Thursday, October 04, 2018

Colorado Parks and Wildlife seeks input on chronic wasting disease plan

Subject: Colorado Parks and Wildlife seeks input on chronic wasting disease plan

Colorado Parks and Wildlife seeks input on chronic wasting disease plan


Reporter-Herald Staff

Yellow tags in the ears of this mother deer in the Estes Park area indicate she was tested for chronic wasting disease in 2002 by wildlife researchers.
Yellow tags in the ears of this mother deer in the Estes Park area indicate she was tested for chronic wasting disease in 2002 by wildlife researchers. (Karl Gehring / Denver Post file)
DENVER — During October the Colorado Parks and Wildlife (CPW) is asking for interested individuals to review and comment on the chronic wasting disease (CWD) adaptive management plan created by the CWD Advisory Group.
Comments will be considered before management actions are voted on by the CPW Commission in January.
Chronic wasting disease is one area of increasing concern, both in Colorado and across the nation, according to a CPW press release.
The agency is working on adaptive management tactics to prevent further spread of the disease and to control it in herds that are already infected.
The nervous system disease is found in deer, elk and moose, and is fatal to the animals.
In Colorado it has been found in more than half of the deer herds and about one third of elk herds, according to the wildlife agency.
The CWD Advisory Group is recommending that the agency: manage prevalence rates of CWD in wild deer and elk; control spread of infection to new herds; provide the public with science-based information regarding the disease; and maintain Colorado's deer and elk herds to support public hunting and viewing opportunities.
To download the plan, visit http://bit.ly/2Oyv6QD.
The online comment form can be found at http://bit.ly/2ycYi5o.



CWD Public Comment Form
Your response has been recorded.


 Colorado Chronic Wasting Disease Advisory Group

September 21st 2018 Meeting

Summit County Community and Senior Center

83 Nancy’s Place, Frisco, CO 80443

9am - 4pm

Conference Phone Information: (970) 668-4000

AGENDA

I. Review status of the CWD Response Plan – perspectives from AG members

II. The Wyoming CWD Experience (Dr. Mary Wood)

III. Plan Details - Issues/Concerns to be addressed:

a. Concern that plan calls for killing of uninfected deer

b. Concern over prevalence thresholds for taking action (10% - 5%)

c. Scope and application of response plan

i. Statewide in scope

ii. Local flexibility in implementation

iii. Integrated with existing management framework (Herd Management Plans)

IV. Timeline for public review and Commission action, including roles and responsibilities

a. Web-based public comment period

b. Review, assessment and possible integration of public comments

c. Draft presentation to Commission – November 2018 PWC meeting

d. Final presentation/approval by Commission – January 2019 PWC meeting

V. Future role of the CWDAG


DECEMBER 2018



COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. 


IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989

http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;

''it pains me to no end to even comtemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.

https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 


TUESDAY, JANUARY 30, 2018 

Colorado Chronic Wasting Disease CWD TSE Prion 7/2015-6/2016 Results (2017?)


SUNDAY, FEBRUARY 18, 2018 

Chronic Wasting Disease CWD TSE Prion RoundUp February 18, 2018


MONDAY, SEPTEMBER 25, 2017

Colorado Chronic Wasting Disease CWD TSE Prion Mandatory Submission of test samples in some areas and zoonosis


Tuesday, July 12, 2016

Colorado Chronic Wasting Disease CWD TSE Prion discovered in one deer in Montrose County 


Friday, April 22, 2016

COLORADO CHRONIC WASTING DISEASE CWD TSE PRION SURVEILLANCE AND TESTING PROGRAM IS MINIMAL AND LIMITED 

*** SEE CWD HIGH INFECTION RATE MAPS FOR COLORADO ! ***


SUNDAY, NOVEMBER 13, 2011

COLORADO CWD CJD TSE PRION REPORTING 2011 


Colorado Policy 27 Jan 99 Dept. of Agriculture Animal Industry Division Colorado Division of Wildlife: 



***> year 2002

Date: Tue, 06 Aug 2002 15:55:07 -0700 

From: "Terry S. Singeltary Sr." 

To: BSE-L@uni-karlsruhe.de 

Subject: APOCALYPSE NOW--CHRONIC WASTING DISEASE, it's not wasting away...

Subject: CHRONIC WASTING DISEASE, it's not wasting away... 

September 2002 APOCALYPSE NOW WHY CHRONIC WASTING DISEASE MIGHT RUIN OUR HUNTING TRADITION

Chronic wasting disease in whitetails threatens to change deer hunting as we know it. What's most troubling is CWD was discovered more than 30 years ago, and researchers know little more now about its origin than they did then.

Editor's note: Without a doubt, this is the most comprehensive article on chronic wasting disease D&DH has ever published. Dr. Dave Samuel, a retired wildlife professor from West Virginia University, has more than 30 years of professional experience covering such issues. With volumes of false information being disseminated in newspaper and television reports, Samuel spent several weeks in early April and May 2002 researching the facts on CWD in North America. Here's what he found...

What a difference a few months makes. In January 2002, few whitetail hunters east of the Mississippi River had ever heard of chronic wasting disease. Today, it is a scary reality for nearly everyone who hunts whitetails in North America. CWD is an insidious infective disease in deer and elk, first found in 1967 in a captive mule deer research facility run by the Colorado Division of Wildlife. Affected deer drank incessantly, urinated often, and spent much of their time standing listlessly, heads down, ears drooping and saliva dripping from their mouths. Within weeks, they all died. When examining the deer's brains, Beth Williams, now with the Wyoming State Veterinary Laboratory, found tiny holes that resembled other "spongiform" diseases such as scrapie in sheep and bovine spongiform encephalitis -- "mad cow disease" -- in cattle. Over the next 20 years, CWD turned up in wild elk, whitetails and mule deer in Colorado and Wyoming. There was no massive die-off, just a few animals dying at random. However, the disease was there, moving in ways no one understood. Since then, CWD has been found in wild deer and/or elk in Colorado, Wyoming, Nebraska, South Dakota, Saskatchewan and Wisconsin, and in captive elk in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, Montana, Alberta and Saskatchewan. CWD can remain latent in animals for up to five years before it manifests. Animals do not develop immunity. Once infected, they will die. Each time CWD surfaces, wildlife officials usually prescribe mass culling in attempts to keep it from spreading. For many game farms, this means killing the whole herd. Although mass culling is expensive and cannot guarantee CWD won't reappear, it's the only method that has proven somewhat effective in reducing further outbreaks. In Colorado, officials sterilized the facility where CWD was discovered, but when animals were reintroduced, they still contracted the disease. Through extensive and innovative study, researchers learned CWD is caused by infectious proteins called prions (pronounced "pree-ons"). In ways biologists cannot understand, natu­rally occurring prions occasionally go bad and corrupt healthy prions. Researchers don't know how CWD originated. Some biologists believe the corrupt prions that cause scrapie in sheep

ALTHOUGH RESEARCHERS are searching for alternative test methods, obtaining brain tissue samples is currently the only reliable method to detect CWD. Above, Wisconsin Department of Natural Resources employees collect the head of an adult doe.

somehow mutated, jumped the so-called "species barrier" and infected deer and elk. One problem with this theory is CWD has not been found in captive or wild deer from areas in North America or the United Kingdom where scrapie is most prevalent. Others believe proteins in healthy animals sometimes sponta­neously become bad, causing brain and nervous-tissue damage. Some believe CWD is passed along in saliva and feces. In short, we know where it was discovered, but we might never know how it got there. Furthermore, as I will discuss later, whether CWD originated in the wild or in a pen is no longer issue. It's much more important to focus on damage control.

Important Health Issues Although researchers have not learned much about CWD the past 10 years, they do know it can spread within a herd without animal-to-animal contact. It also seems that CWD can spread more rapidly in areas high deer densities, hence the problems at game farms. CWD originally found in the wild in Colorado and Wyoming, a wasn't initially considered a major threat because deer and elk densities were relatively low. However, now that CWD has found in southwestern Wisconsin -- where wild deer densities exceed a mind-boggling 50 deer per square mile of habitat -- researchers fear the disease could spread to surrounding states. Only time will tell. Mad cow disease was first reported in 1985, and infected cows showed some of the same symptoms seen in CWD-infected deer. There are other similarities. Both diseases involve infected prions, and the brains of infected animals look the same. However, there are differences. Mad cow was spread by ingesting contaminated food, whereas CWD probably was not. mad cow spread to humans, whereas CWD has not. Some rumors state that CWD has killed three people who ate venison, but this is not true. Those rumors probably stem from the fact one woman and two men who regularly ate venison died of Creutzfeldt-Jakob disease, a rare spongiform disease among humans. One of the cases involved a 30-year-old hunter from Kaysville Utah, who died of CJD in 1999. According to a report in the Street Journal, this case caught the attention of activist groups that were lobbying for stricter surveil­lance of mad cow disease in the United States. The Centers for Disease Control and Prevention studied the Utah man's case and the two other cases, and ruled out mad cow disease. Epidemiologists quizzed family members about the vic­tims' lifestyles and eating habits, and con­cluded there was "no strong evidence for a causal link" to CWD. Still, similarities between CWD and other brain spongiform diseases make many people nervous, including farmers who worry CWD might infect their cattle. Researchers immediately responded to those concerns and conducted myriad tests to determine if and how CWD can infect cattle. They concluded CWD can­not infect a cow unless corrupt prions are injected directly into the cow's brain. However, CWD is the only known brain spongiform disease that is not species specific. It has been shown to infect elk, mule deer and white-tailed deer, and researchers don't know why. That's what makes it so puzzling.

Recent Outbreaks in Colorado Major CWD outbreaks occurred in the 1990s on game farms in Saskatchewan and in wild herds in Saskatchewan and

CWD TIMELINE

1967 -- Mule deer at a Fort Collins, Colo., wildlife research facility become thin and listless, and then die. Biologists are uncertain of the cause.

1978 -- Beth Williams, now with the Wyoming State Veterinary Laboratory finds evidence that the disease affect the brain. She observes tiny holes in nerve cells that create a sponge-like appearance.

1980 -- Chronic wasting disease is identified.

1981 -- First wild elk with CWD detected, in Colorado.

1983 -- Surveillance for CWD in free-ranging deer begins in Colorado and Wyoming.

1985 --"Mad cow" disease, also a brain spongiform disease, is first reported

1986 --Wyoming elk diagnosed with CWD. It's the first free-ranging case the state.

1990- Hunter-harvest surveillance CWD begins in Colorado.

1997 -- First captive elk herds test positive in South Dakota. Extensive surveillance of CWD in farmed elk begins nationwide.

1999 -- Wisconsin begins precautionary testing for CWD in wild white-tailed deer.

1999 -- Montana and Colorado begin depopulating wild herds.

2000 -- In November, Nebraska records its first wild mule deer with CWD. In December, elk from a ranch test positive.

April 2001 -- CWD moves to Saskatchewan's wild deer. Two mule deer test positive.

September 2001 -- CWD is found on several Colorado game farms, which are quarantined.

February 2002 -- South Dakota reports its first wild case of CWD. Wisconsin reports CWD in its wild deer herd. It's the first time CWD has been four east of the Mississippi River.

March 2002 -- Illinois creates a task force to deal with CWD possibilities. Alberta reports its first case of CWD in a captive elk.

April 2002 -- CWD reported west of the Continental Divide. Wisconsin enforces an emergency ban on importing exporting deer and elk. Other states pass similar laws.

-- Jennifer A. Pillath

Nebraska. However, what's occurred since Fall 2001 is most concerning. In September, CWD was found on sev­eral Colorado game farms, which were all subsequently quarantined. The Elk Echo farm alone had 29 elk that contracted the disease and died. The entire herd was slaughtered, and officials then traced elk that were shipped elsewhere. They found 11 more cases at other game farms. With the exception of one elk in Kansas, Elk Echo elk transported to other states all tested negative. In April 2002, CWD was found west of the Continental Divide. Reports allege the owner of a game farm near Craig, Colo., erected a fence and trapped wild animals inside. Because laws do not permit farm-raised deer and elk to mix with wild ani­mals, state officials responded and killed 280 wild deer and 30 elk inside the pen. As of this writing, two of 164 tests indi­cated CWD infections. It is not known how the farm's animals contracted CWD. Owner Wes Adams said he believes the deer were infected before the fence was erected. In a Denver Post article, Adams was quoted as saying he complied with all CWD regulations and that he is the victim, not the cause of the problem. Nevertheless, all 100 elk on his farm will be killed and tested. The farm is 130 miles west of where CWD was found in the wild. On April 3, Colorado officials began sampling 329 animals within five miles of the farm. On April 9, they reported two deer outside the game farm's fence tested positive. Another deer tested positive a week later, prompting officials to increase their sample quotas. In Summer 2002, Colorado officials hoped to test at least 300 more deer from areas farther from the CWD epicenter. If no cases are found in fringe areas, it's likely CWD originated in or immediately near the farm. In that case, the state would likely eradicate the farm's animals and nearby wild herds in attempts to slow the disease's spread. Colorado officials also found CWD near Lyons in Boulder County, where 16 of 77 mule deer from the Rabbit Mountain area tested positive. This 21 percent positive rate is one of the highest ever found in the wild. The discovery caused Boulder County commissioners to approve massive cull hunts aimed at slow­ing a southerly movement of CWD. The outbreak near Craig also triggered a reaction from Governor Bill Owens, who formed a CWD task force with a charge to review and oversee proactive CWD action in Colorado. It was also announced that 24 game farmers living near the CWD endemic area agreed to sell their herds to the Department of Agriculture. The USDA planned to slaughter all of the animals and dispose of the carcasses.

Bad News From Wisconsin

As troubling as the news from Colorado, the public has shown even more concern over recent happenings in Wisconsin. In February 2002, Wisconsin learned that three free-ranging deer shot during the state's November 2001 gun-hunt tested positive for CWD. Subsequent tests showed the disease now infects more than 2 percent of a densely populated whitetail herd in a 415-square-mile area. (See Ryan Gilligan's article, "Fatal Deer Disease Makes Giant Leap Eastward" in the August 2002 issue of D&DH) Because this is the first time CWD has been found east of the Mississippi River, thousands of hunters from surrounding states worry if their state is next. Wisconsin's problem is perhaps most severe, because the state harbors more than 1.6 million whitetails. The state is also home to 947 deer/elk game ranches, with a combined captive herd of nearly 35,000 animals. In a move that shocked some residents, the DNR announced a plan to eradicate every deer in a 287-square-mile "hot zone" and another that would drastically reduce the herd in the region. In all, 15,000 whitetails are to be killed in hopes of stopping the disease from spreading farther. Although officials admit it might take several years to complete the job, they believe quick action is necessary. To further prevent CWD transmission, Wisconsin banned the transport of farm-raised deer and elk, and pushed for bans on baiting and recreational feeding. On May 15 in Washington, a key House committee approved a $29.4 bil­lion spending bill that allocated $10 mil­lion in emergency funds to states coping with chronic wasting disease. That same day, the Wisconsin

Legislature met in special session a approved legislation that provided $4 million in funding. Much of that money will be used to build a CWD testing facility. The legislation also granted wildlife officials authority to shoot deer from helicopters and roadways, and -- as a last resort -- to shoot deer on private land even if landowners do not want deer killed. "The scientists are telling us -- from other states who have dealt with this problem -- that we've got one shot, one shot to try to eradicate this disease", state Senator Mark Meyer of Wisconsin told the Milwaukee JournalSentinel. "If we fail in our actions today, what it's going to mean in 15 to 20 years (is) the white-tailed deer population in this state will be decimated." To say Wisconsinites are nervous is a gross understatement. In fact, the fear of the unknown has forced many hunters -- even though no human has ever contracted CWD -- to empty their freezers on the highly remote chance their venison is contaminated with CWD. Up to 250,000 others indicate they might skip this year's hunt.

On to Alberta

In Alberta, the game-farm industry suffered another setback with the discovery of CWD in a 2 1/2-year-old elk. The animal came from a farm north of Edmonton and was one of 160 elk slaughtered at a packing plant in southern Alberta on March 7, 2002. The 32 tons of resulting meat were destroyed, and veterinarians from Canadian Food Inspection Agency imposed a three-week freeze on movements of elk within or out of Alberta. Alberta's captive elk herd is estimated at 43,000 head, and the province has no regulations for CWD testing. However, several farms voluntarily test their herds. The infected elk was found via routine surveillance. Although biologists don't know how the infection entered Alberta, it's possible the disease came from a wild deer or was in the herd before the province's 1988 ban on importation. It is also possible an infected animal was brought into Alberta after the ban.

Nebraska and South Dakota

Nebraska is becoming a CWD hot zone. The state began testing wild deer from hunter-killed samples in Fall 1997, and the first wild case was a mule deer killed in November 2000. The Game and Parks Commission responded by culling 104 deer in that region, and one more mule deer tested positive. Then in December 2000, an elk from a game farm in northern Sioux County tested positive. By March 2001, officials killed and tested all of the farm's elk. From that sample, 11 had CWD. Nebraska's situation grew worse when a whitetail from the same game farm con­tracted CWD in December 2001. This discovery led to the slaughter of the farm's other 174 whitetails. Alarmingly, 83 of 159 tested so far -- 52 percent --had CWD. Biologists then shot 113 wild deer in the area surrounding the game farm and found nine of them had the disease. Interestingly, CWD was not found in any deer collected more than 10 miles from the farm. However, in late March 2002, a wild mule deer was seen acting abnormally near Scottsbluff, Neb. It was killed, and subsequently tested positive for CWD. Since then, 54 deer were killed near the Wyoming border. Those tests were not complete as of this writing. Of 804 deer sampled during Nebraska's 2001 hunting season, two tested positive -- once each in Kimball and Cheyenne counties. With the exception of the mule deer killed in March, all of Nebraska's CWD-positive animals were found within 10 miles of the Sioux County game farm. This fact suggests the game farm did not get CWD from the wild. It got CWD from contaminated animals it received. To slow CWD's spread, Nebraska is considering culling 50 percent of its northwestern deer herd over the next five years. It is also considering lengthening the season from the current 1O-day sched­ule to nearly five months in Sioux and western Dawes counties. South Dakota has tested for CWD since 1997. After three years of no posi­tive tests, the state proclaimed its wild herd CWD-free. Sadly, that wasn't the case, because in February 2002, biologists discovered CWD in a wild whitetail. The deer was killed near a Fall River County game farm where CWD had been found previously.

How States React To CWD

Although many researchers believe CWD might have something to do with game-farmed animals, they can do noth­ing but formulate systematic plans for controlling the disease until more research is done. Assume a state's wildlife officials sample hunter kills for CWD, and agriculture officials test all game-farmed deer and elk that are slaughtered or die (since the Wisconsin incident, more states are con­sidering making testing mandatory). When CWD appears, in the case of farmed animals, the first step is to kill all of them, conduct tests and quarantine the farm. This allows officials to trace the records for other animals that were imported/exportd to or from the farm. If animals were exported, the next step is to locate the other farms and continue the eradication process. When CWD is found in the wild, the first step is to shut down that area's bor­ders to all imports and exports of deer and elk. Even states with no history of CWD -- including Texas, Louisiana, Illinois, Indiana, Minnesota and even New York, Massachusetts and North Carolina --have adopted similar regulations. Some states allow importing and exporting deer and elk from herds that have remained CWD-free for five or more years, but this is essentially a total ban because few farms have tested their herds that long. The next step is to use hunter-killed animals to sample large wild herds.

Study: Diseased Prions Can Infect Mule Deer Fawns

Although full-blown cases of chronic disease have been limited to adult elk and deer, recent research indicates corrupt brain proteins can appear in young fawns. Researchers have also discovered that baiting and feeding practices can lead to the transmission of these proteins.

According to a report in the Journal of General Virology, researchers 'made the discoveries while studying mule deer fawns that were inoculated orally with a brain homogenate prepared from mule deer with naturally occurring chronic wasting disease. After being inoculated, fawns were killed at 10, 42, 53, 77, 78 and 80 days. Necropsies were then performed to determine if any of the fawns had acquired PrP-res, a protein marker for CWD infec­tion. The protein was found in some fawns as early as 42 days after inoculation. Even lived 53 days or more indicates mule deer can be infected with CWD for at least 16 months before clinical signs appear. The study's results were published in an article authored by researchers from the University of Wyoming, Colorado State Univ­ersity and the Colorado Division of Wildlife. Exactly how CWD is transmitted among rumi­nants is unknown, but the fawns in the study contracted diseased proteins through expo­sure to contaminated feed. This discovery has caused some researchers to presume CWD can be spread at contaminated feed­ing and bedding areas, and in instances where deer congregate and engage in nose-to-nose contact. -- Daniel E. Schmidt

It's common for officials to sample a 5-mile radius around an area where CWD is found. In Wisconsin, however, officials tested an area encompassing more than 415 square miles. After gauging the disease's prevalence, states usually conduct massive cull htmts to severely reduce -- even eradicate --local herds. The idea for massive culling came from scientific research by John Gross of Colorado State University and Michael Miller of the Colorado Division of Wildlife. In their research paper, "Chronic Wasting Disease in Mule Deer: Disease Dynamics and Control" Gross and Miller present all the science known on CWD and offer a model to determine the best management strategies for wild herds. The model shows how culling infected areas can reduce CWD incidence by reducing deer dispersal. The paper was

SHORTLY AFTER LEARNING chronic wasting disease infected wild deer in Wisconsin, state officials announced a plan to eradicate every deer in a 287-square-mile "hot zone" in hopes of stopping the disease from spreading farther. Above, more than 1,300 residents showed up for an informational meeting on CWD in Mount Horeb, Wis., the town nearest the recent CWD outbreak.

printed in the Journal of Wildlife Management in 2001. Gross and Miller conclude that "selec­tive culling may offer the greatest promise of reducing CWD incidence, particularly when infected populations are detected early in the course of an epidemic and tested aggressively for several decades." Therefore, the best approach to CWD is to hit the herd hard and, most impor­tantly, early in outbreak areas.

In northeastern Colorado, where CWD incidence in mule deer approaches 5 per­cent, an estimated 2,200 mule deer live in 1,250 square miles. Through hunting, officials expect to drastically reduce the herd over the next several years.

Costly Changes

The CWD outbreaks in Colorado, Wisconsin and Nebraska have led many states to seek better control of importing, exporting and testing animals. In Colorado alone, hunting and wildlife viewing is worth billions. Thus, the state is making changes to protect those valuable resources. Wisconsin's Department of Natural Resources also fears a widespread out­break might cripple the state's economy. In 2001, the state sold 952,942 deer hunt­ing licenses, generating more than $20 million in revenue for the DNR. Furthermore, deer hunting in Wisconsin generates $1 billion in economic activity each year. In neighboring Minnesota, retail sales from deer hunting generate $270 million annually. Deer hunting has a similar eco­nomic impact in Iowa, lllinois and Michigan, making swift action in Wisconsin crucial.

How is CWD Spreading?

This is the main question everyone is asking. Is CWD originating on game farms, or is it occurring in the wild and being passed through the fences? Unfortunately, we might never know. CWD infects captive and wild animals, and it might take years of surveillance until we know the problem's true scope. Some biologists believe CWD originated in game farms because clinical signs-- head drooping, salivating, emaci­ated bodies -- were not reported in wild deer before the outbreaks. When such behavior was observed in Colorado in 1967, no one knew its cause because it did not match any known disease. Furthermore, similar behaviors of sick deer were next observed at a facility in Wyoming that had imported deer from the Colorado facility. Also, CWD has been confirmed at 40 farms in Saskatchewan.

As of October 2001, the Canadian Food Inspection Agency found 159 CWD-positive elk on game farms, of which 52 were imported from a South Dakota facility. It was later learned the South Dakota facili­ty had imported elk from a Colorado farm that had CWD-infected elk. Of course, there's another side to this story -- the game farmers who are suffer­ing huge financial losses from CWD. The North American Elk Breeders Asso­ciation believes CWD, "in all likelihood

Studies Link Bacteria, Copper to Brain Disease (spiroplasmas and copper deficiencies) [thank God my scanner did not pick this junk up...TSS]

has existed in wild animals for hundreds of years," and blames the Colorado Division of Wildlife for "starting" the dis­ease at its deer research facility. The association cites the Nebraska case as proof CWD came from wild animals. Again, CWD was discovered on a game farm in Nebraska, but it was later learned the disease was prevalent in wild deer liv­ing within 10 miles of the farm. "The ranch is only a few miles from the endemic area in Wyoming, so it's only logical some animals came across the border and brought CWD into Nebraska," said Eric Mohlman, president of the Nebraska Elk Breeders Association. Others note that although Sas­katchewan farms have had CWD, only two wild deer have been found from sev­eral thousand tests and, therefore, farmed animals are not spreading it to the wild. That's a stretch, however, because it is not known how easily CWD can be passed from elk to deer. Of course, it's possible the disease goes both ways -- sometimes starting on farms and other times in the wild. Regardless of where CWD originates, mandatory test­ing is on the horizon. Although some farmers have been compensated for their losses, many have quit the business.

Most Commonly Asked Questions About CWD

Can I contract chronic wasting disease?

Probably not. However, because CWD, "mad cow" disease and Creutzfeldt-Jakob dis­ease are all brain spongiform diseases, and because the latter two can infect humans, it is only logical that people fear CWD. Because two spongiform diseases have been transmit­ted to humans, no one can say with certainty that CWD will never infect humans. However, asking if you can get CWD from eating venison is like asking your doctor if you can get cancer from eating nitrate-laden hot dogs. Another point to remember is the odds of contracting a spongiform disease like mad cow or CJD are nearly astronomical. It's true that about 100 people contracted mad cow disease in Great Britain, but it's estimated that 80 mil­lion people might have been exposed to it.

Should I worry about eating venison?

That can be answered with a qualified "no." The World Health Organization has said there is no scientific evidence the disease can infect humans. However, the agency says no part of a deer or elk with evidence of the disease should be eaten by people or other animals Bad prions congregate in nervous tissue, and lymph nodes. Therefore, boning out meat -- without cutting into the brain or spine -- a discardingblood vessels and internal organs should protect you even if the animal is infected.

How does a deer get CWD?

According to the Agricultural Research Service, "the natural route of transmission these diseases (i.e., spongiforms, including CWD) in ruminant animals is unknown, but oral exposure to contaminated feeds, bedding or tissues is presumed to be a major source infection."

Can prions infect the ground?

Although this has not been proven, some studies indicate CWD-causing prions remain active in soil for years.

Will CWD invade my state?

CWD could pop up anywhere deer or elk live. However, it seems prevalent in high-density herds.

Root Causes

When analyzing how CWD affects North American deer herds, I can't help but think of what my friend Steve Fausel said in 2000.

"When we allow deer and elk numbers to reach high densities, we are asking for trouble," Fausel said. Although he was referring to habit damage, his words ring true. Ironically my brother Bill, a wildlife disease profes­sor at the University of Alberta, expressed similar concerns in 1987 -- when game farming started in Alberta. In fact, he presented a paper on the subject at the annual conference of the Game Growers of Alberta. The paper, "Moving the Zoo, or the Potential for Introducing a Dangerous Parasite into Alberta with its Tranlsocated Host," piqued the interest of several biologists, but it didn't trigger enough action. Within a short time, several game farms experi­enced a serious outbreak of bovine tuber­culosis, and now they have CWD.

Conclusion

Based on what's been learned over the past six months, we cannot stand pat on CWD and hope it goes away. Time is of the essence, especially when dealing with wild deer. The longer it takes to imple­ment a plan, the farther CWD will spread, making it even more difficult to control. There are no quick fixes. All strategies take time and money. We haven't heard the last of new outbreaks and, unfortu­nately, CWD will more than likely appear in other Midwestern states -- and possi­bly Southern and Eastern states, too.

What's most important is that all parties refrain from pointing fingers and work together to solve this mysterious and troublesome disease...

DEER & DEER HUNTING WWW.DEERANDDEERHUNTING.COM

speaking of volumes of false information being disseminated in newspaper and television reports AND D & D HUNTING !

RE-

> Mad cow was spread by ingesting contaminated food,

> whereas CWD probably was not.

> And mad cow spread to humans, whereas CWD has not

why do educated folks refuse to look at the transmission studies and the most likely route (FEED). we been feeding the same SRMs to deer and elk as we have been to cattle for decades. in the only part i was not able to scan, they speak of OPs and copper deficient and spiro plasma, but not a word about the SRMs (specified risk materials) from dead deer, sheep, and cows along with other road-kill, that have been fed to these deer.

why do most refuse to look at this route? sure, it may not be the only route, but a most likely one.

and the statement that CWD has not transmitted to humans, is a most rediculous statement, one not backed up with any substantial proof. if i make a statement that indeed, CWD has passed to humans, i would have the same proof, that these folks saying it does not. but what about 'the feast', will be an interesting case study (kinda), considering some 100 of people ate there, but when/what was tainted, and who ate it or gutted it?

comments of CDC on CWD in the past;

Unlike patients with new variant CJD, the 3 patients did not have a unique neuropathologic manifestation, clinicopathologic homogeneity, uniformity in the codon 129 of the prion protein gene, or prion characteristics different from those of classic variants. CONCLUSIONS: Although the occurrence of 3 unusually young patients with CJD who consumed venison suggested a possible relationship with CWD, our follow-up investigation found no strong evidence for a causal link. Ongoing CJD surveillance remains important for continuing to assess the risk, if any, of CWD transmission to humans.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11594928&dopt=Abstract

we see 3 more CJD victims under 30 in 2001, and now 3 or 4 more at 'THE FEAST';

3 deaths probed for link to deer disease Jill Burcum and Kavita Kumar Star Tribune

Published Aug 1, 2002 WAST01

Federal health officials are investigating whether the deaths of a Blaine man and two friends, fellow sportsmen from Wisconsin, suggest a link between eating wild animals infected with chronic wasting disease and fatal brain illnesses in people.

The men often gathered at a cabin in Wisconsin, near Superior, in the late '80s and early '90s to eat elk and deer meat and swap hunting and fishing stories. They died of brain diseases in the 1990s. James Botts Courtesy Botts family

The Blaine man, James Botts, a chemical engineer, turned 55 just before he died in the summer of 1999 from Creutzfeldt-Jakob disease (CJD), a rare, mysterious and always-fatal disease that causes holes in the brain.

The owner of the cabin, Wayne Waterhouse of Chetek, Wis., also died of CJD. The third man, Roger Marten of Mondovi, Wis., died of a more common brain illness called Pick's disease.

CJD is similar to chronic wasting disease in wild animals and mad cow disease in cattle. All are caused by mutant proteins, prions, that make spongelike holes in the brain.

There has never been a documented case of someone developing a brain-destroying disease from eating animals infected with chronic wasting disease. Scientists have not ruled it out, however.

"We are not saying it absolutely can't happen. We know that it's a mistake to say that," said Dr. Larry Schonberger, a specialist at the U.S. Centers for Disease Control and Prevention. The agency and Wisconsin's health department are leading the investigation.

Wisconsin health officials said the death of Botts and his friends are worth investigating because of the rarity of their illnesses and because the men knew one another and attended game feasts at the cabin.

"It's certainly unusual," said Jeff Davis, Wisconsin's state epidemiologist. "But whether it is coincidental or otherwise remains to be seen."

He said he learned of a possible link among three cases about two weeks ago from someone who called the Wisconsin Division of Health. He declined to identify the caller.

Davis said as many as 100 people are thought to have attended the feasts at the cabin over the years.

State helping Wisconsin

The investigation is the first of its kind in Wisconsin, but he said that there have been similar inquiries of cases involving people who had CJD and that consumption of venison appeared to be a factor in them. But after the investigations, it was decided that they were simply sporadic cases of CJD, he said.

http://www.startribune.com/stories/1556/3131888.html

but, if i was betting, when the CDC/NIH gets done with this one, it will also be nothing more than sporadic CJD...

TSS

snip...end...TSS

***> YEAR 2018

This Map Spells Trouble for the Future of Deer Hunting


April 25, 2018  
This map scares the hell out of me. Once you understand what it shows us about deer hunters and chronic wasting disease (CWD), it should alarm you, too. It’s a map of one of the ways we will lose the war against CWD unless we take action, and I hope it shocks us awake.
In the 2016-2017 hunting season, more than 32,000 whitetails were killed by hunters in the four Wisconsin counties with the highest incidence of CWD in the state – Dane, Iowa, Richland and Sauk counties. The red dots on the map above are the home zip codes for every hunter who harvested at least one of those deer. Yes, hunters from 49 states killed deer in Wisconsin’s CWD hotbed in 2016-17. Only Delaware was not represented in reported harvests. Even hunters from Alaska (26 deer) and Hawaii (two deer) traveled to Wisconsin to hunt in those four counties that year.
Why is this alarming? Consider all of the following.

CWD HOT ZONE

These four counties, which adjoin each other and form a block in southwest Wisconsin near the borders with Illinois and Iowa, are the hottest CWD infection zone in Wisconsin. If you were patterning your turkey shotgun, and each pellet was one record of a CWD-positive wild deer on a target shaped like the state of Wisconsin, you’d want these four counties to be the gobbler’s head. And you’d have a very dead gobbler (see below).
Click map to see more detail.
As of 2016, prevalence rates of CWD among adult bucks – meaning the percentage of tested adult bucks that were positive for CWD – included 15 percent in Dane, 42 percent in Richland, 45 percent in Sauk, and as high as 51 percent in north central Iowa County. Today more than half of all adult bucks in large portions of Iowa County probably carry CWD. Prevalence rates are lower for yearling bucks and does, and, as with bucks, the prevalence rates vary for these other deer across the map.

MOST OF THESE DEER WERE NOT TESTED FOR CWD

I’ve learned from Wisconsin DNR that they tested 2,291 deer from the four counties in the 2016-17 season, or 7 percent of the harvest. (There are private services available for CWD testing, but the number of deer tested annually that way is in the single digits statewide.) So, that year more than 29,000 deer harvested in those four counties were not tested for CWD. How many of those untested deer probably had CWD? Well, of the 2,291 that were tested, 17 percent were positive. This suggests approximately 5,000 of those untested deer were also positive.

MOST DEER WITH CWD APPEAR HEALTHY

CWD incubates in a whitetail for an estimated minimum of 16 months and an average of two years before the deer becomes “clinical” and begins to show symptoms or act sick, at which point it won’t last much longer. Therefore, the majority of CWD-positive deer killed by hunters will appear to be healthy. You cannot look at a deer you killed and determine whether it should be tested for CWD. If you shot it in a CWD zone, you should get it tested.

WHERE THIS GETS SCARY

Given all these facts, here’s what we can assume with near certainty: Some number of these hunters killed CWD-positive deer, did not get them tested, and returned home taking parts of those deer with them. The two primary routes for CWD to be introduced into new areas are:
  1. In live, captive whitetails trucked legally or illegally by people.
  2. In contaminated deer carcasses or high-risk parts.
How many hunters left the CWD zone or even the state of Wisconsin with an entire deer carcass, field-dressed or not? No doubt some of them did, especially those who lived close enough to drive rather than fly to Wisconsin. We can’t know how many, but it’s not zero. We can’t know how many of those CWD-positive carcasses were transported into areas or states that don’t yet have CWD in whitetails, but it’s not zero. And it’s happening every hunting season.
Regulations are being broken in many of these cases, because most states now ban the importation of certain deer carcass parts to prevent CWD entering their state. In fact, a review of regulations shows there’s no land route out of Wisconsin for a hunter hauling a carcass with an intact spinal column and skull. Every bordering state bans the importation of these parts, though Illinois allows it if you are taking the carcass directly to a licensed meat processor in Illinois. But just because there are rules doesn’t mean hunters know about them. Most of these laws are relatively new, and surveys have shown that few hunters are aware of them (The low testing rate alone suggests that few hunters realize the precautions they should take with deer harvested in these counties). Nevertheless, many states are starting to make cases for violations. Last season, Tennessee and Mississippi, among other states, charged hunters for illegally importing banned deer carcass parts into their home states.
The infectious prions that cause CWD are concentrated in a deer’s nervous system, especially the brain, spinal cord, eyes, spleen, tonsils and lymph nodes. If these parts are discarded outdoors, prions will remain in the environment after the carcass has decomposed or been scattered by scavengers. Prions are extremely tough and do not decompose for many years. No one knows for sure how long they last, and they can infect new deer that come in contact with them.
Of those non-zero number of hunters who left Wisconsin in 2016-17 with intact carcasses of CWD-positive deer in the backs of pickups, we can’t know how many of them butchered those deer at home or delivered them to processors or taxidermists. From there, we can’t know how many of those infectious parts like brains and spleens ended up discarded in the woods where they could potentially introduce CWD to healthy deer in a new area. But it’s probably not zero.
QDMA member Bob Weiland of Wisconsin (right) and his friend Sid Courtney killed these bucks in 2013. Both deer then tested positive for CWD. Most deer with CWD that are killed by hunters appear to be healthy.
“Clearly there is an opportunity for the inadvertent movement of infectious material within and across jurisdictions,” said Bryan Richards of the USGS, who helped produce the map. “And this opportunity is not unique to Wisconsin.”
The map shows 15 zip code markers in my home state of Georgia, which does not have CWD to our knowledge. A road trip from here to southwest Wisconsin would take about 14 hours – not easy but not impossible with a hunting buddy to share the wheel. Did any of those Georgians make a road trip and haul home a deer carcass? If not in 2016-17, what about other seasons? And as Bryan pointed out, Georgia hunters travel to other CWD zones besides the ones in Wisconsin to hunt each year. The USGS map only deals with one of them.

What About Your Health?


So far, I’ve been concerned with all these hunters from all over the country potentially exposing healthy deer in their home states to CWD. I’ve said nothing of the human health concerns.
There is still no clear evidence that CWD can affect people, but it hasn’t been ruled out, so the Centers for Disease Control and the World Health Organization recommend that you play it safe by protecting yourself if you hunt a deer population known to be affected by CWD. Primarily, you should submit for testing every deer you harvest from that area and wait for an “all clear” before you eat the venison. If the deer tests positive, you should safely discard the venison, preferably by bagging it and sending it to a landfill.
So, go back to those 29,000 deer harvested in those four counties in 2016-17 that were never tested for CWD. How many of the hunters represented by zip code dots on the map above unknowingly ate venison from a CWD-positive deer they killed?
We don’t know. But it’s not zero.

What Hunters Should Do

This map gives us a glimpse of one of the ways we will gradually lose the war against CWD, watching it spread to every corner of the whitetail’s range, unless we take action. Answer the alarm by educating yourself and informing others. If you or people you know hunt deer out of state or even out of your home county, do your homework and learn whether you will be hunting in a CWD zone. If you will be, learn the local rules for tagging, testing and transportation of carcasses. Submit any deer you harvest for local testing, and wait for results before you eat the venison.
Even if you are hunting a non-CWD zone out of state, know your state’s deer-carcass importation rules, which tell you the parts of deer you can legally bring home. This goes for states you will drive through on the way home: Their import regulations apply to you even if you are just passing through. To be safe, never leave any state with more than boned-out venison and a thoroughly cleaned skull plate attached to antlers. Many states ban the importation of hides unless they are tanned or part of finished taxidermy.
This very helpful website compiles all state carcass import regulations in one place. It is hosted by the North Carolina Wildlife Resources Commission.
To stop the spread of CWD and fight this threat to the future of deer hunting, we’ve got to work to inform ourselves, our hunting partners, and even folks we don’t know. QDMA is stepping up our game in this area, too, with efforts like our comprehensive CWD web page, our #KnowCWD campaign, and our recent partnership with onX Hunt to create a CWD map layer. Help us by becoming a member, sharing information like this article on your social media network, and talking to hunters you know. It’s clear that ignorance of this disease and how it spreads is one of the ways hunters are losing the battle already, but we can turn that tide.
To stop the spread of CWD, we need a lot more zeros.
The CWD infection rates among deer in these four Wisconsin counties are trending steadily upwards at a faster rate each year. Unless we do more to stop the spread of CWD now, every corner of the whitetail’s range will be facing trend lines like these.

https://www.qdma.com/this-cwd-map-spells-trouble-future-deer-hunting/


Greetings Hunters and QDMA et al, 

What should scare folks the most is, the fact that Chronic Wasting Disease TSE Prion has likely already transmitted to humans, and it's being masked as sporadic CJD. it's just what the science is showing to date, ignore at your own peril, but once exposed, second hand, friendly fire, pass it forward mode of transmission is very real, they call it iatrogenic CJD. i remind everyone of one thing, an old study of way back, and i always like to read it, because it stuns me every time i read it.


what this shows, is a large case study for zoonosis transmission of chronic wasting disease cwd tse prion aka mad deer elk disease all across North America and other parts of the world, a case study that could go on for infinity, under the infamous guise of sporadic/spontaneous. please be aware, all iatrogenic CJD is, is sporadic CJD, until the iatrogenic even has been discovered, traced back, confirmed, put into the academic domain, and finally the public domain, which seldom happens, due to lack of trace back efforts, thus, the spontaneous/sporadic theory lives on. if you do a quick search at pubmed for the word spontaneous, you will find 315,480 hits for the use of the word spontaneous, for many different disease, same with spontaneous, if you search pubmed for spordic, you will find 52,868 hits for the word sporadic, again, used for many different disease. sporadic and spontaneous simply means UNKNOWN, it does NOT mean that 85%+ of all human tse prion disease i.e. sporadic cjd, just happens without cause, this is a myth.


i don't care what folks eat, i am pro hunting, pro gun, i am a meat eater. BUT, when what you eat, or do, starts to have a fatal potential to do harm to my family, me, my friends, neighbors, your children, from ignorance of an industry that is full of greed (and i paint this with a very wide brush), then i get concerned. friendly fire, from second hand exposure is a very real and proven scientific fact, and as these TSE Prion strains mutate, they can become very dangerous. iatrogenic TSE Prion disease should concern all. you consume a cervid that is cwd postive, and you become exposed, then years later go on to have some sort of medical surgical procedure, then you have the potential to expose that complete surgical arena...


the tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.


1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 



ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

here is the latest;

PRION 2018 CONFERENCE
 
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 
 
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 
 
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. 
 
Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 
 
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.
 
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
 

READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
 
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 
 
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA. 
 
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states.
 
AND ANOTHER STUDY;
 
P172 Peripheral Neuropathy in Patients with Prion Disease 
 
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
 
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, AND included 104 patients.
 
SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), AND THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
 
snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
 
 

Prion 2017 
 
Conference Abstracts CWD 2017 PRION CONFERENCE 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
 
PRION 2017 
 
DECIPHERING NEURODEGENERATIVE DISORDERS 
 
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO 
 
PRION 2017 
 
CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 
 
*** PRION 2017 CONFERENCE VIDEO 
 
 

TUESDAY, JUNE 13, 2017 
 
PRION 2017 CONFERENCE ABSTRACT 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
 
 SATURDAY, JULY 29, 2017 
 
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 
 
 
just out CDC...see;

 
Research
 
Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions
 
Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)
 
M. A. Barria et al.
 
ABSTRACT
 
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted. 
 


Molecular Barriers to Zoonotic Transmission of Prions 
 
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author 
 
snip... 
 
The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine. 
 
***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 
 
snip... 
 
However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring. 
 
***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain. 
 
 

ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION 

10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question... 

''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)

EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 

First published: 17 January 2018 
https://doi.org/10.2903/j.efsa.2018.5132 ;

also, see; 

8. Even though human TSE
exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 

snip... 

The tissue distribution of infectivity in CWD
infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 
https://efsa.onlinelibrary..wiley.com/doi/full/10.2903/j.efsa.2018.5132

zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm 

***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116*** 
https://www.tandfonline.com/doi/pdf/10.4161/pri.29237
 
To date there is no direct evidence that CWD has been or can be transmitted from animals to humans. 

However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure. 

Both infected brain and muscle tissues were found to transmit disease. 

Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods. 

Summary and Recommendation: 

snip...

Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle. 

These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle. 
https://www.thetyee.ca/Documents/2017/06/24/Risk-Advisory-Opinion-CWD-2017.pdf


*** WDA 2016 NEW YORK *** 

We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. 

In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

Student Presentations Session 2 

The species barriers and public health threat of CWD and BSE prions 

Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 

Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. 

These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. 

The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. 

We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. 

We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
http://www.wda2016.org/uploads/5/8/6/1/58613359/wda_2016_conference_proceedings_low_res.pdf
 



TUESDAY, SEPTEMBER 12, 2017 

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 
http://chronic-wasting-disease.blogspot.com/2017/09/cdc-now-recommends-strongly-consider.html

SATURDAY, JANUARY 27, 2018 

CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
http://chronic-wasting-disease.blogspot.com/2018/01/cdc-chronic-wasting-disease-cwd-tse.html


Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018

CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE. 

THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$

BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.

SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.

SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.

SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
https://www.nature.com/articles/srep11573 

CDC CWD TSE PRION UPDATE USA JANUARY 2018

As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids... 

Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018 

snip.... 
https://www.cdc.gov/prions/cwd/occurrence.html

*** 2017-2018 CWD TSE Prion UPDATE
https://www.cdc.gov/prions/cwd/occurrence.html


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 
http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip...
https://web.archive.org/web/20090506002237/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
http://www.fsis.usda.gov/OPPDE/Comments/03-025IFA/03-025IFA-2.pdf

Prion Infectivity in Fat of Deer with Chronic Wasting Disease
 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
http://jvi.asm.org/content/83/18/9608.full

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
http://science.sciencemag.org/content/311/5764/1117.long

*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM

To: 
rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html

> However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 
http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys
http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true
https://wwwnc.cdc.gov/eid/article/20/1/13-0858_article


SEE; Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Monday, May 23, 2011

CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning

Public release date: 23-May-2011

Contact: Francesca Costanzo 
adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences

CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.

“While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”

Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak.

CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.

Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.

The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.

The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.

According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”

###

The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.

In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at 
http://adajournal.org/content/podcast.
http://www.eurekalert.org/pub_releases/2011-05/ehs-cap051811.php


Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD

Accepted 15 November 2010. Abstract Full Text PDF References .

Abstract

The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission.
http://www.adajournal.org/article/S0002-8223(11)00278-1/abstract


PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ; 

Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
http://transmissiblespongiformencephalopathy.blogspot.com/2011/05/travel-history-hunting-and-venison.html


NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;

Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II
http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html


 Transmissible Spongiform Encephalopathies


BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf


*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;


ALSO, I FIND THIS VERY DISTURBING...SEE;


***> Prion 2018 P74 High Prevalence of CWD prions in male reproductive samples 

Carlos Kramm (1,2), Ruben Gomez-Gutierrez (1,3), Tracy Nichols (4), Claudio Soto (1) and Rodrigo Morales (1) 



READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT Protein Misfolding Cyclic Amplification PMCA results showed positive CWD prion detection in testes, epididymis and seminal fluid samples. seems also the scientists are worried about any potential mechanisms of CWD spreading and they want to decrease putative interindividual transmission associated to insemination using CWD contaminated specimens, if that might occur under natural conditions. i have been concerned about this for some time with BSE super-ovulation and since;

 PrPSc detection and infectivity in semen from scrapie-infected sheep




PITUITARY EXTRACT

This was used to help cows super ovulate. This tissue was considered to be of greatest risk of containing BSE and consequently transmitting the disease...








MANAGEMENT IN CONFIDENCE

CERTIFIED BSE-FREE HERDS FOR SOURCE OF MATERIAL FOR BIOLOGICAL PRODUCTS



Tuesday, February 8, 2011

U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001



HAVE YOU BEEN THUNDERSTRUCK? 

SUNDAY, AUGUST 02, 2015 

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if?

Court papers state that in February 2007, Favero acquired 184 straws of whitetail deer semen valued at about $92,000 from a buck named “Diablo'” that he knew had been illegally taken out of Texas, and again in January 2008 took another 110 straws of semen from a buck named “Thunderstruck.” (Read more in the court paper posted at the bottom of this entry.)



SUNDAY, AUGUST 19, 2018 

Texas Deer Farms, Growing Freakish Antlers, and CWD TSE Prion aka mad deer disease



FRIDAY, MARCH 30, 2018 

Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary Submission March 30, 2018

Terry S. Singeltary Sr., Bacliff, Texas USA 77518 flounder9@verizon....net 

Attachments (1) Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary View Attachment:View as format pdf 



https://www.regulations.gov/docketBrowser?rpp=25&so=DESC&sb=commentDueDate&po=0&dct=PS&D=APHIS-2018-0011



Friday, December 14, 2012

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

snip.....

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

Animals considered at high risk for CWD include:

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

snip.....

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

snip.....

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

snip.....

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

snip.....

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

snip.....

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

snip.....



TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***



TUESDAY, JANUARY 17, 2017 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION



THIS April, 4, 2017 

violation of the mad cow 21 CFR 589.2000 OAI is very serious for the great state of Michigan, some 20 years post FDA mad cow feed of August 1997. if would most likely take a FOIA request and a decade of wrangling to find out more. 

TUESDAY, JANUARY 17, 2017

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION 

I would kindly like to comment on this FDA BSE/Ruminant Feed Inspections Firms Inventory (excel format)4 format, for reporting these breaches of BSE TSE prion protocols, from the extensive mad cow feed ban warning letters the fda use to put out for each violations. simply put, this excel format sucks, and the FDA et al intentionally made it this difficult to follow the usda fda mad cow follies. this is an intentional format to make it as difficult as possible to follow these breaches of the mad cow TSE prion safety feed protocols. to have absolutely no chronological or numerical order, and to format such violations in a way that they are almost impossible to find, says a lot about just how far the FDA and our fine federal friends will go through to hide these continued violations of the BSE TSE prion mad cow feed ban, and any breaches of protocols there from. once again, the wolf guarding the henhouse $$$

NAI = NO ACTION INDICATED

OAI = OFFICIAL ACTION INDICATED

VAI = VOLUNTARY ACTION INDICATED

RTS = REFERRED TO STATE

OAI (Official Action Indicated) when inspectors find significant objectionable conditions or practices and believe that regulatory sanctions are warranted to address the establishment’s lack of compliance with the regulation. An example of an OAI classification would be findings of manufacturing procedures insufficient to ensure that ruminant feed is not contaminated with prohibited material. Inspectors will promptly re-inspect facilities classified OAI after regulatory sanctions have been applied to determine whether the corrective actions are adequate to address the objectionable conditions. 

2016



ONE more thing, please remember, the label does not have to say ''deer ration'' for cervid to be pumped up with. you can get the same ''high protein'' from many sources of high protein feed for animals other than cattle, and feed them to cervid...

Saturday, August 29, 2009

FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009



Friday, September 4, 2009

FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009



WEDNESDAY, JULY 11, 2018 

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000



TUESDAY, JULY 10, 2018
 
CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS
 
*** ''but feeding of other ruminant protein, including scrapie-infected sheep, can continue to pigs.''
 
CONFIDENTIAL SPONGIFORM ENCEPHALOPATHY OF PIGS
 


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 
https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion.. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY
https://web.archive.org/web/20170126051158/http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 
http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160


***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

Abstract 

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

SNIP...

Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free.. Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


Singeltary on Scrapie and human transmission way back, see;



***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 




TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 



 *** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 



 Infectious agent of sheep scrapie may persist in the environment for at least 16 years

*** Nine of these recurrences occurred 14–21 years after culling

Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3

Correspondence Gudmundur Georgsson ggeorgs@hi.is

1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland

2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland

3 Bethesda, Maryland, USA Received 7 March 2006 Accepted 6 August 2006

In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years *** 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3 



Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

=========================

***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 



Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 


 
Wednesday, December 16, 2015 

*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission *** 



WEDNESDAY, SEPTEMBER 19, 2018 

CHRONIC WASTING DISEASE CWD TSE PRION Detection of a first case in Quebec Canada



THURSDAY, SEPTEMBER 13, 2018 

NORWAY How many CWD-infected animals are out there?

http://chronic-wasting-disease.blogspot.com/2018/09/norway-how-many-cwd-infected-animals.html


WEDNESDAY, OCTOBER 03, 2018 

Texas Reports 13 more cases of Chronic Wasting Disease CWD TSE Prion in Breeder Deer state total jumps to 130 Confirmed to date



TEXAS CONFIRMS 117TH CASE OF CWD TSE PRION
 
WEDNESDAY, AUGUST 22, 2018

TEXAS CWD TSE PRION 16 MORE CASES DETECTED TOTAL TO DATE 117 CONFIRMED NEW 14 BREEDERS 2 FREE RANGE



SUNDAY, AUGUST 19, 2018 

Texas Deer Farms, Growing Freakish Antlers, and CWD TSE Prion aka mad deer disease



MONDAY, OCTOBER 01, 2018

Minnesota Deer tests positive for CWD in disease management zone



WEDNESDAY, OCTOBER 03, 2018 

WISCONSIN CAVES TO GAME FARM INDUSTRY AGAIN WHILE STATE FALLS FURTHER INTO THE ABYSS OF MAD DEER DISEASE CWD TSE PRION



SATURDAY, SEPTEMBER 29, 2018 

This Map Spells Trouble for the Future of Deer Hunting CWD TSE Prion Consumption, Exposure, and Zoonosis Potential



Michigan adds another CWD TSE Prion case, total at 63 to date



THURSDAY, OCTOBER 04, 2018 

Michigan adds another CWD TSE Prion case, total at 63 to date



WEDNESDAY, SEPTEMBER 26, 2018 

Michigan adds another CWD TSE Prion case, total at 62 to date



MONDAY, AUGUST 27, 2018 

Michigan Adds Another CWD TSE Prion Case Total Increases To 61 to date



WEDNESDAY, SEPTEMBER 19, 2018 

Michigan Department of Natural Resources Slowing the spread of CWD UPDATE Sept 19 2018



THURSDAY, JUNE 21, 2018 

Michigan First case of chronic wasting disease suspected in Jackson County



THURSDAY, JUNE 07, 2018 

Michigan DNR to present chronic wasting disease recommendations to Natural Resources Commission Singeltary submission 



WEDNESDAY, MARCH 07, 2018 

***> Michigan DNR CWD National Perspective: Captive Herd Certification Program - Dr. Tracy Nichols

***> CURRENT STATUS OF CWD IN CAPTIVE CERVID HERDS IN 16 STATES AS OF MAY 2017

43 ELK HERDS

37 WTD HERDS

1 RED DEER HERD

6 MIX SPECIES HERDS

85 CWD-POSITIVE CAPTIVE HERDS 

snip...see



TUESDAY, MARCH 27, 2018 

Hunters and citizens invited to collaborate on Michigan's chronic wasting disease response



FRIDAY, MARCH 30, 2018 

Michigan Mecosta County man sentenced following DNR investigation Game ranch owner falsified information related to chronic wasting disease testing



what is Michigan feeding their cervid ??? 


2017 Section 21 C.F.R. 589.2000, Animal Proteins Prohibited in Ruminant Feed

Subject: MICHIGAN FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE BREACH APRIL 4, 2017

MICHIGAN FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE BREACH APRIL 4, 2017

FDA BSE/Ruminant Feed Inspections Firms Inventory 

11998 DET-DO MI 48846-847 OPR 4/4/2017 OAI 



NAI = NO ACTION INDICATED

OAI = OFFICIAL ACTION INDICATED

VAI = VOLUNTARY ACTION INDICATED

RTS = REFERRED TO STATE

OAI (Official Action Indicated) when inspectors find significant objectionable conditions or practices and believe that regulatory sanctions are warranted to address the establishment’s lack of compliance with the regulation.. An example of an OAI classification would be findings of manufacturing procedures insufficient to ensure that ruminant feed is not contaminated with prohibited material. Inspectors will promptly re-inspect facilities classified OAI after regulatory sanctions have been applied to determine whether the corrective actions are adequate to address the objectionable conditions....end...TSS

WEDNESDAY, JULY 11, 2018

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000



SATURDAY, MARCH 03, 2018

Michigan-sportsman.com without warning bans terry singeltary sr. for posting peer review sound science on CWD TSE Prion after 16 years








LISTEN TO THIS NICE LITTLE CWD BLUES DIDDY BY TAMI ABOUT WISCONSIN CWD TSE PRION. WOW, ANNUAL UPDATES NOW, FROM HERE ON OUT, ABOUT CWD...200,000 CWD TESTS, WITH OVER 3500 CWD POSITIVE CASES, SEEING INCREASING TRENDS IN PREVALENCE AND DISTRIBUTION...CARCASS DISPOSAL SIGNIFICANT CHALLENGE...CWD SAMPLING EFFORTS GONE DONE, WHILE CWD POSITIVES HAVE GONE UP...ALSO, 40 SELF SERVING KIOSKS ACROSS STATE AND FREE HUNTER SERVICE CWD TESTING AND SICK DEER POLICY REPORTING AND TESTING ACROSS STATE!



TUESDAY, SEPTEMBER 25, 2018 

Wisconsin CWD TSE PRION PLAN preferred option disposal in a landfill OR public land is acceptable to leave the carcass in the spot of the kill

stupid is, as stupid does, sometimes you can't fix stupid...tss



MONDAY, JUNE 25, 2018 

Wisconsin DATCP Confirms CWD-Positive Elk in Sauk County Breeding Farm



MONDAY, JUNE 18, 2018 

Wisconsin DATCP Confirms CWD-Positive Deer in Marinette County farm has been quarantined



WEDNESDAY, JUNE 13, 2018 

Wisconsin DATCP NVSL confirmed 21 WTD from a deer farm Iowa County tested positive for chronic wasting disease (CWD)



SATURDAY, MARCH 03, 2018 

WISCONSIN CHRONIC WASTING DISEASE TSE Prion DNR Study Finds CWD-Infected Deer Die At 3 Times Rate Of Healthy Animals



FRIDAY, FEBRUARY 16, 2018 

Wisconsin Deer from Now-Quarantined PA Lancaster County Farm Tests Positive for Chronic Wasting Disease CWD TSE Prion



FRIDAY, JANUARY 26, 2018 

WISCONSIN REPORTS 588 CWD TSE PRION POSITIVE CASES FOR 2017 WITH 4170 CASES CONFIRMED TO DATE



USA MAD DEER ROUNDUP

Feb. 16, 2018

Durkin: Stop private deer industry from trucking CWD across state 

Patrick Durkin, For USA TODAY NETWORK-Wisconsin Published 10:13 a.m. CT Feb. 16, 2018 

A Waupaca County captive-deer shooting preserve that discovered its first two cases of chronic wasting disease in October found 10 more CWD cases last fall, with 11 of the deer coming from a breeding facility in Iowa County — Wisconsin’s most infected county.

Hunt’s End Deer Ranch near Ogdensburg is one of 376 fenced deer farms in Wisconsin, according to the Department of Agriculture, Trade and Consumer Protection. Hunt’s End bought the diseased deer from Windy Ridge Whitetails, a 15-acre, 110-deer breeding facility south of Mineral Point in Iowa County. Of Wisconsin’s 4,175 CWD cases in wild deer, 2,261 (54 percent) are in Iowa County.

Since CWD’s discovery in three wild deer shot during the November 2001 gun season, CWD has been detected on 18 Wisconsin deer farms, of which 11 were “depopulated.” DATCP has identified 242 CWD cases in captive facilities the past 16 years.

The state’s worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for this always-fatal disease from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70-acre pen in January 2006, 60 of the remaining 76 deer carried CWD, a nearly 80 percent infection rate. 

The Department of Natural Resources bought the heavily contaminated site for $465,000 in 2011 and has kept it fenced and deer-free since.

The last time DATCP exterminated a captive herd was November 2015, when it killed 228 deer at Fairchild Whitetails, a 10-acre breeding facility in Eau Claire County, and paid its owner, Richard Vojtik, $298,770 in compensation. Tests revealed 34 of those deer carried CWD (15 percent), but two bucks had escaped earlier. Those bucks roamed five months before being shot and tested. They, too, had CWD.

Both operations were outside the endemic CWD region in southern Wisconsin; Buckhorn Flats by about 60 miles and Fairchild Whitetails by about 120. Wisconsin’s four most active CWD outbreaks on deer farms are north of U.S. 10, and farther away from the endemic region — basically the DNR’s Southern Farmlands district — which had 584 CWD cases 2017-18 and 4,148 since 2001.

Those businesses are:

• Wilderness Whitetails, near Eland in Marathon County: 68 CWD cases, including 43 in 2017-18. DATCP first reported CWD there in December 2013 in a 5-year-old buck shot by a facility client. The operation also found three cases in 2014, nine in 2015 and 12 in 2016. 

The preserve held about 310 deer in its 351-acre pen last summer. Since beginning tests in 2002, the facility tested 373 deer before finding its first case 11 years later.

• Hunt’s End, Waupaca County: 12 cases, all in 2017-18. The owners, Dusty and Mandy Reid, didn’t detect CWD on the 84-acre shooting facility until two 4-year-old bucks tested positive last fall. DATCP announced those cases Oct. 20, and disclosed 10 additional cases in response to my open-records request in January.

Both Oct. 20 bucks originated from Windy Ridge Whitetails. Nine other bucks from Windy Ridge, owned by Steven and Marsh Bertram, tested positive for CWD after being shot by Hunt’s End clients.

Now DATCP records covering the past five years showed Hunt’s End acquired 31 deer from Windy Ridge, which also sent a combined 67 whitetails to nine other Wisconsin deer farms during that period.

Paul McGraw, DATCP’s state veterinarian and administrator in animal health, quarantined three Hunt’s End properties Oct. 20, but let its owners, continue selling hunts because “properly handled dead animals leaving the premises do not pose a disease risk.”

McGraw also quarantined Windy Ridge, but the specifications let the business move more deer to the Waupaca shooting facility. It made two more shipments to Hunt’s End, the last occurring Nov. 13.

• Apple Creek Whitetails, Oconto County: 11 cases. Since discovering CWD in September 2016 in an 18-month-old doe killed inside the facility near Gillett, DATCP has identified 10 more cases, including three in 2017-18. The preserve held about 1,850 deer on 1,363 acres, and tested 466 in 2016. After first testing for CWD in 2009, the business processed 1,192 deer before finding its first case 18 months ago.

• Three Lakes Trophy Ranch, Oneida County: Nine cases. Since discovering CWD in December 2015 in a 3-year-old buck at Three Lakes, DATCP has identified eight more cases, including two in 2017-18. The preserve held about 545 whitetails on 570 acres.

Although the Hunt’s End outbreak traces to Iowa County deer, Windy Ridge Whitetails sent even more deer, 42, to Vojtik’s American Adventures Ranch near Fairchild with no documented problems. DATCP reports no CWD cases there, and Vojtik, who also owned the 10-acre Fairchild Whitetails breeding facility, said he hasn’t bought Windy Ridge deer the past two years.

Vojtik said Wednesday that he and his clients shoot out his enclosure’s herd of about 200 deer each year to reduce CWD risks. And because he’s not in DATCP’s herd-status program, he must only test 50 percent of deer dying there.

Meanwhile, Wilderness Whitetails tests all of its dead deer. It leads the state with 68 CWD cases, even though it has maintained a “closed herd” since opening its Eland facility in 2004, said its owner, Greg Flees, when reached Wednesday. Flees said all deer in the 351-acre facility were born there or came from his family’s Portage County breeding pen, which began in the 1970s and has never had CWD.

Flees said the jump from 12 CWD cases in 2016 to 43 in 2017 is no mystery or surprise. “We shot more deer to lower our densities, so we found more CWD,” he said. He thinks CWD was in the facility’s soils when they enclosed it with an 8-foot-high fence 14 years ago, or it arrived in alfalfa bales brought in for feed.

Perhaps the bigger mystery is why DATCP allows any deer from Iowa County to be shipped anywhere. Windy Ridge Whitetails is one of eight captive-deer facilities in CWD-infected counties — Sauk, Dane, Iowa, Rock, Walworth and Richland — enrolled in DATCP’s herd-status program, which allows deer transfers if facilities follow specified guidelines.

That won’t change soon, either. In a letter Jan. 30 responding to my open records request, Paul Dedinsky, DATCP’s chief legal counsel, wrote, “The Department is not proposing any rule changes to prohibit movement from CWD endemic areas.”

No doubt Wisconsin’s wild deer provide a vast, mostly undocumented pool for spreading CWD, but sick deer can only carry disease as far as they walk. With DATCP’s approval, privately owned deer could spread CWD wherever they’re trucked.

Patrick Durkin is a freelance writer who covers outdoors for USA TODAY NETWORK-Wisconsin.. Email him at patrickdurkin56@gmail.com.



FRIDAY, FEBRUARY 16, 2018 

Wisconsin Stop private deer industry from trucking CWD across state



Tuesday, December 20, 2011

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011

The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

SUMMARY:



***>captive deer farmers breeders entitlement program, i.e. indemnity program, why?

how many states have $465,000., and can quarantine and purchase there from, each cwd said infected farm, but how many states can afford this for all the cwd infected cervid game ranch type farms, and why do tax payers have to pay for it ???

MONDAY, MARCH 26, 2018 

Wisconsin Rep. Milroy Wants More Action to Combat CWD TSE Prion aka Mad Deer Disease



THURSDAY, SEPTEMBER 13, 2018 

Two Louisiana Residents Plead Guilty to Smuggling Live White-Tailed Deer into Mississippi that came from a herd of captive white-tailed deer in Pennsylvania that tested positive for Chronic Wasting Disease CWD



2016
 

Deer Antler Velvet and the CWD TSE Prion

Volume 15, Number 5—May 2009 

Research 

Chronic Wasting Disease Prions in Elk Antler Velvet

Rachel C. Angers1, Tanya S. Seward, Dana Napier, Michael Green, Edward Hoover, Terry Spraker, Katherine O’Rourke, Aru Balachandran, and Glenn C. TellingComments to Author Author affiliations: University of Kentucky Medical Center, Lexington, Kentucky, USA (R.C. Angers, T.S. Seward, D. Napier, M. Green, G.C. Telling); Colorado State University, Fort Collins, Colorado, USA (E. Hoover, T. Spraker); US Department of Agriculture, Pullman, Washington, USA (K. O’Rourke); Canadian Food Inspection Agency, Ottawa, Ontario, Canada (A. Balachandran); 1Current affiliation: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

Abstract 

Chronic wasting disease (CWD) is a contagious, fatal prion disease of deer and elk that continues to emerge in new locations. To explore the means by which prions are transmitted with high efficiency among cervids, we examined prion infectivity in the apical skin layer covering the growing antler (antler velvet) by using CWD-susceptible transgenic mice and protein misfolding cyclic amplification. Our finding of prions in antler velvet of CWD-affected elk suggests that this tissue may play a role in disease transmission among cervids. Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. The fact that CWD prion incubation times in transgenic mice expressing elk prion protein are consistently more rapid raises the possibility that residue 226, the sole primary structural difference between deer and elk prion protein, may be a major determinant of CWD pathogenesis.





Sunday, September 16, 2018 

Mother to Offspring Transmission of TSE PRION DISEASE and risk factors there from



TUESDAY, AUGUST 07, 2018 

Passage of scrapie to deer results in a new phenotype upon return passage to sheep



THURSDAY, SEPTEMBER 27, 2018 

Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control model



MONDAY, OCTOBER 01, 2018 

Update on Classical and Atypical Scrapie in Sheep and Goats: Review 2018



TUESDAY, SEPTEMBER 4, 2018 

USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS September 4, 2018



ONE more thing, please remember, the label does not have to say ''deer ration'' for cervid to be pumped up with. you can get the same ''high protein'' from many sources of high protein feed for animals other than cattle, and feed them to cervid...


Saturday, August 29, 2009

FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009



Friday, September 4, 2009

FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009



WEDNESDAY, JULY 11, 2018 

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000


TUESDAY, JULY 10, 2018
 
CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS
 
*** ''but feeding of other ruminant protein, including scrapie-infected sheep, can continue to pigs.''
 
CONFIDENTIAL SPONGIFORM ENCEPHALOPATHY OF PIGS
 
SUNDAY, SEPTEMBER 23, 2018 

Low-volume goat milk transmission of classical scrapie to lambs and goat kids



WEDNESDAY, SEPTEMBER 19, 2018 

CHRONIC WASTING DISEASE CWD TSE PRION Detection of a first case in Quebec Canada


TUESDAY, JULY 03, 2018 
 
Chronic Wasting Disease CWD TSE Prion Global Report Update, USA, CANADA, KOREA, NORWAY, FINLAND, Game Farms and Fake news
 


SUNDAY, APRIL 8, 2018 

Transmissible Spongiform Encephalopathy TSE Prion Disease Global Pandemic Urgent Update April 9, 2018



***> NEW TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE (MAD CAMEL DISEASE) IN A NEW SPECIES <***

NEW OUTBREAK OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE IN A NEW SPECIES

Subject: Prion Disease in Dromedary Camels, Algeria

Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.




Wednesday, May 30, 2018 

Dromedary camels in northern Africa have a neurodegenerative prion disease that may have originated decades ago



***> IMPORTS AND EXPORTS <***

SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN




WEDNESDAY, JULY 11, 2018 

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000



WEDNESDAY, SEPTEMBER 26, 2018 J

***> AVMA In Short Update USDA announces detection of atypical BSE



TUESDAY, SEPTEMBER 4, 2018 

USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS September 4, 2018



WEDNESDAY, SEPTEMBER 5, 2018 

APHIS Concurrence With OIE Risk Designations for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0012]



HUMAN MAD COW DISEASE nvCJD TEXAS CASE NOT LINKED TO EUROPEAN TRAVEL CDC

Sunday, November 23, 2014

Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas

Updated: October 7, 2014

CDC and the Texas Department of State Health Services (DSHS) have completed the investigation of the recently reported fourth vCJD case in the United States. It confirmed that the case was in a US citizen born outside the Americas and indicated that the patient's exposure to the BSE/vCJD agent most likely occurred before he moved to the United States; the patient had resided in Kuwait, Russia and Lebanon. The completed investigation did not support the patient's having had extended travel to European countries, including the United Kingdom, or travel to Saudi Arabia. The specific overseas country where this patient’s infection occurred is less clear largely because the investigation did not definitely link him to a country where other known vCJD cases likely had been infected.

https://www.cdc.gov/ncidod/dvrd/vcjd/other/confirmed-case-in-texas.htm

https://vcjd.blogspot.com/2014/11/confirmed-variant-creutzfeldt-jakob.html


WEDNESDAY, SEPTEMBER 05, 2018 

Edmonton woman one of the youngest diagnosed with CJD at 35 years old and pregnant



WEDNESDAY, SEPTEMBER 26, 2018 

A new variant of Creutzfeldt-Jakob disease in the UK 1995 revisited 2018 a review of science



CBC news
 
*** USA sporadic CJD MAD COW DISEASE HAS HUGE PROBLEM Video
 
*** sporadic CJD linked to mad cow disease
 
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
 
 


 1997-11-10: Panorama - The british disease
 
 
*** Human Mad Cow Video

 


TUESDAY, JULY 31, 2018 

USA CJD TSE Tables of Cases Examined National Prion Disease Pathology Surveillance Center Cases Examined May 1, 2018

http://prionunitusaupdate.blogspot.com/2018/07/usa-cjd-tse-tables-of-cases-examined.html


THURSDAY, OCTOBER 04, 2018 

National Prion Disease Pathology Surveillance Center Cases Examined¹ (September 18, 2018)



Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home