straw straw
Petter Braaten loves to hunt. Plainfish is hunting to take care of the game, and not to fall more than naked. No, he shall rent the implementation of a mass eradication.
Braaten is one dough man. Hooks and breekuldra. Permanent handshake, solid eye and calm mind.
The 51-year-old is an early police and has many years in Svalbard. In 2009 he starts at the Norwegian National Board of Nature.
A little reminiscent of hunting happiness when the jaguars get ready for the first day in Nordfjella.
- It will not be very beautiful. It hurts a herding heart to do this here, says Braaten.
In total, close to 1500 animals remain after the regular hunting season.The goal is to kill all of them before May 1st.
The mission is midwinter between steep mountainsides from 1000 to 1600 meters above sea level.
The hunting team must cope with heavy snow and snowfall. Bad view.Wind and cold. Jagerane never gets a job.
- I know the responsibility. This winter can be very demanding.
It was the manager of Trondheim which on one Friday he called for the assignment.
- Kverna do it on the weekend. To shoot them to kill them. It is a rather extreme situation for someone who is used to a habitual hunt for autumn food.
Fearbuilders have been noisy.
Fortvila village people take care of the wallpaper. Nature and animal conservationists troughs with shareholder. Others become aggressive online.
Braaten has tried to answer. Sometimes people write things that are noisy.
For two years ago it did not happen. He was chased by a freight train at Finnish station.
"I was close to being killed. When nokia suggests that it would be equally beneficial for ulukka to get another outcome, it goes a little over the line.
It is sometimes called animal cruelty and a ravage of nature. The environmentalist Kurt Oddekalv organizes a meeting. Jenny Rolness in "The Voice of the Animals" reports the Norwegian Food Safety Authority to the police.
De burde ha kasta styresmaktene ut av dalen dykkar for lenge sidan
What convinces Braaten is possible to fight the disease.
- I'm sorry that all of this is cheerful. Had I not had it, I could not help Leia.
Nobody knows about the stuff to find everyone expensive.
The hunting team is 30 people, all men. They are again divided into three hours, working a week, two weeks off. Jagerane goes together in the twin squadron.
Nokre has volunteered, others have been asked. It is a mix of police officers, overseers and robbed hunters. One of the requirements is to be good shooters.
Some fear that it's all too late to stop the disease.
"Let's see, it's spreading because we did not do enough." What time does it spread out of the country? To kill the wildlife flock in Nordfjella is the straw we have to cope with, defeating Braaten.
January 2018: - When expensive is tired we must stop
Dagane is short mid winter. During the few light timing the hunter tries to find the reindeer.
Winter stormy warriors. The terrain is irreplaceable. For several days they must be hunted. Jagerane knows the pressure.
If they do not finish before the spring, it's one last race. No solution Petter Braaten not ynskjer.
The plan is then to try to drive they would expensive through the mountains. Trenge them into a dungeon. Stengei inside a fence. Dive dei.
"No one can know what happens if they are taken by the fence. If they panic. Climbing on remnants.
Many gangs they approach themselves without coming to a shooting place. The wind can come uventa. It makes the expensive easier get the ferty of people.
- In April, the simals begin to develop the fetus. The scare is that they are so scared that they abort. Or we must kill small calves, victory Petter Braaten.
Inside a mountain, one flock goes to 50 animals. On the road west in winter sun and stiff breeze, always on the go for food.
Jagerane follows the drawbar, at the back and in a straight wind direction.
The art is to stop the shooter on time. Then look forward.
Jagerane usually makes silence so expensive that it will not be as easily scared. This allows them to shoot more shots.
This is how animal numbers 734 become extinct, when the herd is close, the hunters are ready.
- It's raw party side we have snowmen and helicopters.
Sometimes jagerans notice that expensive does not fly as far.
- Expensive gets tired. We often have to give ourselves because we do not want to chase on them anymore. It's hard to tell if we have the best way to kill them. I think we have done it.
In the afternoon sun the helicopter with a new lass of dead reindeer dangles beneath them.
It resembles a disaster film. In the middle of the høgfjellet there is a gray plastic hall. Outside heng sign about entrance forbode. Due to contagious animal disease.
One tractor saves screams into the hall. Eight men in white plastic coats take samples of a quarter of a single animal. One brutal job.
"To the extent enough is not to look forward to this project, maybe this seems the most pesky," says Braaten.
It is not time to treat healthy animals as human food.
Animals that have not been infected are placed in conteiners and transported to destruction. Scrap with infection is sent to the Veterinary Institute.
"I almost have to explain it. Just before Christmas I had shots a bunch of reindeer. Noko of the first thing I do when I get home is to pack the bag and travel on deer hunting.
- Does it mean?
"I had to get back the kvala of kva who is a decent hunt. To care for the game. Remove the dust. Treat it badly. I managed to do that well.
But Braaten also sees light in the tunnel. The road and the road are good than the wait. It's an effective winter.
February 25, 2018: The last wild boar flock
The last known flock takes Petter Braaten out of his helicopter.
23 animals west of the glacier blåskavlen. He has five shots in the magazine. The helicopter is only five to ten meters above the door.
The braaten shoot with raud point vision without enlargement. Then he can shoot with both eyes open. Then it's easier to hit.
All the animals in the flock are going to die. It is the lead to use a helicopter.
Braaten shoot five quick shots. Recharges. Then there are five new ones. Here he likes the whole herd.
In 23 animals he uses 36 shots. One or two shots are a regular boom.Then it's follow-up shot. In the end, everyone is extinct.
- In retrospect, it was said that extra shots were not naked. But I do what I can to suffer as short as advice.
- Do you get a little herd after a quarter?
"It is clear that the first round will give you many feelings that this is difficult and difficult to complete. But after a quarter the flap goes down and it will be a job.
Jagerane had been racing with 40 days of good winter weather for hunting. There are many more. The day they shoot most animals, they end up in 79 wild lakes.
- Yes, expensive has been stressing. They have been exposed to discomfort before killing. But in spite of everything, it has been quick and within the ethical standard we can allow ourselves in such a situation, Braaten says.
Fellingslaget has done the job. The nightmare of a fence will never be enough.
In total, the 1422 wild lakes are killed, in total, 18 wild lakes have a positive test for the scanty side of the disease first where detected.
But how foolish was this? Choosing safe can be a pretext for the disaster to be averted?
One hike with mud under the mountain forest
Framleis knows nobody if the disease is gone. Bjørnar Ytrehus in Nina win we can hope.
"We can not be safe, but it's soft, which is positive. We found few wild herbs with scar tissue. It may mean that it is early in a rash.
Together, 40,000 deer animals have been checking for incapacity for the last two years. So far without finding the contagious variant outside Nordfjella.
"It's also messy.
By 2018, 30,000 deer wildlife will be tested. It also includes tamrein.
Sadly, we will never know for sure that a woman's infection came to Nordfjella.
Scranty disease can come from the infected areas of North America. It could be as easy as a casual walker with American mud under the mountain forest.
One individual can spontaneously have had the disease. If another wild beast gets sick prion from this one, it may have created a contagious variant.
One last theory is scrap sickness from sheep. But researchers think it's very unlikely because the diseases are so different.
"I think most of the two first theories, victory Ytrehus.
February 2018: - The downturn is afterwards
Petter Braaten is hot at Geilo. He has our months in the mountain world, but still take a long ride. The big downhill is over, but the days are gray.
- You take back the spared business life. It is full of gravity.
It's a couple of three tough days.
Braaten is married, has two daughters and is grandfather of three boys. His days he is happy with the family, talking to good friends. The former police officer has been through storms before.
"I have taught myself to handle it, but you must be aware that this thing is going on.
Framleis is used to killing living individuals.
Afterwards, it starts as if Braaten is the real job.
No hard work over the years, where Nordfjella must first be empty for wildlife for at least five years. Afterwards, the area will be ready to accept a new tribe.
"I can share my dream. When I'm retired in fifteen years, the wildlife is back. There must be so many that we can fall to. I dream about it. I hope and believe we have done the right thing.
NRK 1 has followed winter rains in Nordfjella. The TV documentary "The last winter of the neighborhood" is found by clicking on the link.
Scientific opinion on chronic wasting disease (II) EFSA Panel on Biological Hazards (BIOHAZ) ZOONOSIS
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.''
Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
SATURDAY, MARCH 10, 2018
Chronic Wasting Disease CWD TSE Prion Goes Global Finland Falls, Behind Norway and S. Korea
FINLAND REPORTS FIRST CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN A moose or European elk (Alces alces)
TUESDAY, FEBRUARY 27, 2018
NORWAY CWD TSE PRION Skrantesjuke Nordfjella zone 1 Complete Eradication Complete
TUESDAY, DECEMBER 05, 2017
Norway 30,000 deer animals have so far been tested for Skrantesyke chronic wasting disease CWD TSE PRION DISEASE
THURSDAY, NOVEMBER 30, 2017
Norway Animal welfare surveillance at Nordfjella Skrantesjuke CWD TSE Prion Update
MONDAY, MARCH 05, 2018
TRUCKING AROUND AND SPREADING CHRONIC WASTING DISEASE CWD TSE PRION VIA MOVEMENT OF CERVID AND TRANSPORTATION VEHICLES
MONDAY, MARCH 05, 2018
Chronic Wasting Disease: Status, Science, and Management EXPLANATION U.S. Department of the Interior U.S. Geological Survey Open-File Report 2017–1138 March 2018
Sunday, February 25, 2018
PRION ROUND TABLE CONFERENCE 2018 MAY, 22-25 A REVIEW
WEDNESDAY, MARCH 21, 2018
World Animal Organization (OIE) Appoints Veterinary Institute as first European reference laboratory for land animal health field of CWD or skrantesjuke scratch disease
TUESDAY, MARCH 27, 2018
Scientific opinion on chronic wasting disease (II) EFSA Panel on Biological Hazards (BIOHAZ) ZOONOSIS
''IN PARTICULAR THE US DATA DO NOT CLEARLY EXCLUDE THE POSSIBILITY OF HUMAN (SPORADIC OR FAMILIAL) TSE DEVELOPMENT DUE TO CONSUMPTION OF VENISON. THE WORKING GROUP THUS RECOGNIZES A POTENTIAL RISK TO CONSUMERS IF A TSE WOULD BE PRESENT IN EUROPEAN CERVIDS.''
SCIENTIFIC OPINION ON CHRONIC WASTING DISEASE (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132
zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm
***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116***
***> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
To date there is no direct evidence that CWD has been or can be transmitted from animals to humans.
However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure.
Both infected brain and muscle tissues were found to transmit disease.
Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods.
Summary and Recommendation:
snip...
Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle.
These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle.
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions.
In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein.
These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species.
The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time.
We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations.
We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
PRION 2016 TOKYO Zoonotic Potential of CWD Prions:
An Update
Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions.
PRION 2016 TOKYO In Conjunction with Asia Pacific Prion Symposium 2016 PRION 2016 Tokyo Prion 2016
Cervid to human prion transmission
Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States
Abstract
Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far.
CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends.
However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
***(4) CWD transmission to humans has already occurred.
We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3.
Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1.
Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.
Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3.
The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans. Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns.
This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
Chronic Wasting Disease and Potential Transmission to Humans
Ermias D. Belay,* Ryan A. Maddox,* Elizabeth S. Williams,† Michael W. Miller,‡ Pierluigi Gambetti,§ and Lawrence B. Schonberger*
Chronic wasting disease (CWD) of deer and elk is endemic in a tri-corner area of Colorado, Wyoming, and Nebraska, and new foci of CWD have been detected in other parts of the United States. Although detection in some areas may be related to increased surveillance, introduction of CWD due to translocation or natural migration of animals may account for some new foci of infection. Increasing spread of CWD has raised concerns about the potential for increasing human exposure to the CWD agent. The foodborne transmission of bovine spongiform encephalopathy to humans indicates that the species barrier may not completely protect humans from animal prion diseases. Conversion of human prion protein by CWDassociated prions has been demonstrated in an in vitro cellfree experiment, but limited investigations have not identified strong evidence for CWD transmission to humans. More epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions.
*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.
see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
I urge everyone to watch this video closely...terry
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}...TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip...
Transmissible Spongiform Encephalopathies
Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
BSE INQUIRY
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
TUESDAY, SEPTEMBER 12, 2017
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
SATURDAY, JANUARY 27, 2018
CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE.
THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$
BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.
SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.
SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.
SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
CDC CWD TSE PRION UPDATE USA JANUARY 2018
As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids.
Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018
snip....
Prion 2017 Conference Abstracts CWD
2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
MONDAY, MARCH 26, 2018
Wisconsin Rep. Milroy Wants More Action to Combat CWD TSE Prion aka Mad Deer Disease on Wisconsin's deer farms
SATURDAY, MARCH 03, 2018
WISCONSIN CHRONIC WASTING DISEASE TSE Prion DNR Study Finds CWD-Infected Deer Die At 3 Times Rate Of Healthy Animals
January 14, 2018
Michigan’s Chronic Wasting Disease Working Group Recommendations Report to the Natural Resources Commission Prepared December 2017 CWD Confirmed Cases holding for now at 57 cases
WEDNESDAY, MARCH 07, 2018
Michigan DNR CWD National Perspective: Captive Herd Certification Program - Dr. Tracy Nichols
CURRENT STATUS OF CWD IN CAPTIVE CERVID HERDS IN 16 STATES AS OF MAY 2017
43 ELK HERDS
37 WTD HERDS
1 RED DEER HERD
6 MIX SPECIES HERDS
85 CWD-POSITIVE CAPTIVE HERDS
snip...see
WEDNESDAY, MARCH 07, 2018
Addressing deer disease: DNR, MSU collaborate on deer movement study in south-central Michigan
SATURDAY, MARCH 03, 2018
Minnesota CWD All seven of the remaining white-tailed deer on farm Positive
FRIDAY, NOVEMBER 24, 2017
Todd Robbins-Miller President of Minnesota Deer Farmers Association is oblivious to Chronic Wasting CWD TSE PRION DISEASE risk factors
FRIDAY, FEBRUARY 23, 2018
Pennsylvania NEW CWD MANAGEMENT AREA TO BE ANNOUNCED
MONDAY, FEBRUARY 12, 2018
Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties
THURSDAY, MARCH 22, 2018
TEXAS CWD TSE PRION JUMP TO 100 POSITIVE, NEW CASES 17 BREEDER, 1 BREEDER RELEASE, AND 1 WILD SINCE JAN 31, 2018
TUESDAY, MARCH 27, 2018
Texas Chronic Wasting Disease CWD TSE Prion Mad Deer Disease TPWD EXPANDS CONTAINMENT ZONE IN PANHANDLE
WEDNESDAY, FEBRUARY 21, 2018
Maryland Chronic Wasting Disease CWD TSE Prion Found In Ten Deer Allegany and Washington Counties
SATURDAY, FEBRUARY 17, 2018
Montana Special Hunts 9 more cases CWD TSE Prion to date, more samples still pending
FRIDAY, FEBRUARY 09, 2018
Mississippi Chronic Wasting Disease confirmed in a White-tailed Deer
TUESDAY, FEBRUARY 13, 2018
*** MISSISSIPPI STATE DEPARTMENT OF HEALTH Chronic Wasting Disease: Public Health Recommendations ***
WEDNESDAY, FEBRUARY 07, 2018
New Mexico Bans All Live Cervid Importation Due To CWD TSE Prion still NO Final 2017 Positives Update for N.M.
FRIDAY, FEBRUARY 09, 2018
Virginia 2017 Hunt Confirms 16 Cases Chronic Wasting Disease CWD TSE Prion
MONDAY, FEBRUARY 05, 2018
Nebraska Chronic Wasting Disease CWD TSE Prion 2017 Survey Confirms 203 Positives From 1,807 Deer Sampled
SATURDAY, FEBRUARY 03, 2018
Arkansas Reports 346 Positive CWD TSE Prion cases found as of January 8, 2018
THURSDAY, FEBRUARY 08, 2018
Utah Chronic Wasting Disease CWD TSE Prion Update to date from 2017 Hunting Season
TUESDAY, JANUARY 30, 2018
Colorado Chronic Wasting Disease CWD TSE Prion 7/2015-6/2016 Results (2017?)
THURSDAY, JANUARY 25, 2018
Ohio Chronic Wasting Disease CWD TSE Prioin aka mad deer update 2016-2017 SEASON SUMMARY
SATURDAY, JANUARY 20, 2018
Pennsylvania CWD TSE Prion Cases Explodes 51 deer from the 2017-18 hunting seasons have tested positive for CWD majority of samples collected still are being analyzed
WEDNESDAY, JANUARY 24, 2018
Illinois Chronic Wasting Disease CWD TSE Prion cases mounting with 75 confirmed 2017 and 685 total to date
THURSDAY, FEBRUARY 08, 2018
Iowa DNR Wayne County Confirms CWD with 7 additional CWD positive tests so far from deer in northeast from 2017 season
SATURDAY, FEBRUARY 10, 2018
Chronic wasting disease management in ranched elk using rectal biopsy testing Research Paper 09 Feb 2018
January 14, 2018
Missouri MDC REPORTS 15 NEW CASES OF CWD TSE Prion in Deer
MONDAY, JANUARY 29, 2018
Wyoming, Hanna, WGFD diagnosed chronic wasting disease (CWD) for the first time in Deer Hunt Area 161
MONDAY, JANUARY 29, 2018
North Dakota CWD Confirmed whitetail buck and a mule deer doe 2017 deer gun season from unit 3F2
SUNDAY, FEBRUARY 18, 2018
Chronic Wasting Disease CWD TSE Prion RoundUp February 18, 2018
TUESDAY, DECEMBER 12, 2017
*** Chronic Wasting Disease CWD TSE Prion (aka mad deer disease) Update USA December 14, 2017 ***
(zoonosis and environmental risk factors towards the bottom, after state by state reports)
MONDAY, MARCH 13, 2017
CHRONIC WASTING DISEASE CWD TSE PRION UDATE March 13, 2017
SATURDAY, JANUARY 14, 2017
CHRONIC WASTING DISEASE CWD TSE PRION GLOBAL UPDATE JANUARY 14, 2017
trucking and spreading cwd around...tss
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency's (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.
***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.
spreading cwd around...tss
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.
On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea.
These consisted of 23 elk in 1994 originating from the so-called "source farm" in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the "source farm".
Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify.
CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises.
In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.
*Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
*Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.
*Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program.
Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).
*In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive.
*Consequently, all cervid - 54 elks, 41 Sika deer and 5 Albino deer - were culled and one elk was found to be positive.
Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.
*Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis.
*Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 - 15 elks and 47 elks - were culled and confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.
*In December 2010, one elk was confirmed as positive at Farm 5.
*Consequently, all cervid - 3 elks, 11 Manchurian Sika deer and 20 Sika deer - were culled and one Manchurian Sika deer and seven Sika deer were found to be positive.
This is the first report of CWD in these sub-species of deer.
*Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.
*In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo.
All cervid - 19 elks, 15 crossbreed (species unknown) and 64 Sika deer - of Farm 6 were culled, but all confirmed as negative.
: Corresponding author: Dr. Hyun-Joo Sohn (+82-31-467-1867, E-mail: shonhj@korea.kr) 2011 Pre-congress Workshop: TSEs in animals and their environment 5
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
to date, there is no cervid that has been documented to be totally resistant to cwd tse prion.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion
Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD
In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
PRION 2016 CONFERENCE TOKYO
http://prion2016.org/dl/newsletter_03.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
Subject: cwd genetic susceptibility
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§
Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g
snip...
Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations.
http:// http://forest.wisc.edu/files/pdfs/samuel/2009%20blanchong%20et%20al%20genetic%20susceptibility%20chronic%20wasting.pdf
http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1083&context=nrem_pubs
http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4667/epdf
http://www.tandfonline.com/doi/full/10.1080/19336896.2015.1115179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/pdf/kprn-09-06-1115179.pdf
http://www.sciencedirect.com/science/article/pii/S1567134809001956?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion
Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD
In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
PRION 2016 CONFERENCE TOKYO
http://prion2016.org/dl/newsletter_03.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
Subject: cwd genetic susceptibility
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§
Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g
snip...
Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations.
http:// http://forest.wisc.edu/files/pdfs/samuel/2009%20blanchong%20et%20al%20genetic%20susceptibility%20chronic%20wasting.pdf
http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1083&context=nrem_pubs
http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4667/epdf
http://www.tandfonline.com/doi/full/10.1080/19336896.2015.1115179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/pdf/kprn-09-06-1115179.pdf
http://www.sciencedirect.com/science/article/pii/S1567134809001956?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/
December 2014, Volume 36, Issue 6, pp 1049–1061 | Cite as
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4.
Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
https://rd.springer.com/article/10.1007/s10653-014-9600-0
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf
http://chronic-wasting-disease.blogspot.com/2009/08/third-international-cwd-symposium-july.html
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4.
Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
https://rd.springer.com/article/10.1007/s10653-014-9600-0
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf
http://chronic-wasting-disease.blogspot.com/2009/08/third-international-cwd-symposium-july.html
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
Justin Greenlee1, S JO Moore1, Jodi Smith1, M Heather WestGreenlee2 and Robert Kunkle1
1National Animal Disease Center; Ames, IA USA
2Iowa State University; Ames, IA USA
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy.
***In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
CWD TO PIGS
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin
Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:
Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.
Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.6>
Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:6>6>
This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.
CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....
snip...see much more here ;
WEDNESDAY, APRIL 05, 2017
Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
WEDNESDAY, APRIL 05, 2017
*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***
cattle are highly susceptible to white-tailed deer CWD and mule deer CWD
***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.
SNIP...
price of prion poker goes up for cwd to cattle;
Monday, April 04, 2016
*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***
THURSDAY, MARCH 08, 2018
Cervid, Wild Hogs, Coyotes, Wolves, Cats, Rodents, Gut Piles and Scavengers, A Potential Risk as Regards Disease Transmission CWD TSE Prion
the tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
I DO NOT BELIEVE 5 YEARS FOR QUARANTINE IS NEAR ENOUGH. cwd tse prion quarantine times should be extended immediately to 20 years, at least...tss
Infectious agent of sheep scrapie may persist in the environment for at least 16 years
Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3
Correspondence Gudmundur Georgsson ggeorgs@hi.is
1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland
2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland
3 Bethesda, Maryland, USA
Received 7 March 2006
Accepted 6 August 2006
In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.
Survival of Scrapie virus after 3 years interment
Paul Brown, D. Carleton Gajdusek
TSEs And The Environment
The LANCET
Volume 351, Number 9110 18 April 1998
BSE: the final resting place
How to dispose of dangerous waste is a question that has vexed the human race for hundreds of years. The answer has usually been to get it out of sight--burn it or bury it. In Periclean Athens, victims of the plague were incinerated in funeral pyres; in 14th century Venice, a law stipulated that Black Death corpses should be buried to a minimum depth of 5 feet; and now, as the 20th century draws to a close, we are challenged by everything from industrial mercury to the smouldering reactors of decommissioned atomic submarines.
The Irish Department of Agriculture will convene an expert panel on April 27-29 to discuss the disposal of tissues from animals with bovine spongiform encephalopathy (BSE). Proper disposal of tissues from infected cattle has implications for both human and animal safety. Safety for human beings is an issue because there is now unassailable if still indirect evidence that BSE causes infections in man in the form of "new variant" Creutzfeld-Jakob disease (nvCJD).1-3 Safety for animals is also an issue because BSE-affected cattle could possibly transmit disease to species other than cattle, including sheep, the species that was almost surely the unwitting source of the BSE epidemic.
The first matter to consider is the distribution of infectivity in the bodies of infected animals. The brain (and more generally, the central nervous system) is the primary target in all transmissible spongiform encephalopathies (TSE), and it contains by far the highest concentration of the infectious agent. In naturally occuring disease, infectivity may reach levels of up to about one million lethal doses per gram of brain tissue, whether the disease be kuru, CJD, scrapie, or BSE. The infectious agent in BSE-infected cattle has so far been found only in brain, spinal cord, cervical and thoracic dorsal root ganglia, trigeminal ganglia, distal ileum, and bone marrow.4 However, the much more widespread distribution of low levels of infectivity in human beings with kuru or CJD, and in sheep and goats with scrapie, suggests that caution is advisable in prematurely dismissing as harmless other tissues of BSE-infected cattle.
A second consideration relates to the routes by which TSE infection can occur. Decades of accumulated data, both natural and experimental, have shown clearly that the most efficient method of infection is by direct penetration of the central nervous system; penetration of peripheral sites is less likely to transmit disease. Infection can also occur by the oral route, and the ingestion of as little as 1 g of BSE brain tissue can transmit disease to other cattle.5 Infection by the respiratory route does not occur (an important consideration with respect to incineration), and venereal infection either does not occur or is too rare to be detected.
How can tissue infectivity be destroyed before disposal? The agents that cause TSE have been known almost since their discovery to have awesome resistance to methods that quickly and easily inactivate most other pathogens. Irradiation, chemicals, and heat are the three commonest inactivating techniques. Irradiation has proved entirely ineffective, and only a handful of a long catalogue of chemicals have produced more than modest reduction in infectivity. The most active of these are concentrated solutions of sodium hypochlorite (bleach) or sodium hydroxide (lye). As for heat, even though the agent shares with most other pathogens the feature of being more effectively damaged by wet heat than by dry heat, boiling has little effect, and steam heat under pressure (autoclaving) at temperatures of 121ºC is not always sterilising. To date, the most effective heat kill requires exposure of infectious material to steam heat at 134ºC for 1 h in a porous-load autoclave.6 Exposure to dry heat even at temperatures of up to 360ºC for 1 h may leave a small amount of residual infectivity.7 The standard method of incineration, heating to about 1000ºC for at least several seconds, has been assumed to achieve total sterilisation, but needs experimental verification in the light of suggestions that rendered tissue waste might find some useful purpose as a source of heating fuel.
Thus, TSE agents are very resistant to virtually every imaginable method of inactivation, and those methods found to be most effective may, in one test or another, fail to sterilise. It seems that even when most infectious particles succumb to an inactivating process, there may remain a small subpopulation of particles that exhibit an extraordinary capacity to withstand inactivation, and that, with appropriate testing, will be found to retain the ability to transmit disease. Also, almost all available inactivation data have come from research studies done under carefully controlled laboratory conditions, and it is always difficult to translate these conditions to the world of commerce. Even when the data are applied in the commercial process, the repetitive nature of the process requires vigilance in quality control and inspection to ensure adherence to its regulations.
The final issue that must be addressed is the "lifespan" of the infectious agent after disposal if it has been only incompletely inactivated beforehand. Given the extraordinary resistance of the agent to decontamination measures, the epidemiological and experimental evidence indicating that TSE agents may endure in nature for a long time should come as no surprise. The first real clue to this possibility came from the Icelandic observation that healthy sheep contracted scrapie when they grazed on pastures that had lain unused for 3 years after having been grazed by scrapie-infected sheep.8
Support for this observation was obtained from an experiment in which scrapie-infected brain material was mixed with soil, placed in a container, and then allowed to "weather" in a semi-interred state for 3 years.9 A small amount of residual infectivity was detected in the contaminated soil, and most of the infectivity remained in the topmost layers of soil, where the tissue had originally been placed--in other words, there had been no significant leaching of infectivity to deeper soil layers.
It is therefore plausible for surface or subsurface disposal of TSE-contaminated tissue or carcasses to result in long-lasting soil infectivity. Uncovered landfills are a favourite feeding site for seagulls, which could disperse the infectivity.10 Other animals might do likewise, and if the landfill site were later used for herbivore grazing, or tilled as arable land, the potential for disease transmission might remain. A further question concerns the risk of contamination of the surrounding water table, or even surface waste-water channels, by effluents and discarded solid waste from treatment plants.
A reasonable conclusion from existing data is that there is a potential for human infection to result from environmental contamination by BSE-infected tissue residues. The potential cannot be quantified because of the huge number of uncertainties and assumptions that attend each stage of the disposal process.
On the positive side, spongiform encephalopathy can be said to be not easily transmissible. Although the level of infectivity to which creatures are exposed is not known, it is probably very low, since sheep that die from scrapie, cattle that die from BSE, and human beings who die from nvCJD represent only a small proportion of their respective exposed populations.
Whatever risk exists is therefore extremely small, but not zero, hence all practical steps that might reduce the risk to the smallest acceptable level must be considered. What is practical and what is acceptable are concepts that will be hammered out on the anvil of politics: scientific input, such as it is, already waits in the forge. A fairly obvious recommendation, based on the science, would be that all material that is actually or potentially contaminated by BSE, whether whole carcasses, rendered solids, or waste effluents, should be exposed to lye and thoroughly incinerated under strictly inspected conditions. Another is that the residue is buried in landfills to a depth that would minimise any subsequent animal or human exposure, in areas that would not intersect with any potable water-table source. Certainly, it has been, and will continue to be, necessary in many instances to accept less than the ideal.
Paul Brown
Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA 1 Will RG, Ironside JW, Zeidler M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996; 347: 921-25 [PubMed].
2 Bruce M, Will RG, Ironside JW, et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 1997: 389: 498-501.
3 Collinge J, Sidle KCL, Heads J, Ironside J, Hill AF. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 1996; 383: 685-90 [PubMed].
4 Wells GAH, Hawkins SAC, Green RB, et al. Preliminary observations on the pathogenesis of experimental bovine spongiform encephalopathy (BSE): an update. Vet Rec 1998; 142: 103-06 [PubMed].
5 Collee JG, Bradley R. BSE: a decade on--part 2. Lancet 1997; 349: 715-21 [PubMed].
6 Taylor DM. Exposure to, and inactivation of, the unconventional agents that cause transmissible degenerative encephalopathies. In: Baker HF, Ridley RM, eds. Methods in molecular medicine: prion diseases. Totawa NJ: Humana Press, 1996: 105-18.
7 Brown P, Liberski PP, Wolff A, Gajdusek DC. Resistance of scrapie infectivity to steam autoclaving after formaldehyde fixation and limited survival after ashing at 360°C: practical and theoretical implications, J Infect Dis 1990; 161: 467-72 [PubMed].
8 Palsson PA. Rida (scrapie) in Iceland and its epidemiology. In: Prusiner SB, Hadlow WJ, eds. Slow transmissible diseases of the nervous system, vol I. New York: Academic Press, 1979: 357-66.
9 Brown P, Gajdusek DC. Survival of scrapie virus after 3 years' interment. Lancet 1991; 337; 269-70.
10 Scrimgoeur EM, Brown P, Monaghan P. Disposal of rendered specified offal. Vet Rec 1996; 139: 219-20 [PubMed].
snip...
88. Natural decay: Infectivity persists for a long time in the environment. A study by Palsson in 1979 showed how scrapie was contracted by healthy sheep, after they had grazed on land which had previously been grazed by scrapie-infected sheep, even though the land had lain fallow for three years before the healthy sheep were introduced. Brown also quoted an early experiment of his own (1991), where he had buried scrapie-infected hamster brain and found that he could still detect substantial infectivity three years later near where the material had been placed. 89. Potential environmental routes of infection: Brown discusses the various possible scenarios, including surface or subsurface deposits of TSE-contaminated material, which would lead to a build-up of long-lasting infectivity. Birds feeding on animal remains (such as gulls visiting landfill sites) could disperse infectivity. Other animals could become vectors if they later grazed on contaminated land. "A further question concerns the risk of contamination of the surrounding water table or even surface water channels, by effluents and discarded solid wastes from treatment plants. A reasonable conclusion is that there is a potential for human infection to result from environmental contamination by BSE-infected tissue residues. The potential cannot be quantified because of the huge numbers of uncertainties and assumptions that attend each stage of the disposal process". These comments, from a long established authority on TSEs, closely echo my own statements which were based on a recent examination of all the evidence. 90. Susceptibility: It is likely that transmissibility of the disease to humans in vivo is probably low, because sheep that die from scrapie and cattle that die from BSE are probably a small fraction of the exposed population. However, no definitive data are available.
91. Recommendations for disposal procedures: Brown recommends that material which is actually or potentially contaminated by BSE should be: 1) exposed to caustic soda; 2) thoroughly incinerated under carefully inspected conditions; and 3) that any residue should be buried in landfill, to a depth which would minimise any subsequent animal or human exposure, in areas that would not intersect with any potable water-table source.
92. This review and recommendations from Brown have particular importance. Brown is one of the world's foremost authorities on TSEs and is a senior researcher in the US National Institutes of Health (NIH). It is notable that such a respected authority is forthright in acknowledging the existence of potential risks, and in identifying the appropriate measures necessary to safeguard public health. Paper by SM Cousens, L Linsell, PG Smith, Dr M Chandrakumar, JW Wilesmith, RSG Knight, M Zeidler, G Stewart, RG Will, "Geographical distribution of variant CJD in the UK (excluding Northern Ireland)". Lancet 353:18-21, 2 nd January 1999 93. The above paper {Appendix 41 (02/01/99)} (J/L/353/18) examined the possibility that patients with vCJD (variant CJD) might live closer to rendering factories than would be expected by chance. All 26 cases of vCJD in the UK with onset up to 31 st August 1998 were studied. The incubation period of vCJD is not known but by analogy with other human TSEs could lie within the range 5-25 years. If vCJD had arisen by exposure to rendering products, such exposure might plausibly have occurred 8-10 years before the onset of symptoms. The authors were able to obtain the addresses of all rendering plants in the UK which were in production in 1988. For each case of vCJD, the distance from the place of residence on 1st January 1998 to the nearest rendering plant was calculated
snip...
Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).
Some unofficial information from a source on the inside looking out -
Confidential!!!!
As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
----------
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
=========================
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).
Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).
Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.
Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.
Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).
The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.
When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.
Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.
It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.
Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.
Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.
Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.
In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.
In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).
As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.
False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).
This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.
This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.
In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.
Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.
The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.
In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).
A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).
This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.
Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
161: Prion soil binding may explain efficient horizontal CWD transmission
Nathaniel Denkers1, Davin Henderson1, Shannon Bartelt-Hunt2, Jason Bartz3 and Edward Hoover1
1Colorado State University; Fort Collins, Colorado USA
2University of Nebraska-Lincoln; Omaha, Nebraska USA
3Creighton University; Omaha, Nebraska USA
Background Chronic wasting disease (CWD) is unique due to the facile spread in nature. The interaction of excreted CWD prions and soil is a hypothesized contributor in environmental transmission. The present study examines whether and to what degree CWD prions bind to silty clay loam (SCL) using an adapted version of real-time quaking-induced conversion (RT-QuIC) methodology.
Materials and Methods Varying amounts (50–3.12 mg) of SCL were incubated with 1 mL-serial dilutions of CWD (+), CWD (−), or no brain homogenate (BH). Samples were centrifuged, washed, diluted 1:10 in 0.1% SDS, and 2.5 uL seeded in RT-QuIC assays employing recombinant Syrian hamster prion PrP substrate. Multiple well replicates of sample and supernatant fractions were assayed for positive seeding activity (recorded as thioflavin T fluorescence emission; 480 nm). Samples were considered positive if they crossed a threshold of 25,000. Reaction rates (RR) were calculated, averaged, and expressed as 1/RR.
Results Positive seeding activity was detected for most SCL samples incubated with CWD (+) BH dilutions. Higher SCL concentrations (50 mg) produced low fluorescent readings due to optical interference. Lower SCL concentrations (6.25 mg) produced minimal optical interference and removed the vast majority of seeding activity from CWD+ BH in a concentration-dependent manner; determined by seeding activity in residual BH supernatants. Control SCL and supernatants produced minimal false-positive reactions (8 of 240 replicates; 3.3%). We estimated the prion binding capacity of SCL to be 0.16 ng/mg.
Conclusion Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.
TSE Scrapie, CWD, BSE, Prion, Soil
Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois
Sheena J. Dorak, Michelle L. Green, Michelle M. Wander, Marilyn O. Ruiz, Michael G. Buhnerkempe, Ting Tian, Jan E. Novakofski & Nohra E. Mateus-Pinilla
Scientific Reportsvolume 7, Article number: 18062(2017) doi:10.1038/s41598-017-18321-x
Download Citation
Ecological epidemiology Ecological modelling Infectious diseases Prions
Received: 21 August 2017
Accepted: 08 December 2017
Published online: 22 December 2017
Abstract
Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.
Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles
Author Summary
Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
tse prion soil
cwd tse prion and soil, see more ;
MONDAY, JUNE 12, 2017
Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?
WEDNESDAY, MAY 17, 2017
*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***
USAHA 2017 RESOLUTIONS
RESOLUTION NUMBER: 23
APPROVED AS AMENDED SOURCE: COMMITTEE ON WILDLIFE AND CAPTIVE WILDLIFE
SUBJECT MATTER: Annual Reporting on Chronic Wasting Disease Epidemiological Data
BACKGROUND INFORMATION: Chronic wasting disease (CWD) has been recognized in wild cervids since the 1980’s. Availability of complete epidemiological information is critical for evaluating the effectiveness of science-based disease control programs. Access to pertinent information from epidemiological investigations across the country in wild populations is imperative to developing success strategies for managing the disease. More comprehensive information is needed on CWD epidemiology in the affected wild populations. Analysis of data from CWD affected populations across the country will improve risk assessment. Comprehensive epidemiological data evaluation may potentially identify factors contributing to the detection of CWD, enhance mitigation strategies to reduce the likelihood of CWD in new populations, and facilitate its earliest detection when it is present.
RESOLUTION: The United States Animal Health Association (USAHA) requests the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Veterinary Services and other appropriate federal and state agencies to work cooperatively to assemble, analyze, summarize, and make available annually to the Committee on Wildlife and Captive Wildlife at the USAHA meeting all pertinent information from epidemiological investigations of Chronic Wasting Disease (CWD) in cervid populations (including wild, free-ranging, and captive).
Specific information requested may include:
1) Compiled CWD testing data from each state to include:
a) Overall state testing numbers of each susceptible species tested;
b) Number of CWD positive tests found annually in each state;
c) Overall state testing in wild populations;
d) Prevalence of CWD in positive populations;
e) Population totals for each susceptible species of wild herds in each state;
f) Demography of positive and negative animals in infected herds;
g) Results from all tissues that were tested;
h) Duration of monitoring prior to detection of the first case - including numbers of animals in the herd, numbers tested, and numbers not tested;
i) Results of trace-forward and trace-back investigations; and
j) All other pertinent data that will enhance risk assessment of CWD in cervids and identification of effective mitigation measures.
2) Compiled data should also be posted on the USDA website.
http://www.usaha.org/upload/Resolution/2017/Resolution_23_CWD_Data.pdf
RESOLUTION NUMBER: 21 APPROVED SOURCE: COMMITTEE ON SHEEP, GOATS AND CAMELIDS SUBJECT MATTER: National Scrapie Eradication Program Funding
BACKGROUND INFORMATION: Due to the success of the cooperative National Scrapie Eradication Program, no new cases of scrapie have been identified in the United States (US) in the past 18 months. There are key components of the program that have been critical to this success and the effort to have the US be recognized internationally as free from scrapie, which would open new markets to US sheep and goat products. Surveillance and traceability are vital to this eradication program. Program use of sheep and goat official tags have demonstrated that official plastic tags are preferred over metal tags for readability and to reduce safety concerns. Funding for tags that are readable, acceptable to producers and efficient for regulators is essential to continue identification compliance and progress of the program.
RESOLUTION: The United States Animal Health Association urges the United States Secretary of Agriculture to request a congressional appropriation of five million additional dollars of new money to be added to the Equine, Cervid and Small Ruminant health line for the purpose of supporting Small Ruminant Health Programs to complete the eradication of scrapie and assure program success. It is vital that this new funding does not reduce other current United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services program funding lines.
lol, drop in the bucket and a band-aid approach to something that needed a tourniquet decades ago...
PRION CONFERENCE 2015, 2016, 2017, ON potential for CWD TSE PRION ZOONOSIS, if it has not happened already...
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
Saturday, June 25, 2011
Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque
"BSE-L in North America may have existed for decades"
Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.
snip...
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...
Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. snip... The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...
Singeltary Submissions to EU on CWD TSE Prion
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population CWD TSE PRION disease in cervids
***SINGELTARY SUBMISSION
The Scottish Parliament's Rural Affairs, Climate Change and Environment Committee has been looking into deer management, as you can see from the following press release,
***and your email has been forwarded to the committee for information:
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population
Sunday, July 21, 2013
Welsh Government and Food Standards Agency Wales Joint Public Consultation on the Proposed Transmissible Spongiform Encephalopathies (Wales) Regulations 2013
*** Singeltary Submission WG18417
Sunday, June 23, 2013
National Animal Health Laboratory Network Reorganization Concept Paper (Document ID APHIS-2012-0105-0001)
***Terry S. Singeltary Sr. submission
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive Deer, Elk, and Moose
DOCUMENT ID: APHIS-2006-0118-0411
***Singeltary submission
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive Deer, Elk, and Moose
*** DOCUMENT ID: APHIS-2006-0118-0411
WEDNESDAY, MARCH 21, 2018
World Animal Organization (OIE) Appoints Veterinary Institute as first European reference laboratory for land animal health field of CWD or skrantesjuke scratch disease
what does sound science and the prion Gods say...
Sunday, January 06, 2013
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
SHOOTING PENS (HIGH/LOW FENCE), CAPTIVE CERVID FARMING, BREEDING, SPERM MILLS, ANTLER MILLS, URINE MILLS, a petri dish for cwd tse prion disease...
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
https://web.archive.org/web/20170126060744/http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
https://web.archive.org/web/20170126060744/http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;
''it pains me to no end to even comtemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
with sad regards, terry
Terry S. Singeltary Sr., Bacliff, Texas USA 77518 flounder9@verizon.net
This comment has been removed by a blog administrator.
ReplyDelete