Saturday, January 20, 2018

Pennsylvania CWD TSE Prion Cases Explodes 51 deer from the 2017-18 hunting seasons have tested positive for CWD majority of samples collected still are being analyzed

01/19/2018
CWD TEST RESULTS CONTINUE TO COME IN
HARRISBURG, PA - Pennsylvania’s statewide deer seasons have come to a close, and within the next several weeks, final chronic wasting disease test results will return from deer harvested by hunters in the 2017-18 seasons.
The Pennsylvania Game Commission collects samples from deer harvested across the state and tests them for chronic wasting disease (CWD), as part of the agency’s ongoing CWD surveillance.
Within the state’s Disease Management Areas – where the disease has been detected in captive and free-ranging deer – intensified sampling occurs.
This past hunting season, the Game Commission offered free CWD testing for hunters harvesting deer within Disease Management Areas (DMAs). Free testing offered hunters a way to have their deer tested prior to consuming it, and it provided the Game Commission with additional samples to better pinpoint areas where the disease exists, so specific problem spots might be addressed.
Successful hunters within DMAs dropped off heads from more than 1,500 deer in the boxes. About 1,000 of these samples already have been tested for CWD, with the results reported to hunters.
Additionally, Game Commission staff collected more than 3,000 other samples within DMAs to test for CWD. In total, nearly 8,000 samples were collected statewide. Slightly more than 5,700 whitetails were tested for CWD in 2016; 25 tested positive, all were in or near DMA 2, the only area of the state where CWD has been detected in the wild.
At this time, 51 deer from the 2017-18 hunting seasons have tested positive for CWD. All have been within the DMAs. Forty-eight were within DMA 2, in southcentral Pennsylvania; and three were within DMA 3 in northcentral Pennsylvania.
But the majority of samples collected still are being analyzed.
Wayne Laroche, the Game Commission’s special assistant for CWD response, said the agency will continue to assess the incoming test results to evaluate the best response to confront CWD where it exists. DMA boundaries regularly have been adjusted in relation to newly detected CWD-positive animals. And last year, the Game Commission teamed with the U.S. Fish and Wildlife Service on a CWD surveillance effort where 30 deer were removed by sharpshooters and one CWD-positive deer was detected.
“By developing a control program where we go into these hotspots and remove the animals with a greater likelihood of carrying the disease, we might stand our best chance of controlling CWD on a larger scale, while minimizing the impact on the larger deer population or diminishing deer hunting opportunities,” Laroche said.
CWD is not a new disease, and other states have decades of experience dealing with CWD in the wild. It first was detected in Pennsylvania in 2012 at a captive deer facility, and it was detected in free-ranging deer soon after. To date in Pennsylvania, CWD has been detected in 98 free-ranging deer.
CWD is spread from deer to deer through direct and indirect contact. The disease attacks the brains of infected deer, elk and moose, and will eventually result in the death of the infected animal. There is no live test for CWD and no known cure. There also is no evidence CWD can be transmitted to humans, however, it is recommended the meat of infected deer – or deer thought to be sick – not be consumed.
For more information on CWD, the rules applying within DMAs or what hunters can do to have harvested deer tested for CWD, visit the Game Commission’s website, www.pgc.state.pa.us. Information can be found by clicking on the button titled “CWD Information” near the top of the homepage.
Final CWD test results from the 2017-18 deer seasons will be released when available.
MEDIA CONTACT: Travis Lau - 717-705-6541
# # #


From: "Terry S. Singeltary Sr."
Date: January 19, 2018 at 9:05:19 AM CST
To: bse-l@lists.aegee.org
Subject: Contact tracing for the control of infectious disease epidemics: Chronic Wasting Disease in deer farms (Pennsylvania)
Contact tracing for the control of infectious disease epidemics: Chronic Wasting Disease in deer farms

Chris Rorresa,⁎, Maria Romanob, Jennifer A. Millerc, Jana M. Mosseyd, Tony H. Grubesice, David E. Zellnerf, Gary Smitha

a Section of Epidemiology and Public Health, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, United States
b Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Bellet Building, 6th Floor, 1505 Race Street, Philadelphia, PA, 19102, United States
c Department of Geography and the Environment, 1 University Station A3100, The University of Texas at Austin, Austin, TX, 78712, United States
d Department of Epidemiology and Biostatistics, School of Public Health, Drexel University, Nesbitt Hall, 3215 Market Street, Philadelphia, PA, 19104, United States
e Center for Spatial Reasoning & Policy Analytics, College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ, 85004, United States
f Bureau of Animal Health and Diagnostic Services, Pennsylvania Department of Agriculture, 2301 North Cameron Street, Harrisburg, PA, 17110, United States

Snip...

1.3. The control of Chronic Wasting Disease in Pennsylvania

All farms housing susceptible farmed or captive deer in Pennsylvania must participate in the Pennsylvania Chronic Wasting Disease Program (Pennsylvania Department Of Agriculture, 2017). Even in the absence of detected Chronic Wasting Disease all deer farms must participate in annual Chronic Wasting Disease surveillance and inspection activities and must report all shipments into and out of the farm. It is these shipments that are recorded in the USAHerds database. Only that subset of herds that are deemed to have satisfied the re- quirements of “certification” under the program can import deer from other states and even then only after having obtained permits in ad- vance to ensure the deer are being imported from areas presumed free of Chronic Wasting Disease. Herds that are not certified may not import or export deer across state lines. 

Following the detection of deer with Chronic Wasting Disease in Pennsylvania in the fall of 2012, the Commonwealth created Disease Management Areas around the af- fected, quarantined farms, and increased surveillance with those areas to determine the extent of the outbreak (Pennsylvania Game Commission, 2017).

2. Data collection

Data consisted of 77,171 deer records on the location of deer farms, deer birth and deaths, and deer arrivals and departures from farms compiled from the Pennsylvania USAHerds database. The records begin in 1997, but because of certain uncertainties associated with the earlier portion of the database, we began our data set with October 14, 2003. The data provided to us ran to June 19, 2011, resulting in a derived dataset of duration 7.68 years.

With such a large data base, inevitably there were duplicate or ambiguous entries. For example, each of the 77,171 events was asso- ciated with a farm identified in three different ways: its address, pre- mises ID, and latitude/longitude. But there were 1098 different ad- dresses, 1139 different premises IDs, and 1125 different latitude/ longitude pairs. By examining the intersection of these different iden- tifiers we were able to extract 1090 unique farms, which we numbered 1–1090 in an arbitrary order. The majority (74.3%) of these farms had 20 or fewer deer.

All captive deer in Pennsylvania have a unique identifier so it was possible to record the movements of individual animals. For each shipment, the date of shipment and the origin or destination of the shipment were recorded. We focused on within-state shipments only. We assumed the permitting system was sufficient to prevent the im- portation of infected deer from out-of-state farms and, given our focus on Pennsylvania, we ignored shipments to other states. Our main as- sumption was that Chronic Wasting Disease would be introduced into a Pennsylvania deer by free-ranging deer and that the scale of shipments subsequently was so large that we could ignore all subsequent in- troductions.

Of the 77,171 individual deer records in the database, 40,650 were individual births or deaths of deer and so did not involve deer move- ment. The movement data were contained in the remaining 36,521 events, which were recorded as departures or arrivals of individual deer from or to specific farms on specific days. From these 36,521 movement events we ascertained 5269 individual deer transfers by finding deer that departed one farm and arrived at a different farm within 24h during the 7.68-year period. These 5269 individual deer transfers took place among 1474 distinct ordered pairs of farms, an average of 3.6 deer transfers over the timeframe. These transfers, however, may have been over several individual shipments at different times.
We shall say that farm i is connected to farm j if the ordered pair (i, j) is among these 1474 ordered pairs of farms. Thus farm i is connected to farm j if at least one deer was transferred from farm i to farm j within 24 h during the 7.68-year period. There may, in fact, have been many deer transferred between two connected farms on different occasions in the same direction, but in our contact investigation we are interested in whether or not there was at least one deer transferred. There were 12 pairs of farms in which at least one deer was transferred between the two farms in both directions (usually a different deer on different days).

There were only 681different connected farm among the 1090 farms; the remaining 409 farms had no recorded deer transfers from or to other farms during the 7.68-year period. Approximately 69% of all shipments were 50 miles or less, although some deer travelled up to 300 miles across the entire state.

It is a matter of common experience that the first farm in which a disease is detected, which we shall call the “first-case farm”, is rarely the index farm: the farm where the disease originated. Thus it is as important to try to identify which other farms have already been infected as it is to identify the farms that could be infected in the future by a first-case farm.

2.1. Analysis

We constructed the 1090×1090 adjacency matrix M of the di- rected graph represented in Fig. 1 by setting its ijth entry to 1 if farm i is connected to farm j and 0 otherwise. We first determined the direct or one-step contacts of a farm, which are simply those farms that are connected to the farm in either direction. Fig. 2 shows the direct con- tacts of the farm indicated by the white marker, with the incoming connections in green and the outgoing connections in red.

If the ith farm is the first-case farm, then the sum of the entries of the ith column of M is the number of farms that have connections to the first-case farm (the in-degree of the corresponding vertex of the digraph) and the sum of the entries of the ith row of M is the number of farms to which the first-case farm has connections (the out-degree of the vertex). The degree of a first-case farm (the sum of its in- and out-degrees) is then the number of direct contacts of that farm.

Fig. 3 is a histogram of the number of first-case farms versus the number of direct contacts (i.e., its degree as a vertex of the graph). The leftmost bar represents the 409 isolated farms that have no direct contacts to any farm and the rightmost bar is one farm (the first-case farm in Fig. 2) that has 48 direct contacts. The histogram is more-or-less monotonically decreasing to zero, as was expected.

2.2. Strongly connected components

We next sought the multi-step contacts (or, simply, the contacts) of a first-case farm. These would be all farms that could have been the source of the infection of the first-case farm (its past contacts) or that could be infected by the first-case farm (its future contacts). In graph theory, the past contacts are the farms that have a directed path (i.e., a sequence of directed connections) to the first-case farm, and the future contacts are the farms to which the first-case farm has a directed path.

In our example, the number of contacts of a particular first-case farm is very much influenced by the presence of a large strongly con- nected component (SCC) in the digraph. An SCC of a digraph is a max- imal subset of vertices each of which has a path to every other vertex in the SCC. Thus, an infected farm within an SCC could potentially infect every other farm in the SCC or could have been infected by any other farm in the SCC.

We used the MATLABTM command graphconncom, which implements
Tarjan’s Algorithm (Tarjan, 1972) to find the SCCs in our digraph. There were 12 SCCs with 2 farms each, 2 SCCs with 3 farms each, 1 SCC with 4 farms, and one large SCC with 139 farms. The one large SCC is shown in Fig. 4.

2.3. Determination of contacts
Determining whether one farm has a path leading to another is the reachability problem in graph theory and there are sophisticated al- gorithms available to solve it. However, our digraph is small enough that we can efficiently execute a more straightforward technique. We begin with the fact that the ijth entry of the kth power Mk (k = 1, 2, ...) of an adjacency matrix is the number of k-step paths from the ith farm to the jth farm (Cvetkovic et al., 1995). Thus, if the ijth entry of the matrix Sn defined by
Sn=M+M2+M3+. . .+Mn,n=1,2,...,
is nonzero, there is at least one path from the ith farm to the jth farm with n or fewer steps. Likewise, if the ijth entry of Sn is zero, there is no path from the ith farm to the jth farm with n or fewer steps. Because the entries of Sn do not decrease as n increases, the set of nonzero entries of Sn, say On, satisfies On ⊆ On+1. Furthermore, if On+1 = On for some n, then Ok = On for all k > n. (In epidemiological terms, if no new future contacts appear after a certain number of steps, there can be no more future contacts.) Consequently, for such an n the entries of On identify all pairs of farms that have a path between them.

For our digraph, the smallest value of n for which On+1 = On is 13, which we determined by computing Sk for k = 1, 2, ... until we found a value of k for which the number of zero entries of Sk was the same as the number of zero entries of Sk+1. Consequently, the indices of the non- zero entries of S13 identify precisely those ordered pairs of farms that have a directed path between them. In particular, the column indices of the nonzero entries of the ith row of S13 identify precisely those farms to which the ith farm has paths (i.e., the future contacts of the ith farm). Note, however, that if the iith entry of S13 is nonzero, then there is a path from the ith farm to itself, but in that case we will not count the ith farm as its own contact.

In a similar manner, the row indices of the nonzero entries of the ith column of S13 identify the farms which have a path to the ith farm (i.e., the past contacts of the ith farm, excluding the iith entry if it is nonzero). Finally, the number of unique indices in the ith row and ith column of S13, excluding the ith index, is the number of contacts (both past and future) of the ith farm.

Fig. 5 is a histogram of the of number of possible first-case farms that have a specified number of contacts (both past and future). This histogram has five well-defined clusters whose numbers of contacts were mainly determined by the large SCC in the digraph. These clusters are described below:

Cluster 1. (409 first-case farms with 0 contacts) These are the iso- lated farms in Pennsylvania.

Cluster 2. (160 first-case farms with 1–27 contacts) None of these farms has a contact in the large SCC.

Cluster 3. (331 first-case farms with 190–217 contacts) Each of these first-case farms has the 139 farms in the SCC as past contacts together with the 51 farms that are past contacts of the farms in the SCC. These 51 past contacts are precisely the 51 first-case farms of Cluster 4. Each first-case farm in Cluster 3 has a minimum of 190 (=139 + 51) past contacts, and so the great majority of the contacts in this cluster are past contacts.
Cluster 4. (51 first-case farms with 470–482 contacts) Each of these first-case farms has the 139 farms in the SCC as future contacts together with the 331 farms that are future contacts of the farms in the SCC. These 331 future contacts are precisely the 331 first-contact farms of Cluster 3. Each first-case farm in Cluster 4 has a minimum of 470 (=139 + 331) future contacts, and so the great majority of the contacts in this cluster are future contacts.

Cluster 5. (139 first-case farms with 520 contacts. These first-case farms are precisely the farms in the large SCC. For each such farm, the other 138 farms in the SCC are both future and past contacts. Additional future contacts are those 331 farms (the first-case farm of Cluster 3) that are the future contacts of any farm in the SCC. Additional past contacts are those 51 farms (the first-case farms of Cluster 4) that are past contacts of any farm in the SCC. Thus the total number of contacts of each first-case farm in this cluster is 520 (=138 + 331 + 51).

In Fig. 6 we show the 520 contacts of a first-case farm in the large SCC. Fig. 6 illustrates the scale of the task facing field investigators if one of the farms is in the large SCC is the first farm on which Chronic Wasting Disease has been detected.
Notice that Fig. 6 also identifies the number of contacts of each of the 1090 farms as follows: the 409 black isolated farms have 0 contacts (Cluster 1); the 160 black farms with connections to other farms have 1–27 contacts (Cluster 2); The 331 red farms have 190–217 contacts (Cluster 3); the 51 green farms have 440–482 contacts (Cluster 4); and the 139 white and blue farms have 520 contacts (Cluster 5).

3. Discussion

In this paper we illustrated our use of graph theory to facilitate contact tracing of an infectious disease by creating a directed graph of the recorded shipments of deer between deer farms in Pennsylvania over an extended period of time. We showed how the properties of the graph could be exploited to make contact tracing more efficient should Chronic Wasting Disease be discovered in one of the farms by identi- fying all possible future and past contacts associated with a first-case premise.

Moreover, we showed that the presence of a large SCC has a pro- found influence of the scale of the effort required to ensure adequate contact tracing. Thus identifying large SCCs should be central in a preliminary analysis of contract tracing. In fact, a useful strategy in limiting the extent of future epidemics would be the elimination of large SCCs by limiting the transfer of animals between carefully se- lected pairs of premises.

Our analysis was restricted to the case of whether or not a single
animal was transported between two farms over an extended period, without regard to the total number of animals so transported or how often. Our analysis could have included weighing the connections be- tween farms according to the number of animals transferred over the time period. This would have yielded a weighted graph which could provide information as to which contact farms are most worthy of ex- amination. Additionally, with extensive ongoing data a fuller time- varying graph could be formed in which information about the times of shipments are included and coordinated with the incubation period of the disease. Our unweighted static graph thus provides an upper limit on the possible contact farms associated with a given first-case farm.

References



Pennsylvania Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves

can someone please explain to me why deer farmers get an entitlement program via indemnity payouts that the tax payer in the end are responsible for, for harvesting cwd tse prion??? i am still confused about that.


-----Original Message-----
From: Terry Singeltary <flounder9@verizon.net>
To: bse-l <bse-l@lists.aegee.org>
Cc: cjdvoice <cjdvoice@yahoogroups.com>; bloodcjd <bloodcjd@yahoogroups.com>
Sent: Fri, Dec 15, 2017 2:34 pm
Subject: Pennsylvania Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves

12/15/2017

Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves

Harrisburg, PA - The Pennsylvania Department of Agriculture today announced that four captive deer have tested positive for Chronic Wasting Disease (CWD) in Pennsylvania, bringing the total count to 44 since the disease was discovered in Pennsylvania in 2012.

The disease was confirmed in three white-tailed deer on a hunting preserve in Franklin County and one on a Fulton County hunting preserve. Both preserves were under quarantine for the disease due to prior positive test results. All four deer were born and raised on the Fulton County farm.

The department’s Pennsylvania Veterinary Laboratory in Harrisburg tested the deer, which were later confirmed positive at National Veterinary Services Laboratories in Ames, Iowa. The deer were tested as required by the department for mandatory herd surveillance on CWD-quarantined premises. Deer cannot be moved on or off these properties without permission from the Pennsylvania Department of Agriculture.

According to the Centers for Disease Control and Prevention, there is no strong evidence that humans or livestock can contract Chronic Wasting Disease.

CWD attacks the brain of infected deer, elk and moose, producing small lesions that eventually result in death. Animals can get the disease through direct contact with saliva, feces and urine from an infected animal or contaminated environment.

Clinical signs include weight loss, excessive salivation, increased drinking and urination, and abnormal behavior like stumbling, trembling and depression. Infected deer and elk may also allow unusually close approach by humans or natural predators. The disease is fatal and there is no known treatment or vaccine.

The infectious agent, known as a prion, tends to concentrate in the brain, spinal column, eyes, spleen, and lymph nodes. These high-risk parts must be properly handled and disposed of at the harvest location to prevent disease spread. Low-risk parts such as deboned meat, clean skull caps and capes present little risk and may be taken home. 

The first cases of CWD in Pennsylvania were detected in white-tailed deer that died in 2012 on an Adams County deer farm, and wild, white-tailed deer in Blair and Bedford Counties. 

The Pennsylvania Department of Agriculture coordinates a mandatory surveillance program for the disease for 1,000 breeding farms, hobby farms and hunting preserves across the state. Since 1998, accredited veterinarians and certified CWD technicians have tested 27,000 captive deer in Pennsylvania. The Pennsylvania Game Commission collects samples from hunter-harvested deer and elk and wild deer that appear sick or behave abnormally.

Find more information about Pennsylvania’s program to hinder the spread of CWD, and the department’s broader efforts to safeguard animal health at agriculture.pa.gov.

MEDIA CONTACT: Shannon Powers - 717.783.2628

# # #


11/29/2017

GAME COMMISSION OFFERS FREE CWD TESTS FOR DMA-HARVESTED DEER

HARRISBURG, PA - Hunters within the state’s Disease Management Areas (DMAs) have the opportunity to have their deer tested – free of charge – for chronic wasting disease (CWD), and at the same time help the Game Commission fight this deadly disease.

The Game Commission has installed large metal bins at about two dozen locations for the collection of harvested deer heads within DMA 2 and DMA 3. The bins, which are similar to those used for clothing donations, keep contents secure and are checked and emptied every other day through the deer-hunting seasons.

All deer heads retrieved from the bins that can be tested for CWD, will be tested, and the hunters who submitted them will be notified of the results as soon as they’re available.

This initiative not only benefits the hunter by identifying deer that shouldn’t be consumed, it helps the Game Commission assess and monitor progress of the disease and the effectiveness of future management actions.

“CWD is an increasing threat to Pennsylvania’s deer and elk, and our hunting tradition,” said Wayne Laroche, Game Commission Special Assistant for CWD Response. “So far this year, the number of CWD-positive deer detected in DMA 2 has increased at a faster rate; the first free-ranging CWD-positive deer has been found within DMA 3; and three new deer farms have turned up positive within DMA 2.

“Still, prevalence of the disease in Pennsylvania is low,” Laroche said. “There’s still a chance to minimize the disease’s impacts on wild deer. And it’s a win-win scenario for the hunters who bring the heads of their harvested deer to a collection bin. Not only do they help protect wild deer against the disease’s spread, if they shoot a diseased animal, they’ll know about it and can discard the meat.”

Collection bins were placed within both DMA 2 and DMA 3 in early October, and many of the deer heads dropped off there during the statewide archery deer season already have been tested for CWD, with the hunters notified of the results. The bins will remain in use through the late archery and flintlock deer seasons.

The exact locations of all collection sites is available on the Chronic Wasting Disease page at www.pgc.pa.gov. The page can be accessed through a link under “Quick Clicks” on the left side of the homepage.

The permanent bins are white in color and clearly are marked for the collection of deer heads.

The bins are for the collection of deer heads only, and all heads submitted for testing must be lawfully tagged, with the harvest tag legibly completed and attached to the deer’s ear. The information on the tag is needed in order to notify the hunter with test results.

Because the collection bins are secure and emptied regularly, hunters can feel comfortable in leaving the tag attached to the ear – a legal requirement for all deer harvests.

All heads deposited in collection bins should be placed in a plastic bag and tied shut. This will help ensure the tag remains with the head, which is important for test-notification purposes. The head can be bagged before being brought to the bin, or hunters can use the bags provided at bins.

Hunters who harvest antlered deer within a DMA may remove and keep the antlers before depositing the head. The skulls and antlers from heads submitted for testing will not be returned.

While Game Commission staff performs CWD tests on a sample of the deer brought to meat processors statewide, not every deer brought to a processor is tested.

Outside of the DMAs, hunters who want to have their deer tested for CWD must make arrangements with the Pennsylvania Department of Agriculture. There is a fee associated with this testing. More information can be found through a link on the CWD page of the Game Commission’s website.

CWD in Pennsylvania

Chronic wasting disease (CWD) first was detected in Pennsylvania in 2012 at a captive deer farm in Adams County.

In response, the Game Commission established Disease Management Area 1 (DMA 1), a nearly 600-square-mile area in Adams and York counties, in which restrictions regarding the hunting and feeding of deer applied.

CWD was detected among free-ranging deer a few months later, in three deer harvested by hunters in Bedford and Blair counties in the 2012 firearms season. The deer were detected through the Game Commission’s ongoing CWD surveillance program.

Those CWD-positive deer resulted in the creation of DMA 2, which initially encompassed nearly 900 square miles in parts of Bedford, Blair, Cambria and Huntingdon counties, but since has expanded annually due to the detection of additional free-ranging and captive CWD-positive deer. DMA 2 now encompasses more than 2,845 square miles in parts of Adams, Bedford, Blair Cambria, Clearfield, Cumberland, Franklin, Fulton, Huntingdon and Somerset counties.

So far, more than 60 free-ranging CWD-positive deer, and dozens of CWD-positive captive deer, have been detected within DMA 2.

In 2014, CWD was detected at a captive deer farm in Jefferson County, leading to the creation of DMA 3, which encompasses about 350 square miles in parts of Clearfield, Indiana and Jefferson counties. In July 2017, a sick-looking adult buck euthanized a month earlier on state game lands in Clearfield County, within DMA 3, was confirmed as CWD-positive.

Additionally, the Game Commission in 2017 eliminated DMA 1. Through five years of monitoring, which included the testing of 4,800 wild deer within DMA 1, CWD never was found in the wild within DMA 1.

Hunters harvesting deer within DMAs are prohibited from transporting the high-risk parts of those deer (head and backbone) outside the DMA. If those hunters live outside the DMA, and are processing the deer themselves, they must remove and properly dispose of the high-risk parts before taking other parts of the deer home.

Deer meat may be transported outside a DMA so long as the backbone has been removed. Antlers may also be transported from a DMA if the skull plate is free of visible brain material.

Hunters using professional meat processors to process the meat from deer they harvest within a DMA must take the deer to processors within the DMA, or otherwise included on the list of approved processors associated with that DMA. There’s also a list of approved taxidermists associated with each DMA.

The feeding of deer and the use or field possession of urine-based deer lures while hunting also are prohibited within DMAs.

MEDIA CONTACT: Travis Lau - 717-705-6541

# # #


Greetings PA Hunters et al, 

i have come to the conclusion that only offering free CWD testing in only CWD risk areas, instead of the entire state, in any given state with CWD, will not only miss potential CWD cervid, but will at the same time allow the CWD tse prion spread, if it is in an undetected area..imo...terry


THURSDAY, SEPTEMBER 28, 2017

Pennsylvania GAME COMMISSION OFFERS FREE CWD TESTS FOR DMA-HARVESTED DEER


THURSDAY, SEPTEMBER 21, 2017

Pennsylvania Game Commission has scheduled a series of public meetings to ensure Pennsylvanians remain informed about chronic wasting disease CWD TSE Prion


SATURDAY, AUGUST 12, 2017

*** Pennsylvania 27 deer from Bedford County farm test positive for chronic wasting disease ***


WEDNESDAY, JULY 12, 2017

PENNSYLVANIA CWD FOUND IN THE WILD IN CLEARFIELD COUNTY


THURSDAY, JUNE 01, 2017

PENNSYLVANIA Third Case of CWD Discovered in a Captive Deer Farm in Four Months


MONDAY, MAY 15, 2017 

Pennsylvania 25 more deer test positive for CWD TSE PRION in the wild


WEDNESDAY, MARCH 01, 2017 

South central Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease 


FRIDAY, JANUARY 13, 2017 

Pennsylvania Deer Tests Positive for Chronic Wasting Disease four-year-old white-tailed deer Franklin County Hunting Preserve


Wednesday, May 11, 2016 

PENNSYLVANIA TWELVE MORE CASES OF CWD FOUND: STATE GEARS UP FOR ADDITIONAL CONTROL MEASURES 


Sunday, October 18, 2015
 
*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans Singeltary 2002 from speaking A smelly situation UPDATED 2015
 
 
Saturday, November 07, 2015
 
PENNSYLVANIA CHRONIC WASTING DISEASE CWD TSE PRION RULES EXPAND
 
 
Saturday, November 07, 2015
 
Pennsylvania 2015 September Minutes CWD Urine Scents
 
 
Tuesday, May 05, 2015
 
Pennsylvania CWD DETECTED IN SIX MORE FREE-RANGING DEER Disease Management Area 2 again expanded due to new cases Release #030-15
 
 
Sunday, July 13, 2014
 
Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape
 
 
Saturday, June 29, 2013
 
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA
 
 
Tuesday, June 11, 2013
 
*** CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania
 
 
Tuesday, May 28, 2013
 
Chronic Wasting Disease CWD quarantine Louisiana via CWD index herd Pennsylvania Update May 28, 2013
 
*** 6 doe from Pennsylvania CWD index herd still on the loose in Louisiana, quarantine began on October 18, 2012, still ongoing, Lake Charles premises.
 
 
Sunday, January 06, 2013
 
USDA TO PGC ONCE CAPTIVES ESCAPE
 
*** "it‘s no longer its business.”
 
 
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
 

ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;

''it pains me to no end to even comtemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
 
Wednesday, November 14, 2012
 
PENNSYLVANIA 2012 THE GREAT ESCAPE OF CWD INVESTIGATION MOVES INTO LOUISIANA and INDIANA
 
 
Tuesday, October 23, 2012
 
PA Captive deer from CWD-positive farm roaming free
 
 
Thursday, October 11, 2012
 
Pennsylvania Confirms First Case CWD Adams County Captive Deer Tests Positive
 

*** Subject: USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS 2017 

TUESDAY, DECEMBER 12, 2017 

Chronic Wasting Disease CWD TSE Prion (aka mad deer disease) Update USA December 14, 2017


FRIDAY, DECEMBER 15, 2017

Canada CFIA updating its national CWD TSE PRION efforts to eradicate disease farmed cervid NOT successful December 14, 2017


TUESDAY, DECEMBER 12, 2017 

Bovine Spongiform Encephalopathy BSE TSE Prion (aka mad cow disease) Report December 14, 2017 2017


TUESDAY, DECEMBER 12, 2017 

SCRAPIE TSE PRION UPDATE USA DECEMBER 14, 2017


TUESDAY, DECEMBER 12, 2017 

Creutzfeldt Jakob Disease CJD National Prion Disease Pathology Surveillance Center Cases Examined to December 14, 2017


Tuesday, December 12, 2017 

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology


the tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 



URINE

SUNDAY, JULY 16, 2017

*** Temporal patterns of chronic wasting disease prion excretion in three cervid species ***


FRIDAY, NOVEMBER 24, 2017 

Norwegian Food Safety Authority makes changes to measures to limit the spread of disease Skrantesjuke (CWD) in deer wildlife


TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 

 
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 


Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 
 
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 
 
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease. 
 
======================== 
 
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 
 
 
 
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 
 
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 
 
 
Wednesday, December 16, 2015 
 
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission *** 
 
 
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years *** 
 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3 
 
 
with CWD TSE Prions, I am not sure there is any absolute yet, other than what we know with transmission studies, and we know tse prion kill, and tse prion are bad. science shows to date, that indeed soil, dirt, some better than others, can act as a carrier. same with objects, farm furniture. take it with how ever many grains of salt you wish, or not. if load factor plays a role in the end formula, then everything should be on the table, in my opinion...tss
 
 
 Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles
 
Author Summary
 
Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
 
 
tse prion soil
 
 
 
 
 
Wednesday, December 16, 2015
 
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
 
 
The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.
 
 
>>>Particle-associated PrPTSE molecules may migrate from locations of deposition via transport processes affecting soil particles, including entrainment in and movement with air and overland flow. <<<
 
Fate of Prions in Soil: A Review
 
Christen B. Smith, Clarissa J. Booth, and Joel A. Pedersen*
 
Several reports have shown that prions can persist in soil for several years. Significant interest remains in developing methods that could be applied to degrade PrPTSE in naturally contaminated soils. Preliminary research suggests that serine proteases and the microbial consortia in stimulated soils and compost may partially degrade PrPTSE. Transition metal oxides in soil (viz. manganese oxide) may also mediate prion inactivation. Overall, the effect of prion attachment to soil particles on its persistence in the environment is not well understood, and additional study is needed to determine its implications on the environmental transmission of scrapie and CWD.
 
 
P.161: Prion soil binding may explain efficient horizontal CWD transmission
 
Conclusion. Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.
 
 
>>>Another alternative would be an absolute prohibition on the movement of deer within the state for any purpose. While this alternative would significantly reduce the potential spread of CWD, it would also have the simultaneous effect of preventing landowners and land managers from implementing popular management strategies involving the movement of deer, and would deprive deer breeders of the ability to engage in the business of buying and selling breeder deer. Therefore, this alternative was rejected because the department determined that it placed an avoidable burden on the regulated community.<<<
 
Wednesday, December 16, 2015
 
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
 
Timm Konold1*, Stephen A. C. Hawkins2, Lisa C. Thurston3, Ben C. Maddison4, Kevin C. Gough5, Anthony Duarte1 and Hugh A. Simmons1
 
1 Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK, 2 Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK, 3 Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK, 4 ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK, 5 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
 
Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.
 
snip...
 
Discussion
 
Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
 
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
 
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
 
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
 
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
 
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
 
 
Wednesday, December 16, 2015
 
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
 
 
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
 
 
MONDAY, JUNE 12, 2017
 
Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?
 
 WEDNESDAY, MAY 17, 2017
 
*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***
 


*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
 
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
 
 
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
 
snip...
 
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
 
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
 
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
 
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
 
 
 
2012
 
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
 
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
 
snip...
 
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
 
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
 
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
 
 
2011
 
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
 

TUESDAY, MARCH 28, 2017 

*** Passage of scrapie to deer results in a new phenotype upon return passage to sheep ***


CWD TO PIGS

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:

This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.

CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.


CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


 Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


 snip...see much more here ;

WEDNESDAY, APRIL 05, 2017

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease


WEDNESDAY, APRIL 05, 2017

*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***


cattle are highly susceptible to white-tailed deer CWD and mule deer CWD

***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.

SNIP...


price of prion poker goes up for cwd to cattle;

Monday, April 04, 2016

*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 


SATURDAY, JULY 29, 2017 

Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 


SAWCorp CWD Test 

PLEASE BE AWARE, SOME ARE PUSHING TO USE SAWCorp CWD Test TO ASSURE YOUR CERVID IS CWD FREE, SAWCorp CWD Test HAS _NOT_ BEEN APPROVED BY APHIS !!! IMPORTANT: SAWCorp CWD Test is Not APHIS Approved

USDA Animal and Plant Health Inspection Service sent this bulletin at 11/18/2016 11:43 AM EST 

SAWCorp, a private company, recently issued a press release launching a new, patented live-animal blood test for the detection of chronic wasting disease (CWD) in cervids. A subsequent press release from the same company stated that the USDA is reviewing the test for use in the CWD program. USDA’s Animal and Plant Health Inspection Service (APHIS) does not recognize protein misfolding cyclic amplification (PMCA) prion blood tests as an official test for CWD, bovine spongiform encephalopathy,or scrapie. By definition, an official CWD test is, “Any test for the diagnosis of CWD approved by the Administrator and conducted in a laboratory approved by the Administrator in accordance with §55.8 of this part” (9 CFR Part 55). 

The criteria necessary for approval as an official CWD test includes a standardized test protocol, data to support reproducibility, data to support suitability, and data to support the sensitivity and specificity of the test. While APHIS supports emerging technologies, no company has submitted the data needed for APHIS to evaluate the PMCA prion blood test. In addition, APHIS is aware of no peer-reviewed scientific publications that establish the efficacy of PMCA as a detection method for CWD in cervid blood. If producers elect to use a PMCA test, APHIS will consider positive results to be “suspect” cases that must be confirmed using an official CWD test. APHIS will not recognize negative or “not detected” PMCA test results for herd certification or interstate movement purposes.



Subject: cwd genetic susceptibility 

Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§ 

Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g

snip...

Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations. 







Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus)

Adam L Brandt,1 Amy C Kelly,1 Michelle L Green,1,2 Paul Shelton,3 Jan Novakofski,2,* and Nohra E Mateus-Pinilla1,2 Author information ► Article notes ► Copyright and License information ► 

The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.

KEYWORDS: CWD, diplotype, G96S, PRNP, prion, synonymous polymorphism, haplotype 

snip... 

A solid understanding of the genetics of CWD in white-tailed deer is vital to improve management of CWD on the landscape. Most TSEs are found in domestic or captive animals where management of infected individuals is feasible. For example, scrapie infected flocks can be handled through a process generally involving genetic testing, removal and destruction of infected or suspect animals, followed by decontamination of facilities and equipment.55Containment of free ranging deer in wild populations potentially infected with CWD and decontamination of the environment is not reasonably possible. The long term effects of CWD are not yet known but it is conceivable that an unmanaged infected population would be gradually extirpated as the disease progresses56,57 or at least reduced to low densities with high disease prevalence.58,59 Either outcome would have severe ecological effects (e.g., deer play a major role in affecting plant communities60 and as a prey source61,62) as well as negative economic impacts to hunting. Overall disease prevalence has remained at relatively low levels in Illinois compared to Wisconsin.11 It is important to note that at the time of sampling, CWD had been found in 6 Illinois counties and has since been detected in 14.9Complete eradication of CWD among free ranging white-tailed deer may not be possible; however, an active containment effort in Illinois appears to have prevented significant increases in prevalence.9,11,12 Further examination of PRNP haplotype and diplotype frequencies across northern Illinois and southern Wisconsin in conjunction with population structure and movement45,63,64 will be useful in identifying localities with greater or reduced susceptibility risk. Effectiveness of CWD containment efforts can be aided through genetic testing and redirecting management resources.


***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. 

P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion 

Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD 

In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible. 

***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. 

PRION 2016 CONFERENCE TOKYO 


''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.'' 

c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease. 


''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.'' 

c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease. 


SUNDAY, DECEMBER 10, 2017 

Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease

The results showed a sensitivity of 100% in animals with very poor body condition that were IHC-positive in both brain and lymph nodes, 96% in asymptomatic deer IHC-positive in brain and lymph nodes and 53% in animals at early stages of infection that were IHC-positive only in lymph nodes. The overall mean diagnostic sensitivity was 79.3% with 100% specificity. These findings show that PMCA might be useful as a blood test for routine, live animal diagnosis of CWD.




MONDAY, SEPTEMBER 25, 2017

Colorado Chronic Wasting Disease CWD TSE Prion Mandatory Submission of test samples in some areas and zoonosis

(ALSO, see the debate and evidence showing the origin of CWD starting in Colorado captive research pen)


Iowa Supreme Court rules law allows quarantine of CWD deer, not land

This is very, very concerning imo. 

IF this ruling is upheld as such ;

''The Iowa Supreme Court upheld the district court ruling — saying the law gives the DNR only the authority to quarantine the deer — not the land. The ruling says if the Iowa Legislature wants to expand the quarantine powers as suggested by the DNR, then it is free to do so.''

IF a 'precedent' is set as such, by the Legislature not intervening to expand quarantine powers to the DNR for CWD TSE Prion, and the precedent is set as such that the cervid industry and land there from, once contaminated with the CWD TSE Prion, are free to repopulate, sell the land, etc, imo, this will blow the lid off any containment efforts of this damn disease CWD TSE Prion. The Iowa Supreme Court did not just pass the cwd buck down the road, the Supreme Court of Iowa just threw the whole state of Iowa under the bus at 100 MPH.  all those healthy deer, while the litigation was going on, well, they were incubating the cwd tse prion, loading up the land even more, and in the end, 79.8% of those healthy looking deer had CWD TSE Prion. what about the exposure to the other species that come across that land, and then off to some other land? this makes no sense to me, if this is set in stone and the Legislation does not stop it, and stop if fast, any containment of the cwd tse prion will be futile, imo...terry

FRIDAY, JUNE 16, 2017

Iowa Supreme Court rules law allows quarantine of CWD deer, not land


FRIDAY, NOVEMBER 24, 2017 

Todd Robbins-Miller President of Minnesota Deer Farmers Association is oblivious to Chronic Wasting CWD TSE PRION DISEASE risk factors


FRIDAY, NOVEMBER 24, 2017 

Brain Tanning Hides and CWD Transmissible Spongiform Encephalopathy TSE Prion Disease Risk Factors Warning


EUROPE CWD TSE PRION

What is the risk of chronic wasting disease being introduced into Great Britain? A Qualitative Risk Assessment October 2012

Summary

Chronic wasting disease (CWD) is a highly infectious transmissible spongiform encephalopathy (TSE) that is circulating in the wild and farmed cervid populations in North America. It is the only TSE to be prevalent in free-ranging wild animal populations. A feature of CWD is its ability to spread both directly and indirectly via the contaminated environment where it is able to survive in a bio-available form for many years without any significant decrease in infectivity. Eradication of the disease from wild and farmed or managed cervid populations and the environment is extremely challenging and has not yet been successful.

Currently, there have been no reported cases of CWD or other TSE in deer in Great Britain (GB) or Europe. Given the consequences of CWD observed in North America, it is imperative that GB remains free of the disease. This risk assessment aims to assess the risk of CWD being imported into GB from North America and consequently, consider the risk of exposure and infection within the GB deer population. The assessment focuses on two main routes of entry including importation of animal feed and movement of contaminated clothing, footwear and equipment of tourists, deer hunters and British servicemen between affected areas of North America and GB. It is important to highlight that there are significant data gaps in this assessment. The main conclusions from this assessment are:

Several different animal feed products are imported into GB from North America. These include processed pet foods and consignments of unfinished feed ingredients for use in animal feed. The amount of imported feed, including pet food, that contains cervid protein is unknown and identified as a significant data gap. As non-ruminant animal feed may be produced with cervid protein (but not from positive CWD animals) in the United States (US), there is a greater than negligible risk that feed with cervid protein is imported from North America into GB. There is, however, uncertainty associated with this estimate.

In areas of North America where CWD has been reported, given that CWD is excreted in faeces, saliva, urine and blood, and survives in the environment for several years where it is able to bind to the soil, there is a medium probability that the environment (including soil) contains CWD.

Given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

Once in GB, the use of animal feed is subject to the TSE Feed Ban and ABP Regulations. In accordance with the current ban, farmed deer should not be directly exposed to (i.e. feed) imported animal feed containing any PAP. Therefore, assuming this ban is strictly adhered to, the risk of farmed and wild deer being exposed to ruminant animal feed containing deer protein from North America is considered negligible but with associated uncertainty. The probability of a (wild) deer being exposed to CWD infected deer protein in non-ruminant feed is considered to be greater than negligible but uncertain.

The pathways by which naïve deer in GB may be exposed to CWD contaminated soil and prions on equipment and clothing from people arriving in GB from North America are variable and highly uncertain. Given associated uncertainty, there is a greater than negligible probability that a person could transfer CWD prions from their contaminated equipment and/or clothing into deer habitat/environment, particularly with respect to Roe deer (Capreolus capreolus) habitat but less so for Chinese Water deer (Hydropotes inermis) habitat. Further, given the volume of tourists and other travellers moving between North America and GB, there are potentially multiple opportunities for CWD prions to be transferred from equipment to the environment.

None of the species affected by CWD in North America are present in GB. For a British species to become infected with CWD given exposure will depend on the dose and inherent susceptibility. Based on current scientific evidence Red deer (Cervus elaphus elaphus) are susceptible to CWD, Fallow deer (Dama dama) are likely to be less susceptible and Roe deer (Capreolus capreolus) have a gene conferring susceptibility. Therefore, it is likely that given exposure to an infectious dose of CWD, deer in GB could become infected with CWD.

However, given that the amount of soil ingested is likely to be very small, the probability of ingesting an infectious dose via this route is considered negligible to very low. The probability of ingesting an infectious dose via consumption of nonruminant feed is likely to be higher and may be very low, with associated uncertainty.

Overall, the probability of importing CWD into GB from North America and causing infection in British deer is uncertain but likely to be negligible to very low via movement of deer hunters, other tourists and British servicemen and very low via imported (nonruminant) animal feed. However, if it was imported and (a) deer did become infected with CWD, the consequences would be severe as eradication of the disease is impossible, it is clinically indistinguishable from BSE infection in deer (Dagleish et al., 2008) and populations of wild and farmed deer would be under threat. 

What is the risk of chronic wasting disease being introduced into Great Britain? A Qualitative Risk Assessment October 2012


Thursday, April 07, 2016

What is the risk of chronic wasting disease being introduced into Great Britain? An updated Qualitative Risk Assessment March 2016


Subject: DEFRA What is the risk of a cervid TSE being introduced from Norway into Great Britain? Qualitative Risk Assessment September 2016

Friday, September 30, 2016

DEFRA What is the risk of a cervid TSE being introduced from Norway into Great Britain? Qualitative Risk Assessment September 2016



Chronic wasting disease AND TISSUES THAT MIGHT CARRY A RISK FOR HUMAN FOOD AND ANIMAL FEED CHAINS REPORT 

3.5.3 Conclusions 

 In deer and elk, PrPCWD has a very wide and early tissue distribution, which 

resembles the distribution of scrapie and BSE agents in tissues in TSE-susceptible sheep and is different to that seen in BSE in cattle. However, tissue distribution is not identical for deer4 and elk. In the latter species it accumulates later in the incubation period into detectable levels. This widespread distribution of PrPCWD early in the incubation periodpresents significant, if not insurmountable, difficulty with respect to the potential for decisions on the removal of specified risk materials (SRM) in CWD. 


FRIDAY, NOVEMBER 3, 2017

BSE MAD COW TSE PRION DISEASE PET FOOD FEED IN COMMERCE INDUSTRY VS TERRY S. SINGELTARY Sr. A REVIEW

''I have a neighbor who is a dairy farmer. He tells me that he knows of several farmers who feed their cattle expired dog food. These farmers are unaware of any dangers posed to their cattle from the pet food contents. For these farmers, the pet food is just another source of protein.''

IN CONFIDENCE


SATURDAY, NOVEMBER 4, 2017 

FDA 589.2000, Section 21 C.F.R. Animal Proteins Prohibited in Ruminant Feed WARNING Letters and FEED MILL VIOLATIONS OBSERVATIONS 2017 to 2006


Thursday, November 16, 2017 

Texas Natural Meats Recalls Beef Products Due To Possible Specified Risk Materials Contamination


CHRONIC WASTING DISEASE CWD TSE PRION ZOONOTIC ZOONOSIS

PRICE OF TSE PRION POKER GOES UP!

2017

Subject: ***CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 

Chronic Wasting Disease (CWD) 

Prevention 

If CWD could spread to people, it would most likely be through eating of infected deer and elk. In a 2006-2007 CDC survey of U.S. residents, nearly 20 percent of those surveyed said they had hunted deer or elk and more than two-thirds said they had eaten venison or elk meat. However, to date, no CWD infections have been reported in people. 

Hunters must consider many factors when determining whether to eat meat from deer and elk harvested from areas with CWD, including the level of risk they are willing to accept. Hunters harvesting wild deer and elk from areas with reported CWD should check state wildlife and public health guidance to see whether testing of animals is recommended or required in a given state or region. In areas where CWD is known to be present, CDC recommends that hunters strongly consider having those animals tested before eating the meat. 

Tests for CWD are monitoring tools that some state wildlife officials use to look at the rates of CWD in certain animal populations. Testing may not be available in every state, and states may use these tests in different ways. A negative test result does not guarantee that an individual animal is not infected with CWD, but it does make it considerably less likely and may reduce your risk of exposure to CWD. 

To be as safe as possible and decrease their potential risk of exposure to CWD, hunters should take the following steps when hunting in areas with CWD: 

Do not shoot, handle or eat meat from deer and elk that look sick or are acting strangely or are found dead (road-kill). When field-dressing a deer: Wear latex or rubber gloves when dressing the animal or handling the meat. Minimize how much you handle the organs of the animal, particularly the brain or spinal cord tissues. Do not use household knives or other kitchen utensils for field dressing. Check state wildlife and public health guidance to see whether testing of animals is recommended or required. Recommendations vary by state, but information about testing is available from many state wildlife agencies. Strongly consider having the deer or elk tested for CWD before you eat the meat. If you have your deer or elk commercially processed, consider asking that your animal be processed individually to avoid mixing meat from multiple animals. If your animal tests positive for CWD, do not eat meat from that animal. The U.S. Department of Agriculture’s Animal and Plant Health Inspection Service regulates commercially farmed deer and elk. The agency operates a national CWD herd certification program. As part of the voluntary program, states and individual herd owners agree to meet requirements meant to decrease the risk of CWD in their herds. Privately owned herds that do not participate in the herd certification program may be at increased risk for CWD. 

Page last reviewed: August 17, 2017 Page last updated: August 17, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) Division of High-Consequence Pathogens and Pathology (DHCPP) 


 > However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 



Molecular Barriers to Zoonotic Transmission of Prions 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 


TUESDAY, SEPTEMBER 12, 2017 

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 


Prion 2017 Conference Abstracts CWD

 2017 PRION CONFERENCE 

First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 

Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 

University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 

This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 

Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 

At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 

PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 

Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO 

PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 

*** PRION 2017 CONFERENCE VIDEO 



 TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT 

First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress


TUESDAY, JULY 04, 2017

*** PRION 2017 CONFERENCE ABSTRACTS ON CHRONIC WASTING DISEASE CWD TSE PRION ***


TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD


Wednesday, May 24, 2017 

PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1 


SATURDAY, JULY 29, 2017 

Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

 In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.


*** WDA 2016 NEW YORK *** 

 We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

 Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders 


Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo Zoonotic Potential of CWD Prions: An Update 

Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3, Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6, Pierluigi Gambetti1, Qingzhong Kong1,5,6 

1Department of Pathology, 3National Prion Disease Pathology Surveillance Center, 5Department of Neurology, 6National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. 

4Department of Biological Sciences and Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, 

2Encore Health Resources, 1331 Lamar St, Houston, TX 77010 

Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions. 

PRION 2016 TOKYO 

In Conjunction with Asia Pacific Prion Symposium 2016 

PRION 2016 Tokyo 

Prion 2016 


Cervid to human prion transmission 

Kong, Qingzhong 

Case Western Reserve University, Cleveland, OH, United States 

Abstract 

Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that: 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

(3) Reliable essays can be established to detect CWD infection in humans;and 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3. 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans. 

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans. 

Funding Agency Agency National Institute of Health (NIH) 

Institute National Institute of Neurological Disorders and Stroke (NINDS) 

Type Research Project (R01) 

Project # 1R01NS088604-01A1 

Application # 9037884 

Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND) 

Program Officer Wong, May 

Project Start 2015-09-30 

Project End 2019-07-31 

Budget Start 2015-09-30 

Budget End 2016-07-31 

Support Year 1 

Fiscal Year 2015 

Total Cost $337,507 

Indirect Cost $118,756 

Institution 

Name Case Western Reserve University 

Department Pathology 

Type Schools of Medicine 

DUNS # 077758407 

City Cleveland 

State OH 

Country United States 

Zip Code 44106 



***check out this old document. some interesting stuff about USA and other Countries and concern for CWD TSE Prion. ...terry

Chronic wasting disease AND TISSUES THAT MIGHT CARRY A RISK FOR HUMAN FOOD AND ANIMAL FEED CHAINS REPORT 

https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_ssc_out324_en.pdf


 P169 Low levels of classical BSE infectivity in rendered fat tissue

Dr. Christine Fast1, Dr. Markus Keller2, Dr. Ute Ziegler3, Prof. Dr. Martin Groschup4 1Friedrich-Loeffler-Institut, Greifswald, Germany, 2Friedrich-Loeffler-Institut, Greifswald, Germ
any, 3Friedrich-Loeffler-Institut, Greifswald, Germany, 4Friedrich-Loeffler-Institut, Greifswald, Germany

Aims: Specified Risk Materials (SRM) are the animal tissues potentially containing the highest levels of Bovine Spongiform Encephalopathy (BSE) prions; and their removal is the most important consumer protection measure against BSE. BSE infectivity in the mesentery fat is most likely associated with embedded nervous tissue. To date, it is unclear if contamination of the rendered fat could have occurred during tallow production at a slaughterhouse.

Methods: Samples were taken from five cattle originating from the German BSE pathogenesis study. Two animals were at preclinical, one at late preclinical and one animal at clinical stage of disease; one control animal was included. For all cattle, mouse bioassay results for the celiac and mesenteric ganglion complex (CMGC) were generated previously, showing either no, mild, moderate or substantial infectivity loads. Fat was rendered from CMGC samples embedded in mesentery fat by incubating for 20 minutes at 95°C, according to standard tallow production methods. Subsequently, the melted fat was 1:5 diluted in physiological saline and thoroughly vortexed. The liquid fat was cleaned by a short centrifugation at 10.000 rpm. Finally, 7-12 bovine prion protein overexpressing transgenic mice (Tgbov XV) were i.c. inoculated with 25-30 μl of the supernatant. Mice were sacrificed after 730 days or when showing clinical symptoms and mouse brains were subsequently examined by biochemical and immunohistochemical methods.

Results: Neither the control and the preclinical nor the late preclinical animals showed signs of infectivity in mouse bioassay of the fat samples after up to 730 days p.i. In contrast, low levels of infectivity were detected in the fat of the clinical animal as one mouse displayed a clear accumulation of pathological prion protein in the brain after an incubation period of 598 days p.i.

Conclusions: Our results clearly indicate the potential contamination of melted mesenteric fat by embedded nervous structures during standard tallow production. However, the BSE infectivity level was weak and detectable only in the fat rendered from one sample with documented high infectivity load in the ganglion itself (Kaatz et al. 2012). Albeit, this study is not representative as only one clinical animal was included, it provides a proof of principle. A broader examination would allow a better insight into temporal and spatial distribution pattern of BSE infectivity in rendered fat tissues of different origins.Such estimates have a critical role in qualitative and quantitative risk assessments and in providing advice on the designation and removal of certain SRM tissues.

=====

http://prion2017.org/programme/ 

Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840 Next Section ABSTRACT

Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.

http://jvi.asm.org/content/83/18/9608.full

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Rachel C. Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡, Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ ↵* These authors contributed equally to this work. ↵† Present address: Department of Infectology, Scripps Research Institute, 5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA. ↵‡ Present address: Institute of Neuropathology, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. + See all authors and affiliations Science 24 Feb 2006: Vol. 311, Issue 5764, pp. 1117 DOI: 10.1126/science.1122864 Article Figures & Data Info & Metrics eLetters PDF You are currently viewing the abstract.

View Full Text

Abstract

The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.

http://science.sciencemag.org/content/311/5764/1117.long


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***



O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
 
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
 
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
 
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
 
***is the third potentially zoonotic PD (with BSE and L-type BSE),
 
***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
 
===============
 
***thus questioning the origin of human sporadic cases***
 
===============
 
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
 
==============
 
 
 Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
 
 
 
Saturday, April 23, 2016
 
Scrapie ZOONOSIS PRION CONFERENCE TOKYO 2016
 
*** SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 ***
 
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X
 


Volume 2: Science 

4. The link between BSE and vCJD 

Summary 

4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD. It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people.

4.30 Estimates of the likely scale of a possible epidemic of vCJD are wide-ranging and the subject of much debate. To know the likely number of cases is very important, not least to enable preparations to be made for the care of victims, as well as to be able to draw up guidelines to reduce the risk of transmission from infected but asymptomatic people. Preliminary results of the study examining tonsil and appendix material for signs of infection were not informative in this regard and full results are awaited. A blood test that would allow the widespread screening of the population by a simple method is still being sought.


>>> MONDAY, NOVEMBER 06, 2017 <<<

*** Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque ***

''On secondary and tertiary transmissions, however, the proportion of PrPres positive animals gradually increased to almost 100%. Recent communications suggest that a similar situation might exist in other models of experimental exposure to prions involving swine32 and cattle33. '' 

''Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque''

In conclusion, the range of incomplete syndromes that we observed between healthy carriers and typical vCJD indicates that multiple forms of prion variants can coexist and may emerge in different forms depending upon the conditions under which transmission occurred. This has obvious consequences for public health, and questions the uniqueness of the BSE/vCJD strain50 and our capacity to detect and prevent all infectious forms of prion disease. 


SATURDAY, DECEMBER 02, 2017 

Public health risks from subclinical variant CJD



2001 FDA CJD TSE Prion Singeltary Submission


DECEMBER 14, 2017, 20 YEARS POST DOD MOM HEIDENHAIN VARIANT CREUTZFELDT JAKOB DISEASE HVCJD DECEMBER 14, 1997, JUST MADE A PROMISE TO MOM, AND YOU DON'T BREAK PROMISES WITH YOUR MOM, NEVER FORGET, AND NEVER LET THEM FORGET...

wasted days and wasted nights...Freddy Fender

TERRY S. SINGELTARY SR.


FRIDAY, DECEMBER 15, 2017 

Pennsylvania Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves


*** Subject: USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS 2017
 
TUESDAY, DECEMBER 12, 2017 

Chronic Wasting Disease CWD TSE Prion (aka mad deer disease) Update USA December 14, 2017



FRIDAY, JANUARY 19, 2018

Contact tracing for the control of infectious disease epidemics: Chronic Wasting Disease in deer farms (Pennsylvania)



0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home