CPW News Release 3/11/2019
Colorado Parks and Wildlife is addressing Chronic Wasting Disease with its CWD Response Plan
FOR IMMEDIATE RELEASE
The Colorado Chronic Wasting Disease Response Plan is a long-term plan to reduce the prevalence of CWD in the state.
Travis Duncan CPW Statewide 303-866-3203 x4607 Colorado Parks and Wildlife is addressing Chronic Wasting Disease with its CWD Response Plan
The 2019 Colorado Big Game Brochure is out and there are plenty of regulation changes and new information for hunters to read up on in advance of the big game draw. One of the big challenges CPW wildlife managers are tackling this year is Chronic Wasting Disease (CWD).
The topic is gaining attention nationwide as 26 states have now reported CWD-infected animals. CWD is a prion disease that affects ungulates such as deer, elk and moose. The disease is always fatal and infected animals can develop symptoms like weight loss, stumbling and listlessness. Although there has been no evidence that CWD has yet been transmitted to humans, the Center for Disease Control, along with CPW, recommend that hunters not eat the meat of a CWD-infected animal.
CPW is addressing the problem head-on in Colorado. At its January 20 meeting, the Colorado Parks and Wildlife Commission unanimously approved the Colorado Chronic Wasting Disease Response Plan. It was the culmination of a year-long effort by the CWD Advisory Group to explore the history of CWD, the status of CWD infection in Colorado’s herds, and the best available tactics for lowering CWD prevalence.
The plan provides a suite of tactics that CPW wildlife managers can implement to lower CWD prevalence. The plan’s recommendations are intended to allow for a localized management approach best suited for individual herds that is in coordination with Herd Management Plans. Some of these tactics include changing the buck-to-doe ratio, increasing harvest, and issuing more late-season tags for specific GMUs. For a complete list of tactics, see pages 23 - 28 of the CWD Response Plan.
There is no overnight fix for CWD. This is a 15-year plan that will use rotating mandatory tests on hunter-harvested bucks to give a complete picture of Colorado’s CWD prevalence every five years. AS CWD Advisory Group member and Director of the Chronic Wasting Disease Alliance Matt Dunfee stated in his presentation to the CPW Commission, “This is a disease you measure in decades, not years. Without action, it will only increase in prevalence and distribution.”
For more information on CWD and hunting in Colorado, see page 12 of the 2019 Big Game Brochure and visit cpw.state.co.us/cwd.
###
Colorado Chronic Wasting Disease Response Plan December 2018
I. Executive Summary Mule deer, white-tailed deer, elk and moose are highly valued species in North America. Some of Colorado’s herds of these species are increasingly becoming infected with chronic wasting disease (CWD). As of July 2018, at least 31 of Colorado's 54 deer herds (57%), 16 of 43 elk herds (37%), and 2 of 9 moose herds (22%) are known to be infected with CWD. Four of Colorado's 5 largest deer herds and 2 of the state’s 5 largest elk herds are infected. Deer herds tend to be more heavily infected than elk and moose herds living in the same geographic area. Not only are the number of infected herds increasing, the past 15 years of disease trends generally show an increase in the proportion of infected animals within herds as well. Of most concern, greater than a 10-fold increase in CWD prevalence has been estimated in some mule deer herds since the early 2000s; CWD is now adversely affecting the performance of these herds.
Colorado’s wildlife resources are owned by the public and entrusted in the care of the Colorado Division of Parks and Wildlife and the Parks and Wildlife Commission to be safeguarded for the public’s long-term benefit. Therefore, in 2018, the Colorado Parks and Wildlife and the Parks and Wildlife Commission recognized the need to take action with managing CWD and initiated the revival and development of a statewide CWD Response Plan.
The Colorado Parks and Wildlife Commission established a CWD Advisory Group following a request for public engagement in the development of the CWD Response Plan. Advisory group members served as conduits of information to and from the various stakeholder interests for consideration. Although solely advisory in nature, the group’s role was viewed as fundamental to the crafting of a publicly supportable response plan.
This CWD Response Plan includes a suite of actions and recommendations that local wildlife managers can implement and assess at the individual herd level to control CWD prevalence while achieving population and herd composition objectives within Herd Management Plans. The suite of actions is seen as tools in the toolbox available to local managers and local constituencies when determining which actions are best suited to manage CWD in a herd. This plan intends to provide maximum flexibility to maintain healthy big game populations while achieving publicly derived management objectives. Therefore, management actions presented in this plan are seen as small adjustments, not changes, from the existing framework of Herd Management Plans.
This CWD Response Plan calls for the development of a surveillance plan that will systematically search for and detect CWD where not already detected. Until now, Colorado has undertaken ad hoc surveillance without the benefit of formal operations or procedures. A surveillance plan will be developed in 2019 and included as an appendix to this plan.
This CWD Response Plan launches a 15-year monitoring plan that relies on mandatory testing of male deer in a 5-year testing rotation schedule. For several reasons explained in this plan, Colorado is predominantly focusing CWD monitoring efforts on male deer, though both sexes may be included for select herds. A rotational approach will test and retest herds for CWD to show how the disease responds to management actions. Testing every 5 years allows adequate time to show a meaningful change in CWD infection rate (prevalence) while
4
ensuring that upwards of 40 different herds can be included in mandatory testing. Reassessment of this 15-year rotational approach will occur throughout the testing period, though this level of testing is recommended as the minimum investment to ensure a robust monitoring program.
A statewide prevalence threshold for compulsory intervention for deer is prescribed to guide when adaptive disease management actions should be taken. A single threshold essentially sets a maximum tolerance level for CWD prevalence at the herd level. Because monitoring efforts in deer are focused on adult males, the threshold is specific to adult males. A 5% prevalence threshold for compulsory intervention was selected as the lowest rate of adult male prevalence that is realistic to manage in herds statewide so as to minimize annual adult female CWD mortality. If prevalence approaches or exceeds the 5% threshold put in place to safeguard the resource, adaptive management actions would be taken to ensure a reduction in prevalence over time. Allowing prevalence to increase above levels that could be prevented through management would infringe upon CPW’s duty of safeguarding the public’s wildlife resources. In low prevalence herds, management efforts will seek to prevent prevalence from increasing to the management threshold, thereby preempting more aggressive management actions.
The prevalence threshold for compulsory intervention is likely the most contentious topic in this CWD Response Plan. However, concerns should be alleviated once additional understanding is gained in regards to how herd-specific management actions prescribed to curtail CWD will be determined by local herd managers in concert with existing Herd Management Plan objectives. Because Herd Management Plan objectives are developed through an open public process and are approved by the Colorado Parks and Wildlife Commission, any changes in licensing prescribed to reduce CWD prevalence would be aligned with objectives that have already been endorsed. This emphasizes the importance of public involvement in setting herd management plan objectives, ensuring plans are up to date, and that future plan revisions are aligned with this CWD Response Plan. Furthermore, management actions will not be taken until reliable prevalence estimates are generated, which is expected from mandatory testing results.
CPW’s approach to assessing herd responses to CWD management will generally follow the 2018 Western Association of Fish and Wildlife Agencies (WAFWA) recommendations for adaptive management of CWD. Several of these recommendations are integrated into this response plan. One important WAFWA recommendation guides assessing the effectiveness of management actions through a “BACI” (before-after-control-impact) study design. Testing how CWD responds to varying management actions under similar herd conditions will contribute to a greater international understanding of how to curtail CWD through wildlife management.
This CWD Response Plan is intended to be adaptive in nature, with review and assessment of management performance in individual herds at 5-year intervals. Management approaches will be reviewed and assessed on a statewide basis at intervals of no more than 10 years and a 5-year statewide review may be considered initially to afford opportunity for necessary programmatic adjustments.
5
snip...
IMPORTANT PUBLIC HEALTH MESSAGE
Disease in humans resulting from CWD exposure has not been reported to date. However, public health officials cannot determine there is no risk from eating meat from infected animals. Consequently, officials recommend that people avoid exposure to CWD-infected animals. Please see the Colorado Department of Public Health and Environment website ( http://www.colorado.gov/pacific/cdphe/priondiseases ) for the most current recommendations on carcass testing and other preventive measures.
To minimize exposure to CWD and other diseases of potential concern, Colorado Parks and Wildlife (CPW) and state public health officials advise hunters not to shoot, handle or consume any deer, elk or moose that is acting abnormally or appears to be sick. When fielddressing game, wear rubber gloves and minimize the use of a bone saw to cut through the brain or spinal cord (backbone). Minimize contact with brain or spinal cord tissues, eyes, spleen or lymph nodes. Always wash hands and utensils thoroughly after dressing and processing game meat.
(the map on page 71, cwd marked in red, is shocking...tss)
Colorado CWD Response Plan December 2018
PLEASE note, some of the url links go missing, or they are outdated, and do not work at the Colorado Parks Wildlife web site.
look at the cwd map on the 2019 Colorado Big Game Report on Page 71, shocking indeed, kinda like closing the barn door after the mad cows got loose, imo...terry
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;
''it pains me to no end to even contemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
snip...
THURSDAY, OCTOBER 04, 2018
Colorado Parks and Wildlife seeks input on chronic wasting disease plan
MONDAY, MAY 21, 2018
Colorado Chronic Wasting disease CWD TSE Prion hits 16 percent of male deer, elk, moose tested in some parts of state
TUESDAY, JANUARY 30, 2018
Colorado Chronic Wasting Disease CWD TSE Prion 7/2015-6/2016 Results (2017?)
MONDAY, SEPTEMBER 25, 2017
Colorado Chronic Wasting Disease CWD TSE Prion Mandatory Submission of test samples in some areas and zoonosis
Tuesday, July 12, 2016
Colorado Chronic Wasting Disease CWD TSE Prion discovered in one deer in Montrose County
Friday, April 22, 2016
COLORADO CHRONIC WASTING DISEASE CWD TSE PRION SURVEILLANCE AND TESTING PROGRAM IS MINIMAL AND LIMITED
*** SEE CWD HIGH INFECTION RATE MAPS FOR COLORADO ! ***
Sunday, November 13, 2011
COLORADO CWD CJD TSE PRION REPORTING 2011
Warning out on elk meat sold at Boulder farmer's market
By Kevin Vaughan, Rocky Mountain News (Contact) Published December 25, 2008 at 12:05 a.m.
State health officials issued a warning Wednesday after learning that unsuspecting consumers bought hundreds of pounds of elk meat this month from an animal infected with chronic wasting disease.
The elk was sold Dec. 13 at a farmer's market at the Boulder County Fairgrounds.
Although research has found no risk to humans who eat infected elk, officials at the state and Boulder County health departments recommended that the meat not be consumed.
"There's been now 10 years- plus of research looking at whether CWD poses a human health risk, and the evidence to date suggests it does not," said John Pape, epidemiologist at the Colorado Department of Health and Environment.
Still, he said, the research is not definitive.
In all, 15 animals purchased at a commercial Colorado elk ranch were processed in early December at a USDA-licensed plant. All those animals were tested for the disease.
Test results obtained Tuesday indicated that one of the animals was infected with CWD, one of several diseases thought to be caused by misshaped proteins that inflict damage to nerve cells in the brain. It is a cousin to both crapie in sheep and mad cow disease.
Label information
On infected elk meat:
* Seller: High Wire Ranch
* Cuts: chuck roast, arm roast, flat iron, ribeye steak, New York steak, tenderloin, sirloin tip roast, medallions and ground meat.
* Processor: Cedaredge Processing
* USDA triangle number: 34645
For more information, contact John Pape, Colorado Department of Health and Environment, 303-692-2628.
Elk meat recalled due to wasting disease
Publish Date: 12/24/2008
Longmont Times-Call
LONGMONT Meat from an elk with chronic wasting disease was sold Dec. 13 at the Boulder County Fairgrounds, according to the Colorado Department of Public Health and Environment. The meat is being recalled.
State health officials said the animal was one of 15 elk purchased from High Wire Ranch and processed in early December before being sold at a farmers market at the fairgrounds. The disease was found during a routine preliminary test for CWD; none of the other 14 elk were deemed to be infected.
CWD is not known to be dangerous to humans, health officials said, but the state advises against eating meat from animals with the disease.
The labeling on the meat would include:
Seller: High Wire Ranch The type of cut, listed as either chuck roast, arm roast, flat iron, ribeye steak, New York steak, tenderloin, sirloin tip roast, medallions or ground meat.
Processor: Ceaderedge Processing A USDA triangle with the number 34645. Final testing is still being conducted. State officials said the meat should be discarded if it matches the packaging label and was bought on the fairgrounds on Dec. 13.
CWD is a disease believed to be caused by prions, misshapen proteins that cause brain damage. The disease affects elk, deer and moose. Other prion diseases include scrapie in sheep and bovine spongiform encephalopathy or mad cow disease in cattle.
People with questions about the meat can contact John Pape of the state health department at 303-692-2628.
COLORADO: Farmer's market meat recalled after testing positive for CWD
24.dec.08 9News.com Jeffrey Wolf
Elk meat that was sold at a farmer's market is being recalled because tests show it was infected with chronic wasting disease. The Boulder County Health Department and Colorado Department of Public Health and Environment issued the recall Wednesday after the meat was sold at the Boulder County Fairgrounds on Dec. 13. Although there isn't any human health risk connected with CWD, the recalled was issued as a precaution. About 15 elk were bought from a commercial ranch in Colorado in early December and processed at a licensed plant. All 15 were tested for CWD and one came up positive. The labeling on the product would have the following information: *Seller: High Wire Ranch *The type of cut: "chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak," "tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor: Cedaredge Processing *The USDA triangle containing the number "34645" People with questions about this meat can contact John Pape, epidemiologist at the Colorado Department of Public Health and Environment at 303-692-2628.
COULD NOT FIND any warning or recalls on these two sites confirming their recall of CWD infected meat. ...TSS
0C7.04
North American Cervids Harbor Two Distinct CWD Strains
Authors
Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin; Colorado State University.
Content
Despite the increasing geographic distribution and host range of CWD, little is known about the prion strain(s) responsible for distinct outbreaks of the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/· mice with 29 individual prion samples from various geographic locations in North America. Upon serial passage, intrastudy incubation periods consistently diverged and clustered into two main groups with means around 210 and 290 days, with corresponding differences in neuropathology. Prion strain designations were utilized to distinguish between the two groups: Type I CWD mice succumbed to disease in the 200 day range and displayed a symmetrical pattern of vacuolation and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300 days and displayed a strikingly different pattern characterized by large local accumulations of florid plaques distributed asymmetrically. Type II CWD bears a striking resemblance to unstable parental scrapie strains such as 87A which give rise to stable, short incubation period strains such as ME7 under certain passage conditions. In agreement, the only groups of CWD-inoculated mice with unwavering incubation periods were those with Type I CWD. Additionally, following endpoint titration of a CWD sample, Type I CWD could be recovered only at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice inoculated with all dilutions resulting in disease. Although strain properties are believed to be encoded in the tertiary structure of the infectious prion protein, we found no biochemical differences between Type I and Type II CWD. Our data confirm the co·existence of two distinct prion strains in CWD-infected cervids and suggest that Type II CWD is the parent strain of Type I CWD.
see page 29, and see other CWD studies ;
Sunday, November 23, 2008
PRION October 8th - 10th 2008 Book of Abstracts
Saturday, September 06, 2008
Chronic wasting disease in a Wisconsin white-tailed deer farm 79% INFECTION RATE
Contents: September 1 2008, Volume 20, Issue 5
snip...see full text ;
snip...full text;
MONDAY, MAY 21, 2018
Colorado Chronic Wasting disease CWD TSE Prion hits 16 percent of male deer, elk, moose tested in some parts of state
2019
TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show?
apparently, no ID though. tell me it ain't so please...
23:00 minute mark
''Free Ranging Deer, Dr. Deyoung looked at Genetics of this free ranging deer and what he found was, that the genetics on this deer were more similar to captive deer, than the free ranging population, but he did not see a significant connection to any one captive facility that he analyzed, so we believe, Ahhhhhh, this animal had some captive ahhh, whatnot.''
Wyoming CWD Dr. Mary Wood
''first step is admitting you have a problem''
''Wyoming was behind the curve''
wyoming has a problem...
the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...
WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO
cwd update on Wisconsin from Tammy Ryan...
Wyoming CWD Dr. Mary Wood ''first step is admitting you have a problem'' ''Wyoming was behind the curve'' wyoming has a problem...
SATURDAY, JANUARY 19, 2019
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS
THURSDAY, FEBRUARY 28, 2019
Wisconsin CWD TSE Prion Explodes To 1,048 Positive 2018-2019 With Total 5,234 Confirmed To Date
WEDNESDAY, MARCH 06, 2019
Wisconsin Continues to Ignore CWD TSE Prion, as the disease continues to mount, the Governor flounders, more wild deer positive
TUESDAY, MARCH 05, 2019
TAHC CWD TSE PRION AT 144 POSITIVE MINUTES OF THE 401st COMMISSION MEETING Texas Animal Health Commission August 7, 2018
TUESDAY, FEBRUARY 26, 2019
TEXAS CWD TSE PRION CASES RISE TO 144 CASES WITH 1 WILD, 1 BREEDER, AND 1 BREEDER RELEASE
WEDNESDAY, MARCH 06, 2019
Norway The Madness Continues in Nordfjella Chronic Wasting Disease CWD TSE Prion
SATURDAY, MARCH 2, 2019
MAD COW TSE PRION DISEASE AND THE PEER REVIEW PROCESS OF BSe Science $$$
THURSDAY, FEBRUARY 28, 2019
BSE infectivity survives burial for five years with only limited spread
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 6>6>
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period.
This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban?
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research
2017 Annual Report
1a. Objectives (from AD-416):
Objective 1: Investigate the mechanisms of protein misfolding in prion disease, including the genetic determinants of misfolding of the prion protein and the environmental influences on protein misfolding as it relates to prion diseases. Subobjective 1.A: Investigate the differences in the unfolded state of wild-type and disease associated prion proteins to better understand the mechanism of misfolding in genetic prion disease. Subobjective 1.B: Investigate the influence of metal ions on the misfolding of the prion protein in vitro to determine if environmental exposure to metal ions may alter disease progression. Objective 2: Investigate the pathobiology of prion strains in natural hosts, including the influence of prion source genotype on interspecies transmission and the pathobiology of atypical transmissible spongiform encephalopathies (TSEs). Subobjective 2.A: Investigate the pathobiology of atypical TSEs. Subobjective 2.B: Investigate the influence of prion source genotype on interspecies transmission. Objective 3: Investigate sampling methodologies for antemortem detection of prion disease, including the utility of blood sampling as a means to assess prion disease status of affected animals and the utility of environmental sampling for monitoring herd prion disease status. Subobjective 3.A: Investigate the utility of blood sampling as a means to assess prion disease status of affected animals. Subobjective 3.B: Investigate the utility of environmental sampling for monitoring herd prion disease status.
1b. Approach (from AD-416):
The studies will focus on three animal transmissible spongiform encephalopathy (TSE) agents found in the United States: bovine spongiform encephalopathy (BSE); scrapie of sheep and goats; and chronic wasting disease (CWD) of deer, elk, and moose. The research will address sites of protein folding and misfolding as it relates to prion disease, accumulation of misfolded protein in the host, routes of infection, and ante mortem diagnostics with an emphasis on controlled conditions and natural routes of infection. Techniques used will include spectroscopic monitoring of protein folding/misfolding, clinical exams, histopathology, immunohistochemistry, and biochemical analysis of proteins. The enhanced knowledge gained from this work will help understand the underlying mechanisms of prion disease and mitigate the potential for unrecognized epidemic expansions of these diseases in populations of animals that could either directly or indirectly affect food animals.
3. Progress Report:
All 8 project plan milestones for FY17 were fully met. Research efforts directed toward meeting objective 1 of our project plan center around the production of recombinant prion protein from either bacteria or mammalian tissue culture systems and collection of thermodynamic data on the folding of the recombinant prion protein produced. Both bacterial and mammalian expression systems have been established. Thermodynamic data addressing the denatured state of wild-type and a disease associated variant of bovine prion protein has been collected and a manuscript is in preparation. In research pertaining to objective 2, all studies have been initiated and animals are under observation for the development of clinical signs. The animal studies for this objective are long term and will continue until onset of clinical signs. In vitro studies planned in parallel to the animals studies have similarly been initiated and are ongoing. Objective 3 of the project plan focuses on the detection of disease associated prion protein in body fluids and feces collected from a time course study of chronic wasting disease inoculated animals. At this time samples are being collected as planned and methods for analysis are under development.
4. Accomplishments
1. Showed that swine are potential hosts for the scrapie agent. A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested. ARS researchers at Ames, Iowa conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Necropsies were done on a subset of animals at approximately 6 months post inoculation (PI): the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of transmissible spongiform encephalopathies (TSE) until study termination at 80 months PI or when removed due to intercurrent disease. Brain samples were examined by multiple diagnostic approaches, and for a subset of pigs in each inoculation group, bioassay in mice expressing porcine prion protein. At 6 months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
2. Determined that pigs naturally exposed to chronic wasting disease (CWD) may act as a reservoir of CWD infectivity. Chronic wasting disease is a naturally occurring, fatal, neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of CWD disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Pigs were assigned to 1 of 3 groups: intracranially inoculated; orally inoculated; or non-inoculated. At market weight age, half of the pigs in each group were tested ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by multiple diagnostic methods. Brain samples from selected pigs were bioassayed in mice expressing porcine prion protein. Some pigs from each inoculated group were positive by one or more tests. Bioassay was positive in 4 out of 5 pigs assayed. Although only small amounts of PrPSc were detected using sensitive methods, this study demonstrates that pigs can serve as hosts for CWD. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. The current feed ban in the U.S. is based exclusively on keeping tissues from TSE infected cattle from entering animal feeds. These results indicating the susceptibility of pigs to CWD, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
3. Developed a method for amplification and discrimination of the 3 forms of BSE in cattle. The prion protein (PrP) is a protein that is the causative agent of transmissible spongiform encephalopathies (TSEs). The disease process involves conversion of the normal cellular PrP to a pathogenic misfolded conformation. This conversion process can be recreated in the lab using a misfolding amplification process known as real-time quaking induced conversion (RT-QuIC). RT-QuIC allows the detection of minute amounts of the abnormal infectious form of the prion protein by inducing misfolding in a supplied substrate. Although RT-QuIC has been successfully used to detect pathogenic PrP with substrates from a variety of host species, prior to this work bovine prion protein had not been proven for its practical uses for RT-QuIC. We demonstrated that prions from transmissible mink encephalopathy (TME) and BSE-infected cattle can be detected with using bovine prion proteins with RT-QuIC, and developed an RT-QuIC based approach to discriminate different forms of BSE. This rapid and robust method, both to detect and discriminate BSE types, is of importance as the economic implications for different types of BSE vary greatly.
Review Publications
Hwang, S., Greenlee, J.J., Nicholson, E.M. 2017. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy. PLoS One. 12(2):e0172391.
Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.
Moore, S.J., West Greenlee, M.H., Smith, J.D., Vrentas, C.E., Nicholson, E.M., Greenlee, J.J. 2016. A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation. Frontiers in Veterinary Science. 3:78.
Greenlee, J.J., Kunkle, R.A., Smith, J.D., West Greenlee, M.H. 2016. Scrapie in swine: a diagnostic challenge. Food Safety. 4(4):110-114. Kondru, N., Manne, S., Greenlee, J., West Greenlee, H., Anantharam, V., Halbur, P., Kanthasamy, A., Kanthasamy, A. 2017. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases. Scientific Reports. 7:43155. doi:10.1038/srep43155.
Mammadova, N., Ghaisas, S., Zenitsky, G., Sakaguchi, D.S., Kanthasamy, A.G., Greenlee, J.J., West Greenlee, M.H. 2017. Lasting retinal injury in a mouse model of blast-induced trauma. American Journal of Pathology. 187(7):1459-1472. doi:10.1016/j.ajpath.2017.03.005.
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease Authors
item Greenlee, Justin item Moore, S - item Smith, Jodi - item Kunkle, Robert item West Greenlee, M -
Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A
Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy.
In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS
Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.
see full text ;
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
FRIDAY, DECEMBER 28, 2018
***> Chronic Wasting Disease CWD TSE Prion 2019 Where The Rubber Meets The Road
FRIDAY, APRIL 20, 2018
*** Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban?
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies
J Virol. 2010 Jan; 84(1): 210–215. Published online 2009 Oct 14. doi: 10.1128/JVI.00560-09 PMCID: PMC2798418 PMID: 19828611
Chronic Wasting Disease (CWD) Susceptibility of Several North American Rodents That Are Sympatric with Cervid CWD Epidemics▿
Dennis M. Heisey,1,* Natalie A. Mickelsen,1 Jay R. Schneider,1 Christopher J. Johnson,1,2 Chad J. Johnson,1,3 Julia A. Langenberg,4 Philip N. Bochsler,5 Delwyn P. Keane,5 and Daniel J. Barr5
ABSTRACT
Chronic wasting disease (CWD) is a highly contagious always fatal neurodegenerative disease that is currently known to naturally infect only species of the deer family, Cervidae. CWD epidemics are occurring in free-ranging cervids at several locations in North America, and other wildlife species are certainly being exposed to infectious material. To assess the potential for transmission, we intracerebrally inoculated four species of epidemic-sympatric rodents with CWD. Transmission was efficient in all species; the onset of disease was faster in the two vole species than the two Peromyscus spp. The results for inocula prepared from CWD-positive deer with or without CWD-resistant genotypes were similar. Survival times were substantially shortened upon second passage, demonstrating adaptation. Unlike all other known prion protein sequences for cricetid rodents that possess asparagine at position 170, our red-backed voles expressed serine and refute previous suggestions that a serine in this position substantially reduces susceptibility to CWD. Given the scavenging habits of these rodent species, the apparent persistence of CWD prions in the environment, and the inevitable exposure of these rodents to CWD prions, our intracerebral challenge results indicate that further investigation of the possibility of natural transmission is warranted.
snip...
DISCUSSION CWD was efficiently transmitted to the species we tested via intracerebral challenge. For voles the incubation duration was comparable to that for transgenic mice (Mus musculus) engineered to express white-tailed deer PrP (27). The onset of clinical disease was generally delayed in the Peromyscus spp. relative to the voles. The two species of Peromyscus we examined are noteworthy for their long maximum life spans of ∼8 years. Various protective cellular mechanisms have been proposed for this longevity (28); perhaps similar mechanisms help delay the onset of prion disease. Experience with our breeding colony suggests the life span for voles is about 3.5 to 4 years.
The shortening of median survival times upon second passage indicates the occurrence of adaptation to its new host. Glycoform proportions remained the same from the first to the second passage, maintaining its “CWD phenotype.” Despite the unusual (for a cricetid rodent) serine at aa 170, red-backed voles displayed a disease onset phenotype intermediate to meadow voles and Peromyscus spp.
Our in vivo results are generally consistent with the Kurt et al. Protein misfolding cyclic amplification (PMCA) results for Microtus sp. and Peromyscus spp. (19). It has been suggested that asparagine at aa 170 supports trans-species amplification of PrPCWD (19) via the “rigid loop” hypothesis (26). It has been noted that ferrets, which have a serine at aa 170 but which support amplification, are an exception, but this was explained by a unique leucine at aa 176 (19). Christen et al. (8) specifically suggested that bank vole susceptibility to TSEs arises from a cervid-like structured loop resulting from an asparagine at aa 170. Red-backed voles, which are very closely related to bank voles (11) and which have the aa 170 to 176 sequence SNQNNF consistent with species observed to not support amplification (19), are an interesting contradiction. Our results clearly demonstrate that the aa 170 to 176 segment alone is not sufficient to substantially suppress in vivo amplification. Agrimi et al. (1) suggest that 155Y 170S leads to in vivo scrapie resistance and that 155N 170N leads to in vivo scrapie susceptibility, but in vitro results are contradictory (23). Clearly, aa 155 and aa 170 appear to be important, but their effects do not seem to be consistent from species to species or in vivo versus in vitro. As Agrimi et al. note (1), this suggests an important role for species-specific cofactors in addition to a PrP genotype effect.
During the course of our challenges, Agrimi's group noted that elk CWD was readily transmitted to European bank voles Myodes glareolus (2). All other in vivo studies to date (4, 5, 24) suggest CWD transmission to rodents is inefficient. Transmission to nontransgenic lab mice (Mus musculus) was quite inefficient (5). Of various hamster species challenged, only Chinese hamsters (Cricetulus griseus) acquired CWD with more than very modest efficiency and then only with elk and mule deer CWD (4, 24). Curiously, no transmission occurred with white-tailed CWD (24). During the course of our challenges Agrimi's group also observed that scrapie was efficiently transmitted to a European Peromyscus species, P. polionotus, via the intracerebral route (1).
In light of our findings, the possibility of natural transmission to rodents cannot be dismissed. This is concerning because of a TSE's ability to change its properties and host affinities after being passaged (4). Cannibalism and scavenging are common among small rodents, and small rodents are a very important food source for many predators and scavengers. Small rodent tissue also enters the domestic livestock and human food chain by accidental inclusion in grain and forage. Further investigation of these species as potential hosts, bridge species, and reservoirs of CWD is warranted. Even in its natural cervid hosts, the mechanisms of natural transmission and infection of CWD are not well understood. However, the ability to support amplification of PrPd would seem to be a prerequisite, which all of our rodent species have demonstrated. We have initiated studies to examine the susceptibility of these rodent species via more natural routes of infection.
Chronic Wasting Disease Susceptibility of Four North American Rodents
Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A. Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI 53706, USA 2US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author email: cjohnson@svm.vetmed.wisc.edu
We intracerebrally challenged four species of native North American rodents that inhabit locations undergoing cervid chronic wasting disease (CWD) epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles (Myodes gapperi). The inocula were prepared from the brains of hunter-harvested white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles proved to be most susceptible, with a median incubation period of 272 days. Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the brains of all challenged meadow voles. Subsequent passages in meadow voles lead to a significant reduction in incubation period. The disease progression in red-backed voles, which are very closely related to the European bank vole (M. glareolus) which have been demonstrated to be sensitive to a number of TSEs, was slower than in meadow voles with a median incubation period of 351 days. We sequenced the meadow vole and red-backed vole Prnp genes and found three amino acid (AA) differences outside of the signal and GPI anchor sequences. Of these differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is particularly intriguing due its postulated involvement in "rigid loop" structure and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5 years post-inoculation, but appear to be exhibiting a high degree of disease penetrance. White-footed mice have an even longer incubation period but are also showing high penetrance. Second passage experiments show significant shortening of incubation periods. Meadow voles in particular appear to be interesting lab models for CWD. These rodents scavenge carrion, and are an important food source for many predator species. Furthermore, these rodents enter human and domestic livestock food chains by accidental inclusion in grain and forage. Further investigation of these species as potential hosts, bridge species, and reservoirs of CWD is required.
please see ;
Although the risks of CWD transmission between species are not completely characterized, infection of noncervid species with CWD prions has not been reported under natural conditions. However, rodents (voles, mice, and hamsters), carnivores (ferrets, mink, and cats), livestock (cattle, sheep, goats, and pigs), and primates (squirrel monkeys and cynomologus macaques) have been experimentally infected. Some of these experiments use natural routes of exposure, such as feeding of prion-infected meat (Haley and Hoover, 2014; Moore and others, 2017; Czub and others, 2017).
***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.
Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle
Authors: Nicholas Haley1, Christopher Siepker2, Justin Greenlee3, Jürgen Richt4 VIEW AFFILIATIONS Affiliations: 1 1Midwestern Univerisity 2 2Kansas State University 3 3USDA, Agricultural Research Service 4 4Kansas State University Published Ahead of Print: 31 March, 2016 Journal of General Virology doi: 10.1099/jgv.0.000438 Published Online: 31/03/2016
Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues - an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real time quaking induced conversion (RT-QuIC), we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection.
Friday, August 14, 2015
Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation
ARS VIRUS AND PRION RESEARCH / Research / Publication #277212
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation
Authors item Greenlee, Justin item Nicholson, Eric item Smith, Jodi item Kunkle, Robert item Hamir, Amirali Submitted to: Journal of Veterinary Diagnostic Investigation Publication Type: Peer Reviewed Journal Publication Acceptance Date: July 12, 2012 Publication Date: November 1, 2012 Citation: Greenlee, J.J., Nicholson, E.M., Smith, J.D., Kunkle, R.A., Hamir, A.N. 2012. Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation. Journal of Veterinary Diagnostic Investigation. 24(6):1087-1093.
Interpretive Summary: Chronic Wasting Disease (CWD), a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America, is a transmissible spongiform encephalopathy (TSE). TSEs are caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Cattle could be exposed to chronic wasting disease (CWD) by contact with infected farmed or free-ranging cervids. The purpose of this study was to assess the potential transmission of CWD from elk to cattle after intracranial inoculation, the most direct route to test the potential of a host to replicate an isolate of the prion agent. This study reports that only 2 of 14 calves inoculated with CWD from elk had clinical signs or evidence of abnormal prion protein accumulation. These results suggest that cattle are unlikely to be susceptible to CWD if inoculated by a more natural route. This information could have an impact on regulatory officials developing plans to reduce or eliminate TSEs and farmers with concerns about ranging cattle on areas where CWD may be present.
Technical Abstract: ***Cattle could be exposed to the agent of chronic wasting disease (CWD) through contact with infected farmed or free-ranging cervids or exposure to contaminated premises. The purpose of this study was to assess the potential for CWD derived from elk to transmit to cattle after intracranial inoculation. Calves (n=14) were inoculated with brain homogenate derived from elk with CWD to determine the potential for transmission and define the clinicopathologic features of disease. Cattle were necropsied if clinical signs occurred or at the termination of experiment (49 months post-inoculation (MPI)). Clinical signs of poor appetite, weight loss, circling, and bruxism occurred in two cattle (14%) at 16 and 17 MPI, respectively. Accumulation of abnormal prion protein (PrP**Sc) in these cattle was confined to the central nervous system with the most prominent immunoreactivity in midbrain, brainstem, and hippocampus with lesser immunoreactivity in the cervical spinal cord.
*** The rate of transmission was lower than in cattle inoculated with CWD derived from mule deer (38%) or white-tailed deer (86%). Additional studies are required to fully assess the potential for cattle to develop CWD through a more natural route of exposure, but a low rate of transmission after intracranial inoculation suggests that risk of transmission through other routes is low.
***A critical finding here is that if CWD did transmit to exposed cattle, currently used diagnostic techniques would detect and differentiate it from other prion diseases in cattle based on absence of spongiform change, distinct pattern of PrP**Sc deposition, and unique molecular profile.
Monday, April 04, 2016
*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***
Sunday, January 22, 2012
Chronic Wasting Disease CWD cervids interspecies transmission
CHRONIC WASTING DISEASE CONGRESS Serial No. 107-117 May 16, 2002
CHRONIC WASTING DISEASE
JOINT OVERSIGHT HEARING BEFORE THE SUBCOMMITTEE ON FORESTS AND FOREST HEALTH JOINT WITH THE SUBCOMMITTEE ON FISHERIES CONSERVATION, WILDLIFE AND OCEANS OF THE COMMITTEE ON RESOURCES U.S. HOUSE OF REPRESENTATIVES ONE HUNDRED SEVENTH CONGRESS SECOND SESSION
May 16, 2002
Serial No. 107-117
snip...
Mr. MCINNIS. Today, this joint Subcommittee hearing will explore an issue of immeasurable importance to the growing number of communities in wide-ranging parts of this country, the growing incidence of Chronic Wasting Disease in North America’s wild and captive deer and elk populations. In a matter of just a few months, this once parochial concern has grown into something much larger and much more insidious than anyone could have imagined or predicted.
As each day passes, this problem grows in its size, scope, and consequence. One thing becomes clear. Chronic Wasting Disease is not a Colorado problem. It is a Wisconsin problem or a Nebraska or Wyoming problem. It is a national problem and anything short of a fully integrated, systematic national assault on this simply will not do, which is precisely why we brought our group together here today.
snip...
So this is a disease that is spreading throughout the continent and it is going to require a national response as well as the efforts that are currently taking place in States like Wisconsin, Colorado, Nebraska, Wyoming, the interest they now have down in Texas and some of the neighboring States that have large white-tailed deer population and also elk.
This is a huge issue for us, Mr. Chairman, in the State of Wisconsin. I want to commend Governor McCallum and your staff and the various agencies for the rapid response that you have shown, given the early detection of CWD after the last deer hunting season. The problem that we have, though, is just a lack of information, good science in regards to what is the best response, how dangerous is this disease. We cannot close the door, quite frankly, with the paucity of scientific research that is out there right now in regards to how the disease spreads, the exposure of other livestock herds—given the importance of our dairy industry in the State, that is a big issue—and also the human health effects.
WEDNESDAY, FEBRUARY 20, 2019
CHRONIC WASTING DISEASE CONGRESS Serial No. 107-117 May 16, 2002 Updated 2019
MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019
BSE INQUIRY EVIDENCE
Why did the appearance of new TSEs in animals matter so much? It has always been known that TSEs will transfer across species boundaries. The reason for this was never known until the genetic nature of the prion gene was fully investigated and found to be involved. The gene is found to have well preserved sites and as such there is a similar gene throughout the animal kingdom...and indeed a similar gene is found in insects! It is NOT clear that the precise close nature of the PrP gene structure is essention for low species barriers. Indeed it is probably easier to infect cats with BSE than it is to infect sheep. As such it is not clear that simply because it is possible to infect BSE from cattle into certain monkeys then other apes will necessarily be infectable with the disease. One factor has stood out, however, and that is that BSE, when inoculated into mice would retain its apparent nature of disease strain, and hence when it was inoculated back into cattle, then the same disease was produced. Similarly if the TSE from kudu was inoculated into mice then a similar distribution of disease in the brain of the mouse is seen as if BSE had been inoculated into the mouse. This phenomenon was not true with scrapie, in which the transmission across a species barrier was known to lose many of the scrapie strain phenomena in terms of incubation period or disease histopathology. This also suggested that BSE was not derived from scrapie originally but we probably will never know.
------------------------------------------------------------------------
TSE in wild UK deer? The first case of BSE (as we now realise) was in a nyala in London zoo and the further zoo cases in ungulates were simply thought of as being interesting transmissions of scrapie initially. The big problem started to appear with animals in 1993-5 when it became clear that there was an increase in the CJD cases in people that had eaten deer although the statistics involved must have been questionable. The reason for this was that the CJD Surveillance was well funded to look into the diet of people dying of CJD. This effect is not clear with vCJD...if only because the numbers involved are much smaller and hence it is difficult to gain enough statistics. They found that many other foods did not appear to have much association at all but that deer certainly did and as years went by the association actually became clearer. The appearance of vCJD in 1996 made all this much more difficult in that it was suddenly clearer that the cases of sporadic CJD that they had been checking up until then probably had nothing to do with beef...and the study decreased. During the period there was an increasing worry that deer were involved with CJD..
see references:
DEER BRAIN SURVEY
i have not updated my blogspot url with all this data archived, but i will work on it...but until then, i have updated this on the above links with live urls to the actual BSE Inquiry documents...
Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY
Date: Fri, 18 Oct 2002 23:12:22 +0100
From: Steve Dealler
Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member
To: BSE-L@ References: <3daf5023 .4080804="" a="" href="http://wt.net/" rel="noopener noreferrer" shape="rect" style="color: blue; cursor: pointer;" target="_blank">WT.NET3daf5023>
Dear Terry,
An excellent piece of review as this literature is desparately difficult to get back from Government sites.
What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!
Steve Dealler ===============
BSE Inquiry Steve Dealler
Management In Confidence
BSE: Private Submission of Bovine Brain Dealler
reports of sheep and calf carcasses dumped...
re-scrapie to cattle GAH Wells BSE Inquiry
https://web.archive.org/web/20090506043931/http://www.bseinquiry.gov.uk/files/yb/1993/12/09001001.pdf
Dr. Dealler goes rogue to confirm BSE
Confirmation BSE Dealler's mad cow
BSE vertical transmission
1993 cjd report finds relationship with eat venison and cjd increases 9 fold, let the cover up begin...tss
FINDINGS
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02)..
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
https://web.archive.org/web/20170126073306/http://collections..europarchive..org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf
snip...see full text and much more here;
MONDAY, FEBRUARY 25, 2019
***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019
SATURDAY, FEBRUARY 23, 2019
Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019
TUESDAY, NOVEMBER 04, 2014
Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011
Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
here is the latest;
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
https://prion2018.org/
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip...
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
https://prion2018.org/wp-content/uploads/2018/05/program.pdf
https://prion2018.org/
just out CDC...see;
Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions
Marcelo A. Barria
Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell) M. A. Barria et al.
ABSTRACT
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form.
We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.
Molecular Barriers to Zoonotic Transmission of Prions
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author
snip...
The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine.
***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.
snip...
However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring.
***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain.
Prion 2017 Conference Abstracts
CWD 2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009.
21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes.
Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product.
Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain).
Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments.
We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem.
Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes.
All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.
Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing.
Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years.
Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017
DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE
DECIPHERING NEURODEGENERATIVE DISORDERS
VIDEO PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION
10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question...
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm
***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE..116***
To date there is no direct evidence that CWD has been or can be transmitted from animals to humans.
However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure.
Both infected brain and muscle tissues were found to transmit disease.
Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods.
Summary and Recommendation:
snip...
Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle.
These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle.
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions.
In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein.
These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species.
The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time.
We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations.
We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
TUESDAY, SEPTEMBER 12, 2017
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
SATURDAY, JANUARY 27, 2018
CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE.
THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$
BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.
SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.
SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.
SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
CDC CWD TSE PRION UPDATE USA JANUARY 2018
As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids...
Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018
snip....
*** 2017-2018 CWD TSE Prion UPDATE
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
you can see more evidence here ;
Wednesday, May 24, 2017
PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1
WEDNESDAY, SEPTEMBER 08, 2010
CWD PRION CONGRESS SEPTEMBER 8-11 2010
PRION 2010
International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip....
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.
see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
http://grantome.com/grant/NIH/R01-NS088604-04
http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.html
snip...full text;
SATURDAY, FEBRUARY 09, 2019
Experts: Yes, chronic wasting disease in deer is a public health issue — for people
***> This is very likely to have parallels with control efforts for CWD in cervids.
Rapid recontamination of a farm building occurs after attempted prion removal
Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2
Abstract
The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity.
Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids.
Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent.
Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA).
A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay.
Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3.
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
snip...
As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.
Funding This study was funded by DEFRA within project SE1865.
Competing interests None declared.
Saturday, January 5, 2019
Rapid recontamination of a farm building occurs after attempted prion removal
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
you can see more evidence here ;
Wednesday, May 24, 2017
PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1
WEDNESDAY, SEPTEMBER 08, 2010
CWD PRION CONGRESS SEPTEMBER 8-11 2010
PRION 2010
International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip....
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.
see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
SEE; Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Monday, May 23, 2011
CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning
Public release date: 23-May-2011
Contact: Francesca Costanzo adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences
CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association
Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.
“While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”
Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak.
CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.
Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.
The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country.. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.
The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.
According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”
###
The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.
In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at http://adajournal.org/content/podcast. ;
Thursday, May 26, 2011
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD
Accepted 15 November 2010. Abstract Full Text PDF References .
Abstract
The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission.
PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
Thursday, May 26, 2011
Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey
Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;
Wednesday, March 18, 2009
Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II
Transmissible Spongiform Encephalopathies
Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY
***> This is very likely to have parallels with control efforts for CWD in cervids.
Rapid recontamination of a farm building occurs after attempted prion removal
Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2
Abstract
The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity.
Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids.
Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent.
Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA).
A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay.
Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3.
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
snip...
As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.
Funding This study was funded by DEFRA within project SE1865.
Competing interests None declared.
Saturday, January 5, 2019
Rapid recontamination of a farm building occurs after attempted prion removal
***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018
P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer
Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1)
(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer.
Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection.
Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD.
***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years
***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.
Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3
Correspondence
Gudmundur Georgsson ggeorgs@hi.is
1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland
2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland
3 Bethesda, Maryland, USA
Received 7 March 2006 Accepted 6 August 2006
In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
SEE;
Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;
Some unofficial information from a source on the inside looking out -
Confidential!!!!
As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).
Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document
Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
=========================
***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).
Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).
Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.
Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.
Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).
The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.
When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.
Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.
It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.
Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.
Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.
Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.
In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.
In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).
As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.
False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).
This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.
This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.
In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.
Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.
The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.
In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).
A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).
This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.
Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip.....
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip.....
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip.....
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip.....
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip.....
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip.....
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip.....
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
SUNDAY, DECEMBER 02, 2018
CWD TSE PRION, REGULATORY LEGISLATION, PAY TO PLAY, and The SPREAD of Chronic Wasting Disease
Prion Conference 2018
O5 Prion Disease in Dromedary Camels
Babelhadj B (1), Di Bari MA (2), Pirisinu L (2), Chiappini B (2), Gaouar SB (3), Riccardi G (2), Marcon S (2), Agrimi U (2), Nonno R (2), Vaccari G (2) (1) École Normale Supérieure Ouargla. Laboratoire de protection des écosystèmes en zones arides et semi arides University Kasdi Merbah Ouargla, Ouargla, Algeria; (2) Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy (3) University Abou Bekr Bélkaid, Tlemcen, Algeria.
Prions are responsible for fatal and transmissible neurodegenerative diseases including CreutzfeldtJakob disease in humans, scrapie in small ruminants and bovine spongiform encephalopathy (BSE). Following the BSE epidemic and the demonstration of its zoonotic potential, general concerns have been raised on animal prions.
Here we report the identification of a prion disease in dromedary camels (Camelus dromedarius) in Algeria and designate it as Camel Prion Disease (CPD). In the last years, neurological symptoms have been observed in adult male and female dromedaries presented for slaughter at the Ouargla abattoir. The symptoms include weight loss, behavioral abnormalities and neurological symptoms such as tremors, aggressiveness, hyper-reactivity, typical down and upwards movements of the head, hesitant and uncertain gait, ataxia of the hind limbs, occasional falls and difficult getting up. During 2015 and 2016, symptoms suggestive of prion disease were observed in 3.1% of 2259 dromedaries presented at ante-mortem examination. Laboratory diagnosis was obtained in three symptomatic dromedaries, sampled in 2016 and 2017, by the detection of typical neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues.
Histopathological examination revealed spongiform change, gliosis and neuronal loss preferentially in grey matter of subcortical brain areas. Abundant PrPSc deposition was detected in the same brain areas by immunohistochemistry and PET-blot. Western blot analysis confirmed the presence of PK-resistant PrPSc, whose N-terminal cleaved PK-resistant core was characterized by a mono-glycosylated dominant form and by a distinctive N-terminal cleavage, different from that observed in BSE and scrapie.
PrPSc was also detected, by immunohistochemistry, in all sampled lymph nodes (cervical, prescapular and lumbar aortic) of the only animal from which they were collected.
The PRNP sequence of the two animals for which frozen material was available, showed 100% nucleotide identity with the PRNP sequence already reported for dromedary camel.
Overall, these data demonstrate the presence of a prion disease in dromedary camelswhose nature, origin and spread need further investigations. However, our preliminary observations on the rather high prevalence of symptomatic dromedaries and the involvement of lymphoid tissues, are consistent with CPD being an infectious disease. In conclusion, the emergence of a new prion disease in a livestock species of crucial importance for millions of people around the world, makes urgent to assess the risk for humans and to develop policies able to control the spread of the disease in animals and to minimize human exposure.
CDC
New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES
Mad Camel Disease
Volume 24, Number 6—June 2018 Research
Prion Disease in Dromedary Camels, Algeria
Abstract
Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.
SNIP...
The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep.
In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.
***> IMPORTS AND EXPORTS <***
***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***
MONDAY, MARCH 11, 2019
Raccoons accumulate PrPSc after intracranial inoculation of the agents of chronic wasting disease or transmissible mink encephalopathy but not atypical scrapie
wasted days and wasted nights...Freddy Fender
kind regards, terry,
Terry S. Singeltary Sr., flounder9@verizon.net Bacliff, Texas USA Galveston Bay...on the bottom
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.