Pages

Thursday, March 18, 2021

Wisconsin Burnett County Deer Herd Depopulated Due to CWD

Wisconsin Burnett County Deer Herd Depopulated Due to CWD

Release Date: March 18, 2021

Media Contacts: Kevin Hoffman, Public Information Officer, (608) 224-5005, kevin.hoffman@wisconsin.gov

MADISON — The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that a white-tail deer herd at a Burnett County breeding farm that tested positive for chronic wasting disease (CWD) in 2020 was depopulated on March 3, 2021. None of the remaining 14 deer tested positive for the disease.

In October 2020, a 4-year-old whitetail buck tested positive for CWD at the 5-acre farm. DATCP immediately quarantined all animals on the premises, meaning no live animals or whole carcasses were permitted to leave the property. The U.S. Department of Agriculture (USDA) Wildlife Services depopulated the herd, and samples were sent to the USDA National Veterinary Services Laboratory in Ames, Iowa, for testing. 

The farm owner will receive federal indemnity for the depopulated animals. As a condition of receiving federal indemnity, the farm will not be permitted to hold cervids for five years, and during that time it must maintain fences and submit to routine inspections.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal’s death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements.

More information


About DATCP’s farm-raised deer program: https://datcp.wi.gov/Pages/Programs_Services/FarmRaisedDeer.aspx

###


See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...


WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO


cwd update on Wisconsin from Tammy Ryan...


CWD Positives To Date

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 47545 47503 53

Central Forest Zone 6439 6432 39

CWD Management Zone 1 1 0

Northern Forest Zone 27210 27195 6

Southern Farmland Zone 178443 178372 7865

Unknown Zone 3265 3252 3

Statewide Totals: 262903 262755 7966


CWD Positives 2020 To Date

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 5689 5664 13

Central Forest Zone 420 415 4

Northern Forest Zone 2025 2015 0

Southern Farmland Zone 7946 7900 1359

Unknown Zone 418 411 1

Totals: 16498 16405 1377


Wisconsin Deer Farm Statistics

The following data is updated annually during the license renewal process:

Number of registered​​ deer premises in Wisconsin ​311

​Number of hunting ranches ​68 of the 311

​Number of premises enrolled in the CWD herd status program ​121

The following data was last updated October 28, 2020:

​Number of farms with a CWD positive test since 2001 29​​

​Number of herds depopulated as a result of a CWD positive ​18

Resources

​List of Registered Deer Farms*


List of Registered Hunting Ranches​*


Map of registered deer farms, past and current CWD positive locations


CWD positives in farm-raised deer

Chronic Wasting Disease Positives in Farm-raised Deer

Revised: 10/23/2020

County (Premises #)

Sample Collection Date of First CWD Positive in Farm-Raised Deer Sample Collection Date of Last CWD Positive in Farm Raised Deer Total CWD Positive in Farm-Raised Deer

Portage(1) 9/4/2002 1/18/2006 82

Walworth(1) 9/20/2002 12/13/2002 6

Manitowoc 3/5/2003 3/5/2003 1

Sauk(1) 10/3/2003 10/3/2003 1

Racine 5/1/2004 5/1/2004 1

Walworth(2) 7/28/2004 11/3/2004 3

Crawford 1/19/2005 1/25/2007 2

Portage(2) 9/22/2008 11/18/2008 2

Jefferson 12/1/2008 12/1/2008 1

Marathon 11/7/2013 1/5/2020 111

Richland(1) 9/13/2014 11/19/2014 8

Eau Claire 6/8/2015 11/24/2015 34

Oneida 11/4/2015 12/7/2019 15

Iowa(1) 1/22/2016 9/14/2019 4

Oconto 9/4/2016 9/17/2020 84

Shawano 9/18/2017 8/31/2020 44

Waupaca 9/21/2017 12/7/2017 12

Washington 2/18/2018 11/15/2018 12

Richland(2) 5/11/2018 5/11/2018 1

Dane 5/16/2018 5/16/2018 1

Iowa(2) 5/18/2018 5/18/2018 21

Marinette 5/19/2018 5/19/2018 1

Sauk(2) 6/4/2018 11/28/2018 2

Portage(3) 10/23/2018 10/23/2018 1

Portage(4) 11/16/2018 5/1/2019 8

Forest 1/8/2019 12/10/2019 6

Burnett(1) 7/30/2019 7/30/2019 1

Trempealeau 11/7/2019 11/15/2019 2

Burnett(2) 9/3/2020 9/3/2020 1 


WISCONSIN TOTAL CWD POSTIVE CAPTIVE TO DATE 468

Wisconsin Department of Natural Resources

U.S. Geological Survey

Certified U.S. Department of Agriculture laboratories

*Updated daily through an automated database.


FRIDAY, JANUARY 22, 2021 

Wisconsin DNR CONFIRMS CWD IN WOOD COUNTY WILD DEER; RENEWS BAITING AND FEEDING BANS


THURSDAY, DECEMBER 17, 2020 

Wisconsin DNR CONFIRMS CWD DETECTED IN WASHINGTON COUNTY; NEW BAITING AND FEEDING BAN NOW FOR OZAUKEE COUNTY 


SUNDAY, SEPTEMBER 20, 2020 

Wisconsin Sinks Further Into the Abyss With CWD TSE Prion 2020


TUESDAY, JUNE 09, 2020 

Wisconsin Trempealeau County Deer Farm Tests Positive for CWD ​Release Date: June 9, 2020


MONDAY, JUNE 01, 2020 

Wisconsin CWD TSE Prion Continues to Spiral Out of Control, 6585 Cases Confirmed to Date in Wild, and it's anyone's guess for captive


WEDNESDAY, FEBRUARY 05, 2020

Wisconsin CWD TSE Prion 2019 to date wild deer 1317 positive and Captive Farmed Livestock Cervid CWD update


THURSDAY, JANUARY 23, 2020 

Wisconsin Confirms CWD Detected In Marquette and Marathon County


WEDNESDAY, JANUARY 08, 2020 

Wisconsin Chronic Wasting Disease CWD TSE Prion Positives in Farm-raised Deer in 2019 

The majority of the positives have come after 2013 when DATCP began letting some deer farms and hunting ranches continue operating after CWD was detected on their property.


TUESDAY, JULY 14, 2015

TWO Escaped Captive Deer on the loose in Eau Claire County Wisconsin CWD postive farm Yellow ear tag


WEDNESDAY, FEBRUARY 10, 2016 

Wisconsin Two deer that escaped farm had chronic wasting disease CWD 


436 Deer Have Escaped From Farms to Wild

Tuesday, 18 March 2003 00:00

As the DNR prepared to hand over authority for overseeing game farms to the agriculture department, it sent 209 conservation wardens to 550 farms to collect information, attempt to pinpoint the source of the disease and to learn whether other deer had been exposed to it. The audit found that most farms were in compliance, but the DNR found many violations and instances of poor record keeping. Also in numerous instances, fences did not stop wild and captive deer from intermingling. see;

436 Deer Have Escaped From Farms to Wild

Tuesday, 18 March 2003 00:00


CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011

Form 1100-001

(R 2/11)

NATURAL RESOURCES BOARD AGENDA ITEM

SUBJECT: Information Item: Almond Deer Farm Update

FOR: DECEMBER 2011 BOARD MEETING

TUESDAY

TO BE PRESENTED BY / TITLE: Tami Ryan, Wildlife Health Section Chief

SUMMARY:

2.8.2

Item No.

In April 20 II, the Natural Resources Board approved the Department purchase of a former deer farm known as Buckhorn Flats in Portage County. Following acquisition the property officially became a Bureau of Wildlife Management program property. Staff in the Bureau's Wildlife Health Section, the West Central District, and Northeast District have taken steps towards public outreach with the local community, developed a property managment plan and biosecurity protocols, are working towards the installation of a secondary fence, and are awaiting research proposals that will advance the scientific understanding of Chronic Wasing Disease.

SNIP...

CORRESPONDENCE/MEMORANDUM

-------------

DATE: November 21, 20 ll FILE REF: 2300

TO: Natural Resources Board

FROM: Cathy Stepp

SUBJECT: Almond Deer Farm Update

The first case of Chronic Wasting Disease (CWD) among Wisconsin's farm-raised deer occurred in a white-tailed deer buck shot by a hunter at the property (formerly known as Buckhorn Flats) in September 2002. This situation prompted the eventual depopulation of the entire farm. The deer, a mix of does and yearlings, were destroyed on January 17, 2006- 4 years later- by U.S. Department of Agriculture shooters under a USDA agreement with the farm owner. Sixty of the 76 animals tested positive for CWD. The 76 deer constituted the breeding herd in the breeding facility on the farm. The property also had a hunting preserve until 2005. Four deer, two does and two fawns, the only deer remaining in the former preserve, were killed and tested as well. CWD was not detected in those animals. The total number of deer to test positive from this farm from the initial discovery to final depopulation is 82. The nearly 80% prevalence rate discovered on Buckhorn Flats is the highest prevalence recorded in any captive cervid operation in North America.

The DNR acquired the property on April 13, 20ll. After extensive consideration and pursuit of several options, it was decided that purchasing the property and subsequent management of the property is the only realistic option to keep the fences intact. Wisconsin's wild white-tailed deer herd is one of the state's most valuable natural resources, and those deer are a valuable resource of recreational, economic, and ecological significance to all citizens of the state. CWD is a serious long-term threat to Wisconsin's deer herd and the future of Wisconsin's hunting traditions. Over 1,200 free-ranging deer have been tested since 2002 in Portage County with no detections of CWD. We have very high levels of confidence that CWD does not occur in the free-ranging herd in this area. This is of particular significance considering this farm is located 60 miles north of any known occurrence of CWD in wild deer.

The Hall farm is the most concerning of the depopulated game farms in Wisconsin because of its potential high level of soil contamination. Similar concerns exist to some degree for all nine positive farms and any future farms in which CWD positive cervids are found. However, Buckhorn Flats is a unique situation due to the nearly 80% prevalence rate that occurred there, which is the highest infection rate in a captive cervid farm in North America and perhaps the world. The property has undergone cleaning and disinfection per USDA guidelines. Under the established premise plan, no species of cervids could be brought onto the property for five years, and fences were to be maintained to keep free-ranging deer from entering the property. The premise plan expired on May 24, 20ll. Despite this five year premise plan and site decontamination, the department had serious concerns over the bioavailability of infectious prions at this site to free-ranging white-tailed deer should the fences be removed or otherwise compromised.

Based on current scientific knowledge, CWD prions are known to persist in the environment for at least 3 years and potentially much longer. Evidence of environmental transmission was documented in a Colorado research facility where mule deer became infected with CWD. Furthermore, the likely transmission of CWD via soil is corroborated by recent studies that show that prions bind to soil components with high affinity and are not easily removed by water. These findings suggest that soil may contribute more significantly to TSE transmission than previously recognized.

Department Actions to Date

The DNR has taken steps to inform the public regarding the background of the Almond Farm as well as future plans for the property. A secondary fence, research, and occupancy of the house are all topics of interest. A description of each topic is identified below:

A. A Property Management Plan was developed to provide a background and future plans for the property. Chapters within the plan include a description of the property, research opportunities, facilities, public communications, and biosecurity protocols (see attachment).

B. The DNR held a public meeting the evening of July 28th at the Almond-Bancroft School to discuss the recent acquisition of the deer farm formerly known as Buckhorn Flats. Twenty-nine people signed in and stayed for the 2-hour duration including local deer farmers, conservation congress delegates, etc. Following 45 minutes of presentation, the meeting focused on the question and answer period. The DNR also asked for public input regarding how they could help in varying capacities at the Almond Farm (see attachment).

C. The DNR will begin timber removal from outside the fence this winter. Timber removal from inside the fence has begun with hazardous trees removed. The construction of a second fence 10 – 12 feet outside the present fence will begin in the spring. This will add an additional level of security for keeping wild deer from entering the farm and maintain the integrity of the perimeter (see attachment).

D. The DNR plans to use the Almond Farm as a CWD research facility. Because the question of how long a contaminated site is a risk to deer is of national and international interest, there may be opportunities for research and funding at this facility. One way to potentially assess whether there is a risk to deer from the Almond Farm is to conduct bioassays focusing on prions persisting in soil and what role environmental contamination plays in disease transmission. A proposal is pending from the University of Wisconsin – Stevens Point that concerns prion degradation via composting. The group is seeking additional funding from the University of Wisconsin – Madison and representatives in Canada. USGS is also contemplating a proposal contingent on funding from their pending federal budget. Any proposed research that includes bringing captive cervids onto the property will be thoroughly reviewed by the CWD Research Committee consisting of the Wildlife Health Team, the Wildlife Policy Team, and Department administration as well as external CWD experts prior to permission being granted to ensure that the health of the wild deer herd will not be endangered. The double fencing described above will be critical to minimize the risk of ingress of free-ranging and egress of any experimental captive cervids. E. The house is rented and currently occupied by a Northeast district wildlife employee. The Lessee agrees to perform weekly fence inspections to insure that the fence integrity has not been compromised. The Lessee also pays for all utilities, and will provide lawn care, snow removal, gutter cleaning, and other miscellaneous maintenance as needed. In exchange for these services the monthly rental fee has been waived. It is agreed that the Lessor and the Lessee shall review said waiver of the monthly rental charge at the end of every twelve months that this lease is in effect (see attachment).

Attachments

Almond Farm Property Management Plan

Questions/Comments from Almond Farm Public Meeting (07-28-2011)

DNR News Release – Almond Farm Public Meeting Announcement (07/18/2011)

External Fence Aerial Photo

Occupancy Agreement

Natural Resources Board Agenda Item – Land Acquisition of the Almond Farm

(March 2011)

THIS PAGE INTENTIONALLY LEFT BLANK

SNIP...

CHAPTER ONE

BACKGROUND ; SUPPORTING

INFORMATION

Background

The first case of CWD among Wisconsin’s farm-raised deer occurred in a white-tailed deer buck shot by a hunter at Buckhorn Flats in September 2002. This situation prompted the eventual depopulation of the entire farm. The deer, a mix of does and yearlings, were destroyed on January 17, 2006 by U.S. Department of Agriculture shooters under a USDA agreement with the farm owner, Stan Hall. Tissue samples were sent to the Wisconsin Veterinary Diagnostic Laboratory for initial screening tests and to the USDA National Veterinary Services Laboratories in Ames, Iowa, for confirmation.

These laboratory results show that 60 of the 76 animals tested positive for chronic wasting disease. The 76 deer constituted the breeding herd on Hall’s farm. He also operated a hunting preserve on the property until 2005. Four deer, two does and two fawns, the only deer remaining in the former preserve, were killed and tested as well. CWD was not detected in those animals. The total number of deer to test positive from this farm from the initial discovery to final depopulation is 82. The CWD infection rate was nearly 80%, the highest ever in a North American captive herd.

The property has undergone cleaning and disinfection as per USDA guidelines. Under an established premise plan, no species of cervids could be brought onto the property for five years, and fences must be maintained to keep wild deer from entering the property so long as the property remained under current ownership. The premise plan expired on May 24, 2011.

Despite the five year premise plan and site decontamination, The WI DNR has concerns over the bioavailability of infectious prions at this site to wild white-tail deer should these fences be removed. Current research indicates that prions can persist in soil for a minimum of 3 years. However, Georgsson et al. (2006) concluded that prions that produced scrapie disease in sheep remained bioavailable and infectious for at least 16 years in natural Icelandic environments, most likely in contaminated soil. Additionally, the authors reported that from 1978-2004, scrapie recurred on 33 sheep farms, of which 9 recurrences occurred 14-21 years after initial culling and subsequent restocking efforts; these findings further emphasize the effect of environmental contamination on sustaining TSE infectivity and that long-term persistence of prions in soils may be substantially greater than previously thought. Evidence of environmental transmission also was documented in a Colorado research facility where mule deer became infected with CWD in two of three paddocks where infected deer carcasses had decomposed on site 1.8 years earlier, and in one of three paddocks where infected deer had last resided 2.2 years earlier (Miller et al. 2004).

Environmental contamination has been identified as a possible cause of recurrence of CWD-infection on elk farms in Canada, when elk were reintroduced one year after depopulation, clean up and disinfection. To date, 8 CWD infected farms remain under CFIA (government of Canada) quarantine indefinitely and will not be allowed to repopulate with cervids until there is additional research on detection of prions in soils and better understanding of the duration of persistence of disease-causing prion post depopulation of CWD-infected cervid farms (Douglas, CFIA, pers. comm.).

Furthermore, the likely transmission of CWD via soil is corroborated by recent studies showing long-term persistence of prions in soil, that prion binds to soil components with high affinity and is not easily removed by water, and that oral prion disease transmission may be enhanced when bound to soil (Johnson et al. 2006, Schramm et al. 2006, Johnson et al. 2007). These findings suggest that soil may harbor more TSE infectivity and contribute more significantly to TSE transmission than previously recognized. These studies highlight the concerns about the risk of transmission via environmental contamination beyond five years and that efforts should be made to prevent freeranging deer from coming into contact with these contaminated facilities.

SNIP...

CHAPTER TWO

OBJECTIVE FOR PROPERTY

Maintain the Perimeter Deer Fence

The primary reason for DNR purchase of the property is to ensure that the deer fence remains intact, preventing wild deer from accessing the prion infected property. The DNR has an ethical and financial responsibility to maintain the fences until the science offers a solution for assessing the risk of remediating the site. The fence will be inspected frequently and repaired as needed.

It is desired to construct a second deer proof fence outside of the existing fence as further insurance for the property. The land immediately outside of the current fence will be cleared of all trees and brush to prepare of installation of the fence and allow vehicle access between the fences. It is hoped that land clearing will be completed in the fall of 2011 with the new fence being constructed as soon as conditions permit in 2012, however, the timing is contingent on funding.

Research Opportunities

The DNR plans to use the Almond Farm as a CWD research facility. Because the question of how long a contaminated site is a risk to deer is of national and international interest, there may be opportunities for research and funding at this facility. One way to potentially assess whether there is a risk to deer from the Almond Farm is to conduct bioassays, either on site or at an alternate location, to monitor for disease transmission. Any proposed research that includes bringing captive cervids onto the property will be thoroughly reviewed by the CWD Research Committee consisting of the Wildlife Health Team, the Wildlife Policy Team, and Department administration as well as external CWD experts prior to permission being granted to ensure that the health of the wild deer herd will not be endangered. The double fencing described above will be critical to minimize the risk of ingress of free-ranging and egress of any experimental captive cervids.

Facilities

SNIP...

CHAPTER THREE

BIOSECURITY PROTOCOLS

The “Almond Farm” owned by the Wisconsin DNR is a CWD prion contaminated facility, and specific guidelines for apparel and equipment sanitization must be followed to prevent prion contamination outside of the contaminated facility. Sanitization guidelines for equipment and surfaces are based upon recommendations from the American Association of Veterinary Laboratory Diagnosticians: Laboratory Safety and Waste disposal Committee and Pathology Committee 2004 publication, “Best Management Practices for Handling Suspect Biosafety Level 2 Animal Transmissible Spongiform Encephalopathy (TSE) Diagnostic Samples. (Scrapie, Chronic Wasting Disease and Transmissible Mink Encephalopathy) In Animal Health Laboratories” These guidelines are as follows:

General Apparel Guidelines

Facilities should have dedicated PPE (Personal Protective Equipment) that stays on site, and should not be removed under any circumstance. Examples of this are as follows: Boots/overshoes, gloves, eye and ear protection, coveralls, etc.

Anyone entering either facility that chooses to not wear dedicated reusable PPE shall be required to utilize disposable PPE that must be disposed of after each daily use. Examples of acceptable disposable PPE are: Tyvek coveralls, disposable gloves, plastic boot covers, etc.

Any personal footwear not left on site must be sanitized utilizing a 50/50 bleach/water solution*.

Personnel Entry/Exit

Upon entry into contaminated areas, personal footwear should be either removed and replaced by dedicated facility boots, or must be covered with plastic boot covers.

Personal clothing should be covered by putting on disposable Tyvek coveralls to prevent clothing contamination.

If contaminated material will be handled, hands should be covered with latex/nitrile gloves.

Prior to exiting contaminated areas of the facility, all persons must walk through a 50/50* bleach/water solution if boots are worn, or boot covers must be removed and disposed of.

All contaminated disposable apparel must be removed prior to exiting the facility.

Trash receptacles for disposable clothing, gloves, and boot covers should be lined and emptied daily, with liners being tightly sealed and placed directly into closed dumpsters designated for waste disposal in a sanitary landfill.

Equipment Sanitization

All tools, instruments, surfaces, and equipment that have been used in potentially contaminated areas of the facility should be sanitized using a 50/50 bleach/water solution*.

Tools or instruments that come into contact with blood, other bodily fluids, or tissues from potentially positive animals should be soaked in a 50/50 bleach/water solution for 60 minutes to be fully disinfected.

All equipment used on site must be sanitized prior to being transferred to alternate locations (preferably, equipment used on site will be kept on-site).

Equipment that is intended to be moved from the property can only enter on frozen snow covered ground.

Equipment that may be moved between facilities (skid steer, ATV’s, etc.) must be pressure-washed on site prior to movement.

* 50/50 (1:1) Bleach/water solution is a chemically approved and proven method of sanitizing surfaces, sampling/necropsy instruments, and footwear. By using a 50/50 solution, the concentration of chlorine is @20,000 ppm, which is required to neutralize prions to an acceptable level of biosafety. For more information on recommended sanitization procedures, refer to: BEST MANAGEMENT PRACTICES FOR HANDLING SUSPECT BIOSAFETY LEVEL 2 ANIMAL TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY (TSE) DIAGNOSTIC SAMPLES (SCRAPIE, CHRONIC WASTING DISEAS E AND TRANSMISSIBLE MINK ENCEPHALOPATHY) IN ANIMAL HEALTH LABORATORIES: AAVLD BMP CWD scrapie FINAL 18 Feb 2004.pdf

SNIP...

APPROVED:

SNIP...

SEE MAPS

SNIP...SEE FULL TEXT ;


NEW URL ;


> > > The CWD infection rate was nearly 80%, the highest ever in a North American captive herd.

Despite the five year premise plan and site decontamination, The WI DNR has concerns over the bioavailability of infectious prions at this site to wild white-tail deer should these fences be removed. Current research indicates that prions can persist in soil for a minimum of 3 years. 

However, Georgsson et al. (2006) concluded that prions that produced scrapie disease in sheep remained bioavailable and infectious for at least 16 years in natural Icelandic environments, most likely in contaminated soil.

Additionally, the authors reported that from 1978-2004, scrapie recurred on 33 sheep farms, of which 9 recurrences occurred 14-21 years after initial culling and subsequent restocking efforts; these findings further emphasize the effect of environmental contamination on sustaining TSE infectivity and that long-term persistence of prions in soils may be substantially greater than previously thought. < < <

SEEMS Wisconsin may have to have a 5 year CWD plan of quarantine and disinfection for the whole state of Wisconsin, and that probably is not near long enough. it may take decades, if Wisconsin can ever be cleaned up at all. Wisconsin has 9 _documented_ CWD infected game farms to date. Wisconsin should close every one of those CWD infected game farms down, and do the same thing with them, as they did the Almond Buckhorn Farm. just my opinion. ...TSS

> > > similar if less acute concerns exist for all nine deer farms in Wisconsin that have tested positive for CWD. < < <

WISCONSIN DEPT. OF NATURAL RESOURCES

NEWS RELEASE

Wisconsin Department of Natural Resources

West Central Region

1300 W. Clalremont Ave., PO Box 4001, Eau Claire, WI 54702-2786 Phone: (715) 839-3715 TDD: 711 dnr.wi.gov www.wisconsin.gov

DATE: Monday, July 18,2011

CONTACTS: Davin Lopez, ONR CWO coordinator, Madison. 608-267-2948 Kris Belling, DNR regional wildlife supervisor, Eau Claire, 715-839-3736

SUBJECT: Public input sought on future of CWO-tainted deer farm

BAD CLAlRE - Neighbors and others interested ill the deer farm formerly known as Buckhorn Flats are invited to a public meeting on the future ofthe property, now owned by the state Department of Natural Resources.

The open house meeting will mil 6-8 p.m. Thursday, July 28, in the auditorium at the Almond- Bancroft School at 1336 Elm Street in Almond, Background on the property, now called the Almond Deer Farm, will be provided, and the public is invited to ask questions and offer input 011 the management of the site,

The first case of CWD, 01' chronic wasting disease, among Wisconsin farm-raised deer was discovered on this property in September 2002. CWD, which affects deer and elk, is a contagious and always fatal brain disease for which there is no cure. The discovery o.f CWD on this property led .to the . depopulation of the entire deer herd on the farm.

In the end, 82 of the deer killed and removed tested positive for CWD. This is an 80 percent infection rate, the highest rate ofCWD infection recorded in North America, and possibly in the world.

The property is located along the east side of3rd Street, about one mile north and west of the Village of Almond in Portage County. The DNR purchased the 80~acre property this past spring for $465,000. There are 25 acres of cropland and 55 acres of woodland. About 65 acres are fenced, the area previously used as a deer farm. The property includes a single-family residence and a storage shed located outside of the fence.

Research indicates prions, proteins associated with the disease, can persist in soil for a minimum of three years and perhaps much longer. Prions that cause scrapie, a CWD-Iike disease in sheep and goats, have remained available and infectious for up to 16 years. DNR officials believe there is all unacceptable risk that CWD prions would infect wild white-tailed deer around this site if the fences would be removed. Since the previous owners were selling the property, and there is no continuing obligation to maintain the fence, wildlife officials concluded the best available option was to acquire the property.

similar if less acute concerns exist for all nine deer farms in Wisconsin that have tested positive for CWD. Because the question of how long a contaminated site is a risk to deer is of national and international 'interest there will be a number of opportunities for research at the Almond farm. Plans include building a second fence, if funding is available, to provide a secondary barrier and further reduce the risk of disease transmission to the wild deer herd. In addition, DNR officials must decide whether to maintain ownership of the house and lot.

The primary reason for DNR purchase ofthe property is to ensure that the deel-,fence remains intact, preventing wild deer from accessing the property and becoming infected. The pNR has an ethical and financial responsibility to maintain the fences until science offers a solution for assessing the risk 01' remediating the site. The fence will be inspected frequently.

-30-

The following counties are In the Wast Central Region: Adams, Buffalo, Chippewa, Clark, Dunn, Eau Claire, Jackson, Juneau, La Crosse, Marathon, Monroe, Pepin. Pierce, Portage, st. Croix, Trempealeau, Varnon and Wood. The Public Affairs Manager for DNR West Central Region Is Ed Culhane, 715-839-3715.

Tuesday, December 20, 2011

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011


SNIP...SEE FULL TEXT ;


Wednesday, November 16, 2011

Wisconsin Creutzfeldt Jakob Disease, CWD, TSE, PRION REPORTING 2011


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission

Greetings APHIS et al, i would kindly like to comment on Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004.

Greetings APHIS et al, i would kindly like to comment on Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004.

***> 1st and foremost your biggest problem is 'VOLUNTARY'! AS with the BSE 589.2001 FEED REGULATIONS, especially since it is still voluntary with cervid, knowing full well that cwd and scrapie will transmit to pigs by oral route. VOLUNTARY DOES NOT WORK! all animal products should be banned and be made mandatory, and the herd certification program should be mandatory, or you don't move cervid. IF THE CWD HERD CERTIFICATION IS NOT MANDATORY, it will be another colossal tse prion failure from the start. 

***> 2nd USA should declare a Declaration of Extraordinary Emergency due to CWD, and all exports of cervid and cervid products must be stopped internationally, and there should be a ban of interstate movement of cervid, until a live cwd test is available. 

***> 3rd Captive Farmed cervid ESCAPEES should be made mandatory to report immediately, and strict regulations for those suspect cwd deer that just happen to disappear. IF a cervid escapes and is not found, that farm should be indefinitely shut down, all movement, until aid MIA cervid is found, and if not ever found, that farm shut down permanently. 

***> 4th Captive Farmed Cervid, INDEMNITY, NO MORE Federal indemnity program, or what i call, ENTITLEMENT PROGRAM for game farm industry. NO MORE BAIL OUTS FROM TAX PAYERS. if the captive industry can't buy insurance to protect not only themselves, but also their customers, and especially the STATE, from Chronic Wasting Disease CWD TSE Prion or what some call mad deer disease and harm therefrom, IF they can't afford to buy that insurance that will cover all of it, then they DO NOT GET A PERMIT to have a game farm for anything. This CWD TSE Prion can/could/has caused property values to fall from some reports in some places. roll the dice, how much is a state willing to lose?

***> 5th QUARANTINE OF ALL FARMED CAPTIVE, BREEDERS, URINE, ANTLER, VELVET, SPERM, OR ANY FACILITY, AND THEIR PRODUCTS, that has been confirmed to have Chronic Wasting Disease CWD TSE Prion, the QUARANTINE should be for 21 years due to science showing what scrapie can do. 5 years is NOT near long enough. see; Infectious agent of sheep scrapie may persist in the environment for at least 16 to 21 years.

***> 6th America BSE 589.2001 FEED REGULATIONS CWD TSE Prion

***> 7TH TRUCKING TRANSPORTING CERVID CHRONIC WASTING DISEASE TSE PRION VIOLATING THE LACEY ACT

***> 8TH ALL CAPTIVE FARMING CERVID OPERATIONS MUST BE INSURED TO PAY FOR ANY CLEAN UP OF CWD AND QUARANTINE THERE FROM FOR THE STATE, NO MORE ENTITLEMENT PROGRAM FOR CERVID GAME FARMING PAY TO PLAY FOR CWD TSE PRION OFF THE TAX PAYERS BACK.

***> 9TH ANY STATE WITH DOCUMENTED CWD, INTERSTATE, NATIONAL, AND INTERNATIONAL MOVEMENT OF ALL CERVID, AND ALL CERVID PRODUCTS MUST BE HALTED!

***> 10TH BAN THE SALE OF STRAW BRED BUCKS AND ALL CERVID SEMEN AND URINE PRODUCTS

***> 11th ALL CAPTIVE FARMED CERVID AND THEIR PRODUCTS MUST BE CWD TSE PRION TESTED ANNUALLY AND BEFORE SALE FOR CWD TSE PRION

SEE FULL SCIENCE REFERENCES AND REASONINGS ;

Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission


APHIS-2021-0004-0002



***> 2021 Transmissible Spongiform Encephalopathy TSE Prion End of Year Report 2020

CJD FOUNDATION VIRTUAL CONFERENCE CJD Foundation Research Grant Recipient Reports Panel 2 Nov 3, 2020

zoonotic potential of PMCA-adapted CWD PrP 96SS inoculum


4 different CWD strains, and these 4 strains have different potential to induce any folding of the human prion protein. 


***> PIGS, WILD BOAR, CWD <***

***> POPULATIONS OF WILD BOARS IN THE UNITED STATES INCREASING SUPSTANTUALLY AND IN MANY AREAS WE CAN SEE  A HIGH DENSITY OF WILD BOARS AND HIGH INCIDENT OF CHRONIC WASTING DISEASE

HYPOTHOSIS AND SPECIFIC AIMS

HYPOTHOSIS 

BSE, SCRAPIE, AND CWD, EXPOSED DOMESTIC PIGS ACCUMULATE DIFFERENT QUANTITIES AND STRAINS OF PRIONS IN PERIPHERAL TISSUES, EACH ONE OF THEM WITH PARTICULAR ZOONOTIC POTENTIALS


Final Report – CJD Foundation Grant Program A. 

Project Title: Systematic evaluation of the zoonotic potential of different CWD isolates. Principal Investigator: Rodrigo Morales, PhD.


Systematic evaluation of the zoonotic potential of different CWD isolates. Rodrigo Morales, PhD Assistant Professor Protein Misfolding Disorders lab Mitchell Center for Alzheimer’s disease and Related Brain Disorders Department of Neurology University of Texas Health Science Center at Houston Washington DC. July 14th, 2018

Conclusions and Future Directions • We have developed a highly sensitive and specific CWD-PMCA platform to be used as a diagnostic tool. • Current PMCA set up allow us to mimic relevant prion inter-species transmission events. • Polymorphic changes at position 96 of the prion protein apparently alter strain properties and, consequently, the zoonotic potential of CWD isolates. • Inter-species and inter-polymorphic PrPC → PrPSc conversions further increase the spectrum of CWD isolates possibly present in nature. • CWD prions generated in 96SS PrPC substrate apparently have greater inter-species transmission potentials. • Future experiments will explore the zoonotic potential of CWD prions along different adaptation scenarios, including inter-species and inter-polymorphic.



Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease 

Author item MOORE, SARAH - Orise Fellow item Kunkle, Robert item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item SMITH, JODI - Iowa State University item KANTHASAMY, ANUMANTHA - Iowa State University item WEST GREENLEE, M - Iowa State University item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent. 

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 month challenge groups). The remaining pigs (>6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC. 

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP 

Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.

Interpretive Summary:

Technical Abstract: We have previously shown that the chronic wasting disease (CWD) agent from white-tailed deer can be transmitted to domestic pigs via intracranial or oral inoculation although with low attack rates and restricted PrPSc accumulation. The objective of this study was to assess the potential for cross-species transmission of pig-passaged CWD using bioassay in transgenic mice. Transgenic mice expressing human (Tg40), bovine (TgBovXV) or porcine (Tg002) PRNP were inoculated intracranially with 1% brain homogenate from a pig that had been intracranially inoculated with a pool of CWD from white-tailed deer. This pig developed neurological clinical signs, was euthanized at 64 months post-inoculation, and PrPSc was detected in the brain. Mice were monitored daily for clinical signs of disease until the end of the study. Mice were considered positive if PrPSc was detected in the brain using an enzyme immunoassay (EIA). In transgenic mice expressing porcine prion protein the average incubation period was 167 days post-inoculation (dpi) and 3/27 mice were EIA positive (attack rate = 11%). All 3 mice were found dead and clinical signs were not noted prior to death. One transgenic mouse expressing bovine prion protein was euthanized due to excessive scratching at 617 dpi and 2 mice culled at the end of the study at 700 dpi were EIA positive resulting in an overall attack rate of 3/16 (19%). None of the transgenic mice expressing human prion protein that died or were euthanized up to 769 dpi were EIA positive and at study end point at 800 dpi 2 mice had positive EIA results (overall attack rate = 2/20 = 10%). The EIA optical density (OD) readings for all positive mice were at the lower end of the reference range (positive mice range, OD = 0.266-0.438; test positive reference range, OD = 0.250-4.000). To the authors’ knowledge, cervid-derived CWD isolates have not been successfully transmitted to transgenic mice expressing human prion protein. The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


MONDAY, JANUARY 04, 2021 

NC1209: North American interdisciplinary chronic wasting disease research consortium Singeltary Submission January 2021


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 

PPo4-4:

Survival and Limited Spread of TSE Infectivity after Burial

Karen Fernie, Allister Smith and Robert A. Somerville The Roslin Institute and R(D)SVS; University of Edinburgh; Roslin, Scotland UK

Scrapie and chronic wasting disease probably spread via environmental routes, and there are also concerns about BSE infection remaining in the environment after carcass burial or waste 3disposal. In two demonstration experiments we are determining survival and migration of TSE infectivity when buried for up to five years, as an uncontained point source or within bovine heads. Firstly boluses of TSE infected mouse brain were buried in lysimeters containing either sandy or clay soil. Migration from the boluses is being assessed from soil cores taken over time. With the exception of a very small amount of infectivity found 25 cm from the bolus in sandy soil after 12 months, no other infectivity has been detected up to three years. Secondly, ten bovine heads were spiked with TSE infected mouse brain and buried in the two soil types. Pairs of heads have been exhumed annually and assessed for infectivity within and around them. After one year and after two years, infectivity was detected in most intracranial samples and in some of the soil samples taken from immediately surrounding the heads. The infectivity assays for the samples in and around the heads exhumed at years three and four are underway. These data show that TSE infectivity can survive burial for long periods but migrates slowly. Risk assessments should take into account the likely long survival rate when infected material has been buried.

The authors gratefully acknowledge funding from DEFRA.

PRION CONFERENCE 2010 ABSTRACT REFERENCE

2018 - 2019

***> This is very likely to have parallels with control efforts for CWD in cervids.

Rapid recontamination of a farm building occurs after attempted prion removal


Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2

Abstract

The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. 

Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. 

Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. 

Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). 

A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. 

Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3. 

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.

Funding This study was funded by DEFRA within project SE1865. 

Competing interests None declared. 






Saturday, January 5, 2019 

Rapid recontamination of a farm building occurs after attempted prion removal 


The effectiveness of on-farm decontamination methods for scrapie - SE1865

Description

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/ replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie-contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Objective

Phase 1

• Determine the presence and relative levels of airborne prions on a scrapie infected farm.

• Evaluate different pen surface decontamination procedures.

Phase 2

• Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

• Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

Time-Scale and Cost

From: 2012 

To: 2016 

Cost: £326,784

Contractor / Funded Organisations

A D A S UK Ltd (ADAS)

Keywords Animals Fields of Study Animal Health


The Effectiveness of on-Farm Decontamination Methods for Scrapie

Institutions ADAS

Start date 2012

End date 2016

Objective Phase 1

Determine the presence and relative levels of airborne prions on a scrapie infected farm. Evaluate different pen surface decontamination procedures.

Phase 2

Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

More information

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Funding Source

Department for Environment, Food and Rural Affairs

Project source

View this project

Project number

SE1865

Categories

Foodborne Disease

Policy and Planning 


Circulation of prions within dust on a scrapie affected farm

Kevin C Gough1 , Claire A Baker2 , Hugh A Simmons3 , Steve A Hawkins3 and Ben C Maddison2*

Abstract

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

snip... 

Discussion We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

Author 

 item Greenlee, Justin item Moore, S - Orise Fellow item Smith, Jodi - Iowa State University item Kunkle, Robert item West Greenlee, M - Iowa State University Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: 8/12/2015 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread


***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 

SOURCE REFERENCE 2018 PRION CONFERENCE ABSTRACT

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Horizontal transmission of chronic wasting disease in reindeer

Author

item MOORE, SARAH - ORISE FELLOW item KUNKLE, ROBERT item WEST GREENLEE, MARY - IOWA STATE UNIVERSITY item Nicholson, Eric item RICHT, JUERGEN item HAMIR, AMIRALI item WATERS, WADE item Greenlee, Justin

Submitted to: Emerging Infectious Diseases

Publication Type: Peer Reviewed Journal

Publication Acceptance Date: 8/29/2016

Publication Date: 12/1/2016

Citation: Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.

Interpretive Summary: Chronic wasting disease (CWD) is a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America and was recently diagnosed in a single free-ranging reindeer (Rangifer tarandus tarandus) in Norway. CWD is a transmissible spongiform encephalopathy (TSE) that is caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Little is known about the susceptibility of or potential for transmission amongst reindeer. In this experiment, we tested the susceptibility of reindeer to CWD from various sources (elk, mule deer, or white-tailed deer) after intracranial inoculation and tested the potential for infected reindeer to transmit to non-inoculated animals by co-housing or housing in adjacent pens. Reindeer were susceptible to CWD from elk, mule deer, or white-tailed deer sources after experimental inoculation. Most importantly, non-inoculated reindeer that were co-housed with infected reindeer or housed in pens adjacent to infected reindeer but without the potential for nose-to-nose contact also developed evidence of CWD infection. This is a major new finding that may have a great impact on the recently diagnosed case of CWD in the only remaining free-ranging reindeer population in Europe as our findings imply that horizontal transmission to other reindeer within that herd has already occurred. Further, this information will help regulatory and wildlife officials developing plans to reduce or eliminate CWD and cervid farmers that want to ensure that their herd remains CWD-free, but were previously unsure of the potential for reindeer to transmit CWD.

Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal prion disease of cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, and CWD was recently reported in a free-ranging reindeer of Norway. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWDwtd), mule deer (Odocoileus hemionus; CWDmd), or elk (Cervus elaphus nelsoni; CWDelk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWDwtd, CWDmd, or CWDelk. Two years after challenge of inoculated reindeer, non-inoculated negative control reindeer were introduced into the same pen as the CWDwtd inoculated reindeer (direct contact; n=4) or into a pen adjacent to the CWDmd inoculated reindeer (indirect contact; n=2). Experimentally inoculated reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrPcwd). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (months PI). PrPcwd was detected in 5 out of 6 sentinel reindeer although only 2 out of 6 developed clinical disease during the study period (< 57 months PI). We have shown that reindeer are susceptible to CWD from various cervid sources and can transmit CWD to naïve reindeer both directly and indirectly.


TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 

 
 *** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 


SEE;

Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;

Some unofficial information from a source on the inside looking out -

Confidential!!!!

As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss


Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).


Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document


Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

=========================

***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 

source reference Prion Conference 2015 abstract book

Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

Sandra Pritzkow,1 Rodrigo Morales,1 Fabio Moda,1,3 Uffaf Khan,1 Glenn C. Telling,2 Edward Hoover,2 and Claudio Soto1, * 1Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA

2Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA

3Present address: IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy *Correspondence: claudio.soto@uth.tmc.edu http://dx.doi.org/10.1016/j.celrep.2015.04.036

SUMMARY

Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc) to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

INTRODUCTION

snip...

DISCUSSION

This study shows that plants can efficiently bind prions contained in brain extracts from diverse prion infected animals, including CWD-affected cervids. PrPSc attached to leaves and roots from wheat grass plants remains capable of seeding prion replication in vitro. Surprisingly, the small quantity of PrPSc naturally excreted in urine and feces from sick hamster or cervids was enough to efficiently contaminate plant tissue. Indeed, our results suggest that the majority of excreted PrPSc is efficiently captured by plants’ leaves and roots. Moreover, leaves can be contaminated by spraying them with a prion-containing extract, and PrPSc remains detectable in living plants for as long as the study was performed (several weeks). Remarkably, prion contaminated plants transmit prion disease to animals upon ingestion, producing a 100% attack rate and incubation periods not substantially longer than direct oral administration of sick brain homogenates.

Finally, an unexpected but exciting result was that plants were able to uptake prions from contaminated soil and transport them to aerial parts of the plant tissue. Although it may seem farfetched that plants can uptake proteins from the soil and transport it to the parts above the ground, there are already published reports of this phenomenon (McLaren et al., 1960; Jensen and McLaren, 1960;Paungfoo-Lonhienne et al., 2008). The high resistance of prions to degradation and their ability to efficiently cross biological barriers may play a role in this process. The mechanism by which plants bind, retain, uptake, and transport prions is unknown. We are currently studying the way in which prions interact with plants using purified, radioactively labeled PrPSc to determine specificity of the interaction, association constant, reversibility, saturation, movement, etc.

Epidemiological studies have shown numerous instances of scrapie or CWD recurrence upon reintroduction of animals on pastures previously exposed to prion-infected animals. Indeed, reappearance of scrapie has been documented following fallow periods of up to 16 years (Georgsson et al., 2006), and pastures were shown to retain infectious CWD prions for at least 2 years after exposure (Miller et al., 2004). It is likely that the environmentally mediated transmission of prion diseases depends upon the interaction of prions with diverse elements, including soil, water, environmental surfaces, various invertebrate animals, and plants.

However, since plants are such an important component of the environment and also a major source of food for many animal species, including humans, our results may have far-reaching implications for animal and human health. Currently, the perception of the riskfor animal-to-human prion transmission has beenmostly limited to consumption or exposure to contaminated meat; our results indicate that plants might also be an important vector of transmission that needs to be considered in risk assessment. 


RIGINAL RESEARCH ARTICLE

Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

1Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK

2Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK

3Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK

4ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

5School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie-affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 


WEDNESDAY, MARCH 13, 2019 

CWD, TSE, PRION, MATERNAL mother to offspring, testes, epididymis, seminal fluid, and blood
Subject: Prion 2019 Conference

See full Prion 2019 Conference Abstracts


Transmissible Spongiform Encephalopathies in exotic species

In exotic species, the last one was in 2007.

SPECIES No. DATES AFFECTED

Ankole cow 2 1991, 95

Bison 1 1996

Cheetah 5 1992 – 98

Eland 6 1989 – 95

Gemsbok 1 1987

Kudu 6 1989 – 92

Asian Leopard Cat1 1 2005

Lion 5 1998 - 2007

Nyala 1 1986

Ocelot 3 1994 – 99

Oryx 2 1989, 92

Puma 3 1992 – 95

Tiger 3 1995 – 99

Data valid to 30 September 2019

1Felis (Prionailurus) bengalensis. 


ZOO ANIMALS AND TSE PRION DISEASE

The 82 zoo animals with BSE:

Id TSE Genus Species Subsp Birth Origin Death Place of Death

654 x Microcebus murinus - 1997 U.Montpellier 1998 U.Montpellier

656 x Microcebus murinus - 1997 U.Montpellier 1998 U.Montpellier

481 + Eulemur fulvus mayottensis 1974 Madagascar 1992 Montpellier zoo

474 + Eulemur fulvus mayottensis 1974 Madagascar 1990 Montpellier zoo

584 - Eulemur fulvus mayottensis 1984 Montpellier 1991 Montpellier zoo

455 + Eulemur fulvus mayottensis 1983 Montpellier 1989 Montpellier zoo

 - + Eulemur fulvus mayottensis 1988 Montpellier 1992 Montpellier zoo

 - + Eulemur fulvus mayottensis 1995 Montpellier 1996 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1992 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1990 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1992 Montpellier zoo

456 + Eulemur fulvus albifrons 1988 Paris 1990 Montpellier zoo

586 + Eulemur mongoz - 1979 Madagascar 1998 Montpellier zoo

 - p Eulemur mongoz - 1989 Mulhouse 1991 Montpellier zoo

 - p Eulemur mongoz - 1989 Mulhouse 1990 Montpellier zoo

 - p Eulemur macaco - 1986 Montpellier 1996 Montpellier zoo

 - p Lemur catta - 1976 Montpellier 1994 Montpellier zoo

 - p Varecia variegata variegata 1985 Mulhouse 1990 Montpellier zoo

 - p Varecia variegata variegata 1993 xxx 1994 Montpellier zoo

455 + Macaca mulatta - 1986 Ravensden UK 1992 Montpellier zoo

 - p Macaca mulatta - 1986 Ravensden UK 1993 Montpellier zoo

 - p Macaca mulatta - 1988 Ravensden UK 1991 Montpellier zoo

 - p Saimiri sciureus - 1987 Frejus France 1990 Frejus zoo

700 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

701 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

702 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

703 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

704 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

705 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

706 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

707 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

708 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

709 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

710 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

711 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

712 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

713 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

714 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

715 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

716 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

717 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

 x p genus species - - Lille zoo 1996 Lille zoo

 y p genus species - - Lille zoo 1996 Lille zoo

 z p genus species - - Lille zoo 1996 Lille zoo 

1 + Actinonyx jubatus cheetah 1986 Marwell zoo 1991 Pearle Coast AU

Duke + Actinonyx jubatus cheetah 1984 Marwell zoo 1992 Colchester zoo? UK

Saki + Actinonyx jubatus cheetah 1986 Marwell zoo 1993 unknown UK

Mich + Actinonyx jubatus cheetah 1986 Whipsnade 1993 Whipsnade UK

Fr1 + Actinonyx jubatus cheetah 1987 Whipsnade 1997 Safari de Peaugres FR

Fr2 + Actinonyx jubatus cheetah 1991 Marwell zoo 1997 Safari de Peaugres Fr

xx + Actinonyx jubatus cheetah 19xx xxx zoo 199x Fota zoo IR

yy + Actinonyx jubatus cheetah 19xx yyy zoo 1996+ yyyy zoo UK

zz + Actinonyx jubatus cheetah 19xx zzz zoo 1996+ yyyy zoo UK

aaa + Felis concolor puma 1986 Chester zoo 1991 Chester zoo UK

yy + Felis concolor puma 1980 yyy zoo 1995 yyyy zoo UK

zz + Felis concolor puma 1978 zzz zoo 1995 zzzz zoo UK

xxx + Felis pardalis ocelot 1987 xxx 1994 Chester zoo UK

zzz + Felis pardalis ocelot 1980 zzz 1995 zzzz zoo UK

85 + Felis catus cat 1990+ various 1999+ various UK LI NO 

19 + Canis familia. dog 1992+ various 1999+ various UK 

Fota + Panthera tigris tiger 1981 xxx zoo 1995 xxxx zoo UK

yy + Panthera tigris tiger 1983 yyy zoo 1998 yyyy zoo UK

Lump + Panthera leo lion 1986 Woburn SP 1998 Edinburgh zoo UK [since 1994]

1 + Taurotragus oryx eland 1987 Port Lympne 1989 Port Lympne zoo UK

Moll + Taurotragus oryx eland 1989 xx UK 1991 not Port Lympne UK

Nedd + Taurotragus oryx eland 1989 xx UK 1991 not Port Lympne UK

Elec + Taurotragus oryx eland 1990 xx UK 1992 not Port Lympne Uk

Daph p Taurotragus oryx eland 1988 xx UK 1990 not Port Lympne UK

zzz + Taurotragus oryx eland 1991 zz UK 1994 zzz UK 

yyy + Taurotragus oryx eland 1993 yy UK 1995 yyy UK 

Fran p Tragelaphus strepsi. kudu 1985 London zoo 1987 London zoo UK

Lind + Tragelaphus strepsi. kudu 1987 London zoo 1989 London zoo UK

Karl + Tragelaphus strepsi. kudu 1988 London zoo 1990 London zoo UK

Kaz + Tragelaphus strepsi. kudu 1988 London zoo 1991 London zoo UK

Bamb pc Tragelaphus strepsi. kudu 1988 London zoo 1991 London zoo UK

Step - Tragelaphus strepsi. kudu 1984 London zoo 1991 London zoo UK

346 pc Tragelaphus strepsi. kudu 1990 London zoo 1992 London zoo UK

324 + Tragelaphus strepsi. kudu 1989 Marwell zoo 1992 London zoo UK

xxx + Tragelaphus angasi nyala 1983 Marwell zoo 1986 Marwell zoo UK

yy + Oryx gazella gemsbok 1983 Marwell zoo 1986 Marwell zoo UK

zz + Oryx gazella gemsbok 1994+ zzz zoo 1996+ zzzz zoo UK

xx + Oryx dammah scim oryx 1990 xxxx zoo 1993 Chester zoo UK

yy + Oryx leucoryx arab oryx 1986 Zurich zoo 1991 London zoo UK

yy + Bos taurus ankole cow 1987 yyy zoo 1995 yyyy zoo UK

zz + Bos taurus ankole cow 1986 zzz zoo 1991 zzzz zoo UK

xx + Bison bison Eu bison 1989 xxx zoo 1996 xxxx zoo UK






THURSDAY, DECEMBER 19, 2019

TSE surveillance statistics exotic species and domestic cats Update December 2019


172. Establishment of PrPCWD extraction and detection methods in the farm soil

Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn
Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea
ABSTRACT
Introduction: Transmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Chronic wasting disease (CWD) is the prion disease that is known spread horizontally. CWD has confirmed last in Republic of Korea in 2016 since first outbreak of CWD in 2001. The environmental reservoirs mediate the transmission of this disease. The significant levels of infectivity have been detected in the saliva, urine, and faeces of TSE-infected animals. Soil can serve as a stable reservoir for infectious prion proteins. We found that PrPCWD can be extracted and detected in CWD contaminated soil which has kept at room temperature until 4 years after 0.001 ~ 1% CWD exposure and natural CWD-affected farm soil through PBS washing and sPMCAb.
Materials and Methods: Procedure of serial PMCAb. CWD contaminated soil which has kept at room temperature (RT) for 1 ~ 4 year after 0.001%~1% CWD brain homogenates exposure for 4 months collected 0.14 g. The soil was collected by the same method once of year until 4 year after stop CWD exposure. We had conducted the two steps. There are two kinds of 10 times washing step and one amplification step. The washing step was detached PrPSc from contaminated soil by strong vortex with maximum rpm. We harvest supernatant every time by 10 times. As the other washing step, the Washed soil was made by washing 10 times soil using slow rotator and then harvest resuspended PBS for removing large impurity material. Last step was prion amplification step for detection of PrPCWD in soil supernatant and the washed soil by sPMCAb. Normal brain homogenate (NBH) was prepared by homogenization of brains with glass dounce in 9 volumes of cold PBS with TritonX-100, 5 mM EDTA, 150 mM NaCl and 0.05% Digitonin (sigma) plus Complete mini protease inhibitors (Roche) to a final concentration of 5%(w/v) NBHs were centrifuged at 2000 g for 1 min, and supernatant removed and frozen at −70 C for use. CWD consisted of brain from natural case in Korea and was prepared as 10%(w/v) homogenate. Positive sample was diluted to a final dilution 1:1000 in NBH, with serial 3:7 dilutions in NBH. Sonication was performed with a Misonix 4000 sonicator with amplitude set to level 70, generating an average output of 160W with two teflon beads during each cycle. One round consisted of 56 cycles of 30 s of sonication followed 9 min 30 s of 37°C incubation. Western Blotting (WB) for PrPSc detection. The samples (20 µL) after each round of amplification were mixed with proteinase K (2 mg/ml) and incubated 37°C for 1 h. Samples were separated by SDS-PAGE and transferred onto PVDF membrane. After blocking, the membrane was incubated for 1 h with 1st antibody S1 anti rabbit serum (APQA, 1:3000) and developed with enhanced chemiluminescence detection system.
Results: We excluded from first to third supernatant in view of sample contamination. It was confirmed abnormal PrP amplification in all soil supernatants from fourth to tenth. From 0.01% to 1% contaminated washed soils were identified as abnormal prions. 0.001% contaminated washed soil did not show PrP specific band (Fig 1). The soil was collected by the same method once of year until 4 year after stop CWD exposure. After sPMCAb, there were no PrPCWD band in from second to fourth year 0.001% washed soil. but It was confirmed that the abnormal prion was amplified in the washing supernatant which was not amplified in the washed soil. we have decided to use soil supernatant for soil testing (Fig. 2). After third rounds of amplification, PrPSc signals observed in three out of four sites from CWD positive farm playground. No signals were observed in all soil samples from four CWD negative farm (Fig. 3).
Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.
===

186. Serial detection of hematogenous prions in CWD-infected deer

Amy V. Nalls, Erin E. McNulty, Nathaniel D. Denkers, Edward A. Hoover and Candace K. Mathiason
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
CONTACT Amy V. Nalls amy.nalls@colostate.edu
ABSTRACT
Blood contains the infectious agent associated with prion disease affecting several mammalian species, including humans, cervids, sheep, and cattle. It has been confirmed that sufficient prion agent is present in the blood of both symptomatic and asymptomatic carriers to initiate the amyloid templating and accumulation process that results in this fatal neurodegenerative disease. Yet, to date, the ability to detect blood-borne prions by in vitro methods remains difficult.
We have capitalized on blood samples collected from longitudinal chronic wasting disease (CWD) studies in the native white-tailed deer host to examine hematogenous prion load in blood collected minutes, days, weeks and months post exposure. Our work has focused on refinement of the amplification methods RT-QuIC and PMCA. We demonstrate enhanced in vitro detection of amyloid seeding activity (prions) in blood cell fractions harvested from deer orally-exposed to 300 ng CWD positive brain or saliva.
These findings permit assessment of the role hematogenous prions play in the pathogenesis of CWD and provide tools to assess the same for prion diseases of other mammalian species.
Considering the oral secretion of prions, saliva from CWD-infected deer was shown to transmit disease to other susceptible naïve deer when harvested from the animals in both the prions in the saliva and blood of deer with chronic wasting disease
 and preclinical stages69
 of infection, albeit within relatively large volumes of saliva (50 ml). In sheep with preclinical, natural scrapie infections, sPMCA facilitated the detection of PrPSc within buccal swabs throughout most of the incubation period of the disease with an apparent peak in prion secretion around the mid-term of disease progression.70
 The amounts of prion present in saliva are likely to be low as indicated by CWD-infected saliva producing prolonged incubation periods and incomplete attack rates within the transgenic mouse bioassay.41
snip...
Indeed, it has also been shown that the scrapie and CWD prions are excreted in urine, feces and saliva and are likely to be excreted from skin. While levels of prion within these excreta/secreta are very low, they are produced throughout long periods of preclinical disease as well as clinical disease. Furthermore, the levels of prion in such materials are likely to be increased by concurrent inflammatory conditions affecting the relevant secretory organ or site. Such dissemination of prion into the environment is very likely to facilitate the repeat exposure of flockmates to low levels of the disease agent, possibly over years.
snip...
Given the results with scrapie-contaminated milk and CWD-contaminated saliva, it seems very likely that these low levels of prion in different secreta/excreta are capable of transmitting disease upon prolonged exposure, either through direct animal-to-animal contact or through environmental reservoirs of infectivity.
the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.
HUNTERS, CWD TSE PRION, THIS SHOULD A WAKE UP CALL TO ALL OF YOU GUTTING AND BONING OUT YOUR KILL IN THE FIELD, AND YOUR TOOLS YOU USE...

* 1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
Wednesday, September 11, 2019 

Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion

SATURDAY, MARCH 16, 2019 

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019 Singeltary Submission


> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip…
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terry
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA
Qingzhong Kong
Case Western Reserve University School of Medicine, USA
Zoonotic potential of chronic wasting disease prions from cervids
Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.
Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.
SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, just not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




*** IF CWD is not a risk factor for humans, then I guess the FDA et al recalled all this CWD tainted elk tenderloin (2009 Exotic Meats USA of San Antonio, TX) for the welfare and safety of the dead elk. ...tss
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease 
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.
Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.
#
RSS Feed for FDA Recalls Information11 [what's this?12]

FRIDAY, JULY 26, 2019 

Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species

TUESDAY, JANUARY 21, 2020 

***> 2004 European Commission Chronic wasting disease AND TISSUES THAT MIGHT CARRY A RISK FOR HUMAN FOOD AND ANIMAL FEED CHAINS REPORT UPDATED 2020


CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


FRIDAY, OCTOBER 23, 2020 

Scrapie TSE Prion Zoonosis Zoonotic, what if?


 ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE


MONDAY, DECEMBER 16, 2019 

Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?


TUESDAY, NOVEMBER 17, 2020 

The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2019 First published 17 November 2020


FRIDAY, OCTOBER 30, 2020 

Efficient transmission of US scrapie agent by intralingual route to genetically susceptible sheep with a low dose inoculum



TUESDAY, JANUARY 12, 2021 

Annual Scrapie Report Available for Fiscal Year 2020 USA October 1, 2019 to September 30, 2020



THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021



FRIDAY, FEBRUARY 12, 2021 

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes



WEDNESDAY, FEBRUARY 10, 2021 

SENATORS URGE BIDEN TO WITHDRAW SHEEP IMPORT RULE DUE TO SCRAPIE TSE Prion CONCERNS



WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al



TUESDAY, JANUARY 5, 2021 

Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy



2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strainsNo

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


WEDNESDAY, OCTOBER 28, 2020 

***> EFSA Annual report of the Scientific Network on BSE-TSE 2020 Singeltary Submission

MONDAY, NOVEMBER 23, 2020 

***> Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


FRIDAY, FEBRUARY 05, 2021 

USA 50 STATE CWD TSE Prion UPDATE FEBRUARY 2021 


Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.