Sunday, September 20, 2020

Wisconsin Sinks Further Into the Abyss With CWD TSE Prion 2020

 Wisconsin Sinks Further Into the Abyss With CWD TSE Prion 2020


FOR IMMEDIATE RELEASE: 2020-09-17

Contact: Amanda Kamps, DNR wildlife health conservation specialist

Amanda.Kamps@wisconsin.gov or 608-712-5280

DNR OFFERS ROBUST STATEWIDE CWD TESTING

NEW ONLINE FORM FOR HUNTERS

A CWD testing kiosk

Hundreds of sampling locations are available for hunters at self-service kiosks around the state.

Photo credit: Wisconsin DNR

MADISON, Wis. – In cooperation with local businesses, Wisconsin Department of Natural Resources staff will collect deer heads for chronic wasting disease (CWD) testing during the 2020 archery, crossbow and gun hunting seasons. The health of the deer herd relies on commitment from hunters.

Managing CWD begins with knowing where the disease exists on the landscape, and having this knowledge is only possible with a robust sample size, thanks to deer hunters around the state. Hunters should make plans to visit a sampling station to have their deer submitted for testing.

“Hunters who haven’t had their deer tested before might be concerned about the time involved or just not know what to expect when having their deer tested,” said Amanda Kamps, DNR wildlife health conservation specialist. “We offer a variety of ways for hunters to participate, letting them choose the route that’s most convenient for them.”

New this year, hunters have a digital option for entering their CWD testing information when visiting one of the hundreds of self-service and in-person sampling stations around the state. Successful hunters will find a unique link to the online form in their harvest registration confirmation email or in their Go Wild harvest history.

Testing for CWD is available to hunters statewide. This year, hunters in northwestern and northeastern Wisconsin are strongly encouraged to participate in the department’s effort to map where CWD occurs throughout the state.

“This fall in particular, CWD testing by hunters in northwestern and northeastern Wisconsin will be crucial in our effort to understand where CWD occurs in our state,” said Kamps. “Every last sample counts, so if you’re hunting in one of these counties, make sure to visit us online to find the most convenient sampling location near you.”

The counties with heightened focus in northwestern Wisconsin are: Ashland, Bayfield, Barron, Burnett, Douglas, Iron, Rusk, Sawyer and Taylor.

The counties with heightened focus in northeastern Wisconsin are: Brown, Calumet, Door, Fond du Lac, Forest, Green Lake, Kewaunee, Langlade, Manitowoc, Marinette, Marquette, Menominee, Oconto, Outagamie, Shawano, Sheboygan, Waupaca, Waushara and Winnebago.

Recent CWD positive cases in the Chippewa Valley area have spurred the need for increased sampling from deer harvested in Buffalo, Chippewa, Dunn, Eau Claire, Pepin and Trempealeau counties. Hunters who harvest deer in Marathon, Lincoln and Oneida counties are also encouraged to have their deer tested to monitor for CWD around recent positives there.

Find a map of where samples are most needed on the DNR website.

CWD Sampling Locations

Hunters have several options available to have their deer sampled for CWD, and all locations can be found on the DNR website. In addition to a network of 24/7 self-service sampling stations (also called kiosks) around the state, many meat processors and businesses offer in-person sampling assistance.

Hunters should contact staffed sampling stations in advance to verify hours of operation. For an interactive map with sampling locations available in your area, visit the DNR website. There is also a searchable database available as an alternative to the map view.

A sample consists of the deer head with 3-5 inches of neck attached. Hunters will also need to have their harvest authorization number, harvest location and contact information when submitting a sample. New this year, hunters may submit this information online rather than using a paper form. Hunters can find this new digital form in their registration confirmation email and in their harvest history in Go Wild.

To make special arrangements for large bucks, please call your nearby DNR wildlife biologist.

Deer Carcass Disposal

Hunters are encouraged to dispose of deer carcass waste in a licensed landfill that accepts this waste or in a dumpster designated for deer carcass waste. If a municipality allows deer disposal curbside or at a transfer station, the carcass should be double bagged. If these options are not available and the deer was harvested on private land, burying the deer carcass waste or returning it to the location of the harvest are the next best options. It is illegal to dispose of deer carcass waste on any public lands.

Hunters can find a map with the CWD sampling locations and deer carcass disposal locations on the DNR website as well as in the Hunt Wild app.

Baiting And Feeding

Hunters are reminded that baiting and feeding is prohibited in some counties. Check the DNR's baiting and feeding webpage frequently for updates. No counties in the state will be removed from the ban during the 2020 deer hunting seasons.

Prevent The Spread Of CWD

Voluntarily following recommended practices can reduce and prevent the spread of CWD. Those include proper carcass transportation, handling and disposal, reporting sick deer, following baiting and feeding regulations and cleaning and decontaminating equipment. Hunters may also follow urine-based scent recommendations.

Sick Deer Reports

DNR staff members are interested in reports of sick deer. To report a sick deer, contact local wildlife staff or call DNR Customer Service at 1-888-936-7463.

More information on CWD is available on the DNR website.


Summary of CWD Statewide Surveillance

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 41957 41910 40

Central Forest Zone 6022 6018 35

Northern Forest Zone 25200 25186 6

Southern Farmland Zone 170557 170475 6511

Unknown Zone 2903 2841 2

Statewide Totals: 246639 246430 6594

CWD 2020

This table shows available CWD test results for the selected year for each of DNR's four zones statewide. Results for an individual year are for the CWD year, which runs from April 1st through March 31st. For example, the results for the 2020 CWD year would be April 1st, 2020 through March 31st, 2021. Deer will not have full data until the datasheet is entered.

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 113 83 0

Central Forest Zone 2 0 0

Northern Forest Zone 19 10 0

Southern Farmland Zone 73 16 5

Unknown Zone 56 0 0

Totals: 263 109 5


CWD testing is again offered statewide for Wisconsin deer hunters 

Paul A. Smith Milwaukee Journal Sentinel 

September 20, 2020

Last year the state analyzed 19,347 deer for CWD; 1,338 were positive, according to the DNR.


Wisconsin Game Farm deer and elk

Chronic Wasting Disease Positives in Farm-raised Deer

Revised: 01/22/2020

County (Premises #) Sample Collection Date of First CWD Positive in Farm-Raised Deer Sample Collection Date of Last CWD Positive in Farm-Raised Deer Total CWD Positive in Farm-Raised Deer

Portage(1) 9/4/2002 1/18/2006 82

Walworth(1) 9/20/2002 12/13/2002 6

Manitowoc 3/5/2003 3/5/2003 1

Sauk(1) 10/3/2003 10/3/2003 1

Racine 5/1/2004 5/1/2004 1

Walworth(2) 7/28/2004 11/3/2004 3

Crawford 1/19/2005 1/25/2007 2

Portage(2) 9/22/2008 11/18/2008 2

Jefferson 12/1/2008 12/1/2008 1

Marathon 11/7/2013 10/7/2019 104

Richland(1) 9/13/2014 11/19/2014 8

Eau Claire 6/8/2015 11/24/2015 34

Oneida 11/4/2015 10/6/2019 14

Iowa(1) 1/22/2016 9/14/2019 4

Oconto 9/4/2016 10/31/2019 52

Shawano 9/18/2017 9/19/2019 27

Waupaca 9/21/2017 12/7/2017 12

Washington 2/18/2018 11/15/2018 12

Richland(2) 5/11/2018 5/11/2018 1

Dane 5/16/2018 5/16/2018 1

Iowa(2) 5/18/2018 5/18/2018 21

Marinette 5/19/2018 5/19/2018 1

Sauk(2) 6/4/2018 11/28/2018 2

Portage(3) 10/23/2018 10/23/2018 1

Portage(4) 11/16/2018 5/1/2019 8

Forest 1/8/2019 11/18/2019 3

Burnett 7/30/2019 7/30/2019 1


The Farm-Raised Deer Program provides the requirements for keeping and moving farm-raised deer in Wisconsin, including registration, recordkeeping, disease testing, movement, and permit requirements. 

Wisconsin Deer Farm Statistics

The following data is updated annually during the license renewal process:

Number of registered​​ deer premises in Wisconsin ​338

​Number of hunting ranches 69 of the 338​

​Number of premises enrolled in the CWD herd status program ​145​

The following data was last updated September 17​​​, 2019:

​Number of farms with a CWD positive test since 2001 27​

​Number of herds depopulated as a result of a CWD positive ​17​


Registered Deer Farms and Past/Current CWD Farms CWD Affected Counties September 2019



Burnett County Elk Tests Positive for CWD Release Date: August 26, 2019

Contact: Leeann Duwe, Public Information Officer, (608) 224-5005

Download P​DF

MADISON –Based on test results from the National Veterinary Services Laboratory in Ames, IA, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that an elk from a breeding farm in Burnett County has tested positive for chronic wasting disease (CWD). The 6-year old male was euthanized due to an injury and showed no symptoms of the disease. As a result of the positive finding, DATCP has quarantined the farm and the remaining 5 elk in the herd. A quarantine means no animals may move in or out of the property and restricts movement of carcasses. No elk have left the farm since the herd was formed in 2014.

The owner will continue to test all elk that die to monitor if the disease has spread to other animals in the herd. DATCP's Division of Animal Health will investigate the animal's health history and the premises to determine if any other herds may have been exposed to the CWD-positive elk.​

CWD is a fatal, neurological disease of deer, elk, and moose caused by an infectious protein called a prion that affects the animal's brain. Testing for CWD can only be performed after the animal's death. More information about CWD is available at https://datcp.wi.gov/Pages/Programs_Services/ChronicWastingDi sease.aspx. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements. To learn more about deer farm regulations in Wisconsin, visit DATCP's farm-raised deer program at https://datcp.wi.gov/Pages/Programs_Services/FarmRaisedDeer.aspx. The Department of Natural Resources monitors the state's wild whitetail deer for CWD and has resources available at https://dnr.wi.gov/topic/wildlifehabitat/regulations.html. ;

###



''The owner will continue to test all elk that die to monitor if the disease has spread to other animals in the herd. DATCP's Division of Animal Health will investigate the animal's health history and the premises to determine if any other herds may have been exposed to the CWD-positive elk.​''

the decision and policy NOT to depopulate positive cwd tse prion infected captive herds in Wisconsin or anywhere else, at this time, 
is a grave mistake, and also, a 5 year quarantine is not near long enough for the cwd tse prion, science shows this...terry


WEDNESDAY, FEBRUARY 05, 2020

Wisconsin CWD TSE Prion 2019 to date wild deer 1317 positive and Captive Farmed Livestock Cervid CWD update


MONDAY, JUNE 01, 2020 

Wisconsin CWD TSE Prion Continues to Spiral Out of Control, 6585 Cases Confirmed to Date in Wild, and it's anyone's guess for captive


WEDNESDAY, FEBRUARY 10, 2016 

Wisconsin Two deer that escaped farm had chronic wasting disease CWD 


THURSDAY, JANUARY 23, 2020 

Wisconsin Confirms CWD Detected In Marquette and Marathon County


WEDNESDAY, JANUARY 08, 2020 

Wisconsin Chronic Wasting Disease CWD TSE Prion Positives in Farm-raised Deer in 2019 

The majority of the positives have come after 2013 when DATCP began letting some deer farms and hunting ranches continue operating after CWD was detected on their property.


436 Deer Have Escaped From Farms to Wild

Tuesday, 18 March 2003 00:00

As the DNR prepared to hand over authority for overseeing game farms to the agriculture department, it sent 209 conservation wardens to 550 farms to collect information, attempt to pinpoint the source of the disease and to learn whether other deer had been exposed to it. The audit found that most farms were in compliance, but the DNR found many violations and instances of poor record keeping. Also in numerous instances, fences did not stop wild and captive deer from intermingling. see;

436 Deer Have Escaped From Farms to Wild

Tuesday, 18 March 2003 00:00


TUESDAY, JULY 14, 2015

TWO Escaped Captive Deer on the loose in Eau Claire County Wisconsin CWD postive farm Yellow ear tag


TUESDAY, JUNE 09, 2020 

Wisconsin Trempealeau County Deer Farm Tests Positive for CWD ​Release Date: June 9, 2020


FRIDAY, SEPTEMBER 18, 2020 

CWD found in new deer and elk hunt areas in northeast Wyoming


Sent: Sun, Aug 30, 2020 10:37 am

Subject: Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

CWD Positives in Texas

CWD Positive

Confirmation Date Free Range/Captive County Source Species Sex Age

2020-07-30 Breeder Deer Kimble Facility #6 White-tailed Deer M 3

2020-07-29 Free Range El Paso N/A Mule Deer M 2.5

2020-06-25 Free Range El Paso N/A Mule Deer F 5.5


Sent: Thu, Jul 9, 2020 10:00 am

Subject: Texas CWD TSE Prion Jumps BY 13 To 182 Confirmed Cases To Date

Texas CWD TSE Prion Jumps To 182 Confirmed Cases

2020-06-25 Free Range El Paso N/A Mule Deer F 5.5

2020-06-16 Free Range El Paso N/A Mule Deer M 5.5

2020-06-10 Breeder Release Site Medina Facility #3 White-tailed Deer F 5.5

2020-06-10 Breeder Release Site Medina Facility #3 White-tailed Deer M 3.5

2020-06-10 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 5.5

2020-06-09 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 2.5

2020-06-09 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 4.5

2020-05-22 Free Range Hartley N/A Mule Deer M 4.5

2020-05-22 Free Range Hartley N/A Mule Deer F 5.5

2020-05-22 Free Range Hartley N/A Mule Deer M 4.5

2020-05-22 Free Range Dallam N/A Mule Deer M 2.5

2020-05-22 Free Range Hartley N/A Mule Deer M 5.5

2020-05-22 Free Range Hartley N/A Mule Deer M 5.5

SUNDAY, MARCH 08, 2020 

Texas CWD TSE Prion Confirms 169 Positive To Date


TAHC CHAPTER 40 CHRONIC WASTING DISEASE 406th COMMISSION MEETING AGENDA June 23, 2020 8:30 A.M.

17. UPDATE REGARDING RULE REVIEW PROPOSALS MS. MARY LUEDEKER (a) Chapter 33, Fees (b) Chapter 40, Chronic Wasting Disease

18. CONSIDERATION OF AND POSSIBLE ACTION ON REGULATION MS. MARY LUEDEKER PROPOSED RULES REGARDING (Action Item) (a) Chapter 40, Chronic Wasting Disease


Texas TAHC, Administrative Code, Title 4, Part 2, Chapter 40, Chronic Wasting Disease Amendments Open For Comment beginning December 20, 2019 thru January 20, 2020 Terry Singeltary Comments Submission

Greetings TAHC et al, 

Thank You Kindly for letting me comment again on cwd tse prion. 

My comments 1-8 with updated science in references to back all my concerns up with...

1. ALL CWD TSE PRION RULES MUST BE MADE MANDATORY, voluntary does not work.

2. TAHC MUST BAN THE MOVEMENT OF ALL CERVID BY GAME FARMS, BREEDERS, SPERM MILLS, URINE MILLS, HORN MILLS, VELVET MILLS, HIGH/LOW FENCE, WITH ALL VEHICLES AND FARM EQUIPMENT BEING LIMITED TO ONLY THOSE SITES.

3. ALL CAPTIVE FARMING PUT ON HOLD WITH NO MORE PERMITTED

4. ALL CAPTIVE FARMING CERVID MUST BE TESTED ANNUALLY LIVE AND DEAD AND VERIFIED, THAT OLD BSe of ''just another escapee' does not cut it anymore, see why here;

WEDNESDAY, FEBRUARY 10, 2016 

Wisconsin Two deer that escaped farm had chronic wasting disease CWD 


SNIP...SEE FULL TEXT;

Texas TAHC, Administrative Code, Title 4, Part 2, Chapter 40, Chronic Wasting Disease Amendments Open For Comment beginning December 20, 2019 thru January 20, 2020 Terry Singeltary Comments Submission


CWD TSE Prion better bust a move

Folks, the Cervid, and more, are in dire straits if we don’t bust a move now, I’m telling you, it’s going to take all hands on deck, to combat the cwd tse prion, and you will have to hit it from all sides, everything we have, you are either all in, or, you are part of the problem. You let this cwd tse PrP saturate the environment, strains mutate, tse jumps species become zoonotic, if that has not already happened. Some recent video presentations on cwd, and my submission today, to TAHC, for anyone interested, it’s just science 🧬

CWD WEBINAR CWD YESTERDAY! December 11, 2019

Dr. Mckenzie and CIDRAP on CWD TSE Prion


122: Prions and Chronic Wasting Disease with Jason Bartz


Texas CWD Symposium: Transmission by Saliva, Feces, Urine & Blood

the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.


''On January 21, 2017 a tornado took down thousands of feet of fence for a 420-acre illegal deer enclosure in Lamar County that had been subject to federal and state investigation for illegally importing white-tailed deer into Mississippi from Texas (a CWD positive state). Native deer were free to move on and off the property before all of the deer were able to be tested for CWD. Testing will be made available for a period of three years for CWD on the property and will be available for deer killed within a 5-mile radius of the property on a voluntary basis. ''

Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS

See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...


WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO


cwd update on Wisconsin from Tammy Ryan...


Wyoming CWD Dr. Mary Wood

''first step is admitting you have a problem''

''Wyoming was behind the curve''

wyoming has a problem...


TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show?

OH NO, please tell me i heard this wrong, a potential Texas captive escapee with cwd in the wild, in an area with positive captive cwd herd?

apparently, no ID though. tell me it ain't so please...

23:00 minute mark

''Free Ranging Deer, Dr. Deyoung looked at Genetics of this free ranging deer and what he found was, that the genetics on this deer were more similar to captive deer, than the free ranging population, but he did not see a significant connection to any one captive facility that he analyzed, so we believe, Ahhhhhh, this animal had some captive ahhh, whatnot.''


Wyoming CWD Dr. Mary Wood

''first step is admitting you have a problem''

''Wyoming was behind the curve''

wyoming has a problem...


the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.


Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...


SATURDAY, JANUARY 19, 2019

Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS


FRIDAY, DECEMBER 20, 2019

TEXAS ANIMAL HEALTH COMMISSION EXECUTIVE DIRECTOR ORDER DECLARING A CHRONIC WASTING DISEASE HIGH RISK AREA CONTAINMENT ZONE FOR PORTIONS OF VAL VERDE COUNTY


TUESDAY, DECEMBER 31, 2019 

In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus 

SUNDAY, AUGUST 02, 2015  

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 


SUNDAY, FEBRUARY 16, 2020
***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion?

TUESDAY, FEBRUARY 04, 2020 

TEXAS REPORTS 20 NEW CWD TSE PRION CASES 3 WILD 17 BREEDER 166 POSITIVE TO DATE


FRIDAY, MAY 22, 2020 

TPW Commission has adopted rules establishing Chronic Wasting Disease (CWD) management zones to further detection and response efforts among WTD


SUNDAY, MARCH 01, 2020 

Texas As one CWD investigation continues, another launches...THE FULL MONTY!


SATURDAY, DECEMBER 02, 2017 

TEXAS TAHC CWD TSE PRION Trace Herds INs and OUTs Summary Minutes of the 399th and 398th Commission Meeting – 8/22/2017 5/9/2017 


SUNDAY, MAY 14, 2017 

85th Legislative Session 2017 AND THE TEXAS TWO STEP Chronic Wasting Disease CWD TSE Prion, and paying to play 


SUNDAY, JANUARY 22, 2017 

Texas 85th Legislative Session 2017 Chronic Wasting Disease CWD TSE Prion Cervid Captive Breeder Industry 


*** TEXAS TAHC OLD STATISTICS BELOW FOR PAST CWD TESTING ***

CWD TEXAS TAHC OLD FILE HISTORY

updated from some of my old files, some of the links will not work.

*** Subject: CWD testing in Texas ***

Date: Sun, 25 Aug 2002 19:45:14 –0500

From: Kenneth Waldrup


snip...see ;


MONDAY, AUGUST 14, 2017

*** Texas Chronic Wasting Disease CWD TSE Prion History ***


TUESDAY, JANUARY 28, 2020 

Mississippi MDWFP North MS CWD Management Zone Since October 2019, 25 CWD-positive deer have been detected from this zone


SATURDAY, JANUARY 04, 2020 

Mississippi CWD TOTALS JUST ABOUT DOUBLE Since October 1, 2019 To Date Statewide Total is 37 Confirmed


WEDNESDAY, MAY 06, 2020 

Missouri 46 new cases Chronic Wasting Disease found, total to date at 162 documented CWD


SUNDAY, JANUARY 19, 2020 

Missouri CWD TSE Prion 2019-2020 SAMPLING RESULTS TO DATE 25 Positive


THURSDAY, JANUARY 02, 2020 

Missouri MDC officially reports more than 20 new cases of Chronic Wasting Disease CWD TSE Prion


TUESDAY, MAY 19, 2020 

Montana White-tailed deer in Gallatin County suspected positive for CWD


FRIDAY, FEBRUARY 07, 2020 

Montana 142 animals tested positive for CWD thus far during 2019/20 sampling


FRIDAY, JANUARY 17, 2020

Montana Moose Tests Positive for Chronic Wasting Disease CWD TSE PRION in Libby Area

Montana Fish, Wildlife & Parks 2019 CWD Surveillance Hunter Test Results CWD TSE PRION LOOKS LIKE 136 POSITIVE SO FAR, count them up...


WEDNESDAY, DECEMBER 25, 2019 

Montana 16 more deer positive for CWD first time positive hunting district 705 in southeast


WEDNESDAY, MARCH 25, 2020 

Michigan CWD TSE Prion Total Suspect Positive Deer Moves Up To 188 with total deer tested 80,687 to date



THURSDAY, JANUARY 30, 2020 

Michigan CWD TSE Prion Total Suspect Positive Deer Jumps To 181 to date


MONDAY, JANUARY 27, 2020 

updated

Michigan CWD TSE Prion MDARD 3 positive white-tailed deer from a Newaygo County deer farm depopulation and quarantine efforts update?


SUNDAY, DECEMBER 22, 2019 

Illinois CWD TSE Prion 90 CWD-positive deer with 826 confirmed positive Total positives through June 30, 2019


TUESDAY, FEBRUARY 11, 2020 

Missouri MDC 2019-2020 SAMPLING RESULTS CWD TSE PRION TO DATE 28 Positive


SUNDAY, APRIL 12, 2020 

PENNSYLVANIA REVISED CWD RESPONSE PLAN DRAFT AVAILABLE FOR REVIEW


WEDNESDAY, MARCH 04, 2020 

Politicians State Rep. David Maloney, R-Berks Helping to Spread Chronic Wasting Disease CWD TSE Prion


SATURDAY, MARCH 14, 2020 

Minnesota 4 More Farmed Deer and 1 wild positive for CWD TSE Prion


FRIDAY, FEBRUARY 28, 2020 
Virginia DGIF say 21 new cases of CWD TSE Prion confirmed in white-tailed deer in northwest Virginia throughout 2019
TUESDAY, MARCH 03, 2020 

North Dakota Eight deer taken during the 2019 deer gun season tested positive for chronic wasting disease CWD TSE Prion


TUESDAY, FEBRUARY 11, 2020 

South Dakota Chronic Wasting Disease CWD TSE Prion Detected in New Areas 


MONDAY, FEBRUARY 10, 2020 

Iowa CWD TSE Prion 2019/20 (confirmed or suspect) 43 cases to date Wild Cervid


SATURDAY, FEBRUARY 01, 2020 

Colorado confirmed CWD TSE Prion in 24 game management units in the state where it previously hadn’t been found


WEDNESDAY, JANUARY 29, 2020 

Utah CWD TSE Prion Since July 1, 2019, the DWR confirmed 16 positive deer statewide Six of those, including Coal, were in the La Sal Unit, 59 test pending


TUESDAY, JANUARY 28, 2020 

Mississippi MDWFP North MS CWD Management Zone Since October 2019, 25 CWD-positive deer have been detected from this zone


SATURDAY, JANUARY 25, 2020 

Tennessee 2019-20 deer season 462 CWD TSE Prion Confirmed To Date


Fri, Jan 24, 2020 2:29 pm

Wyoming Game & Fish Discovers CWD-Positive Mule Deer in Pinedale, Discourages Feeding of Wildlife

''As of September 2019, CWD has been identified in 31 of 37 (84%) Wyoming mule deer herds, nine of 36 (25%) elk herds, and generally wherever white-tailed deer occur. Increasing prevalence and distribution of CWD has the potential to cause widespread and long-term negative impacts to Wyoming’s cervid populations. Prevalence of this disease in chronically infected Wyoming deer herds has exceeded 40%, with one elk herd exhibiting nearly 15% prevalence.''

''for the first time, there is clear evidence that CWD is adversely affecting the overall health and viability of some herds.''


FRIDAY, JANUARY 24, 2020 

Arkansas Chronic Wasting Disease CWD TSE Prion FY2020 211 Positive Cases as of January 17, 2020


MONDAY, FEBRUARY 03, 2020 

Montana Chronic Wasting Disease CWD TSE Prion in Eastern Part of State Game Farm Elk


TUESDAY, JANUARY 07, 2020 

Oklahoma Farmed Elk Lincoln County CWD Depopulation 3 Positive Elk with 1 Additional Dead Trace Out Confirmed Positive


WEDNESDAY, JANUARY 29, 2020 

Pennsylvania CWD TSE Prion 2019-20 hunting seasons as of January 14, 148 of the samples had tested positive for CWD in Wild Deer


SUNDAY, DECEMBER 22, 2019 

Pennsylvania Steady Climb of CWD TSE Prion Confirms 250 Positive To Date In Wild Cervid As At September 12, 2019 

Pennsylvania Captive Cervid Industry Total CWD TSE Prion ??? anyone's guess...


MONDAY, JANUARY 27, 2020 

Michigan CWD TSE Prion MDARD 3 positive white-tailed deer from a Newaygo County deer farm depopulation and quarantine efforts update?


TUESDAY, JANUARY 07, 2020 

Michigan Total CWD TSE Prion Positive Suspect-Positive Deer Jump To 174 confirmed to date

TUESDAY, JANUARY 14, 2020 

Michigan MDARD has confirmed chronic wasting disease (CWD) in 3 white-tailed deer from a Newaygo County deer farm


SATURDAY, JANUARY 25, 2020 

Tennessee 2019-20 deer season 462 CWD TSE Prion Confirmed To Date


FRIDAY, JANUARY 24, 2020

Wyoming Game & Fish Discovers CWD-Positive Mule Deer in Pinedale, Discourages Feeding of Wildlife

''As of September 2019, CWD has been identified in 31 of 37 (84%) Wyoming mule deer herds, nine of 36 (25%) elk herds, and generally wherever white-tailed deer occur. Increasing prevalence and distribution of CWD has the potential to cause widespread and long-term negative impacts to Wyoming’s cervid populations. Prevalence of this disease in chronically infected Wyoming deer herds has exceeded 40%, with one elk herd exhibiting nearly 15% prevalence.''

''for the first time, there is clear evidence that CWD is adversely affecting the overall health and viability of some herds.''


FRIDAY, JANUARY 24, 2020 

Arkansas Chronic Wasting Disease CWD TSE Prion FY2020 211 Positive Cases as of January 17, 2020


SUNDAY, JANUARY 05, 2020 

Arkansas Chronic Wasting Disease CWD TSE Prion 2019 to 2020 Totals As Of December 3, 2019 399 Confirmed with more pending results


WEDNESDAY, JANUARY 29, 2020 

Utah CWD TSE Prion Since July 1, 2019, the DWR confirmed 16 positive deer statewide Six of those, including Coal, were in the La Sal Unit, 59 test pending


FRIDAY, JANUARY 17, 2020 

North Dakota 11 Positive Chronic Wasting Disease CWD TSE Prion detected since Sept 1, 2019

TUESDAY, JANUARY 21, 2020 

Minnesota CWD update test results from deer harvested in the 2019 hunting season and the special hunts have returned 27 wild deer tested positive for CWD all from the southeast DMZ


FRIDAY, JANUARY 10, 2020 

Minnesota Investigation leads to additional CWD positive deer on Pine County farm


MONDAY, DECEMBER 16, 2019 

Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?


> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip…
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terry
PRION 2019 ABSTRACTS 

1. Interspecies transmission of the chronic wasting disease agent

Justin Greenlee

Virus and Prion Research Unit, National Animal Disease Center, USDA Agriculture Research Service

ABSTRACT

The presentation will summarize the results of various studies conducted at our research center that assess the transmissibility of the chronic wasting disease (CWD) agent to cattle, pigs, raccoons, goats, and sheep. This will include specifics of the relative attack rates, clinical signs, and microscopic lesions with emphasis on how to differentiate cross-species transmission of the CWD agent from the prion diseases that naturally occur in hosts such as cattle or sheep. Briefly, the relative difficulty of transmitting the CWD agent to sheep and goats will be contrasted with the relative ease of transmitting the scrapie agent to white-tailed deer.

53. Evaluation of the inter-species transmission potential of different CWD isolates

Rodrigo Moralesa, Carlos Kramma,b, Paulina Sotoa, Adam Lyona, Sandra Pritzkowa, Claudio Sotoa

aMitchell Center for Alzheimer’s disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, TX, USA; bFacultad de Medicina, Universidad de los Andes, Santiago, Chile

ABSTRACT

Chronic Wasting Disease (CWD) has reached epidemic proportions in North America and has been identified in South Korea and Northern Europe. CWD-susceptible cervid species are known to share habitats with humans and other animals entering the human food chain. At present, the potential of CWD to infect humans and other animal species is not completely clear. The exploration of this issue acquires further complexity considering the differences in the prion protein sequence due to species-specific variations and polymorphic changes within species. While several species of cervids are naturally affected by CWD, white-tailed deer (WTD) is perhaps the most relevant due to its extensive use in hunting and as a source of food. Evaluation of inter-species prion infections using animals or mouse models is costly and time consuming. We and others have shown that the Protein Misfolding Cyclic Amplification (PMCA) technology reproduces, in an accelerated and inexpensive manner, the inter-species transmission of prions while preserving the strain features of the input PrPSc. In this work, we tested the potential of different WTD-derived CWD isolates to transmit to humans and other animal species relevant for human consumption using PMCA. For these experiments, CWD isolates homozygous for the most common WTD-PrP polymorphic changes (G96S) were used (96SS variant obtained from a pre-symptomatic prion infected WTD). Briefly, 96GG and 96SS CWD prions were adapted in homologous or heterologous substrate by PMCA through several (15) rounds. End products, as well as intermediates across the process, were tested for their inter-species transmission potentials. A similar process was followed to assess seed-templated misfolding of ovine, porcine, and bovine PrPC. Our results show differences on the inter-species transmission potentials of the four adapted materials generated (PrPC/PrPSc polymorphic combinations), being the homologous combinations of seed/substrate the ones with the greater apparent zoonotic potential. Surprisingly, 96SS prions adapted in homologous substrate were the ones showing the easiest potential to template PrPC misfolding from other animal species. In summary, our results show that a plethora of different CWD isolates, each comprising different potentials for inter-species transmission, may exist in the environment. These experiments may help to clarify an uncertain and potentially worrisome public health issue. Additional research in this area may be useful to advise on the design of regulations intended to stop the spread of CWD and predict unwanted zoonotic events.

56. Understanding chronic wasting disease spread potential for at-risk species

Catherine I. Cullingham, Anh Dao, Debbie McKenzie and David W. Coltman

Department of Biological Sciences, University of Alberta, Edmonton AB, Canada

CONTACT Catherine I. Cullingham cathy.cullingham@ualberta.ca

ABSTRACT

Genetic variation can be linked to susceptibility or resistance to a disease, and this information can help to better understand spread-risk in a population. Wildlife disease incidence is increasing, and this is resulting in negative impacts on the economy, biodiversity, and in some instances, human health. If we can find genetic variation that helps to inform which individuals are susceptible, then we can use this information on at-risk populations to better manage negative consequences. Chronic wasting disease, a fatal, transmissible spongiform encephalopathy of cervids (both wild and captive), continues to spread geographically, which has resulted in an increasing host-range. The disease agent (PrPCWD) is a misfolded conformer of native cellular protein (PrPC). In Canada, the disease is endemic in Alberta and Saskatchewan, infecting primarily mule deer and white-tail deer, with a smaller impact on elk and moose populations. As the extent of the endemic area continues to expand, additional species will be exposed to this disease, including bison, bighorn sheep, mountain goat, and pronghorn antelope. To better understand the potential spread-risk among these species, we reviewed the current literature on species that have been orally exposed to CWD to identify susceptible and resistant species. We then compared the amino acid polymorphisms of PrPC among these species to determine whether any sites were linked to susceptibility or resistance to CWD infection. We sequenced the entire PrP coding region in 578 individuals across at-risk populations to evaluate their potential susceptibility. Three amino acid sites (97, 170, and 174; human numbering) were significantly associated with susceptibility, but these were not fully discriminating. All but one species among the resistant group shared the same haplotype, and the same for the susceptible species. For the at-risk species, bison had the resistant haplotype, while bighorn sheep and mountain goats were closely associated with the resistant type. Pronghorn antelope and a newly identified haplotype in moose differed from the susceptible haplotype, but were still closely associated with it. These data suggest pronghorn antelope will be susceptible to CWD while bison are likely to be resistant. Based on this data, recommendations can be made regarding species to be monitored for possible CWD infection.

KEYWORDS: Chronic wasting disease; Prnp; wildlife disease; population genetics; ungulates

Thursday, May 23, 2019 

Prion 2019 Emerging Concepts CWD, BSE, SCRAPIE, CJD, SCIENTIFIC PROGRAM Schedule and Abstracts


see full Prion 2019 Conference Abstracts

THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
snip…full text;
SATURDAY, FEBRUARY 09, 2019
Experts: Yes, chronic wasting disease in deer is a public health issue — for people
SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, just not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 



FRIDAY, JULY 26, 2019 

Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species


TUESDAY, JANUARY 21, 2020 

***> 2004 European Commission Chronic wasting disease AND TISSUES THAT MIGHT CARRY A RISK FOR HUMAN FOOD AND ANIMAL FEED CHAINS REPORT UPDATED 2020


***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


FRIDAY, OCTOBER 25, 2019 

Experts testify United States is underprepared for bioterrorism threats Transmissible Spongiform Encephalopathy TSE Prion disease 

 ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE


Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler 

=============== 


Stephen Dealler is a consultant medical microbiologist deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


WEDNESDAY, AUGUST 5, 2020 

1996-12-04: BBC - Horizon BSE1 - BSE2 The Invisible Enemy, The British Disease, CWD, sporadic CJD


Mad Camel Disease CPD TSE Prion dromedary camels (Camelus dromedarius) is spreading

In 2018 prion disease was detected in camels at an abattoir in Algeria for the first time. 

Prion disease has recently been confirmed in three dromedary camels (Camelus dromedarius) from an Algerian slaughterhouse (Babelhadj et al., 2018) after clinical signs compatible with those of TSEs in other species were observed ante mortem. Disease associated pathological changes or prion protein were found in brain by Western blotting, histology, immunohistochemistry (IHC) and paraffin-embedded tissue blot; PrPSc was also detected in the lymph nodes of the one camel tested by IHC.

Information gathered from breeders and slaughterhouse personnel suggests that similar clinical signs had been observed since the 1980s (Babelhadj et al., 2018). Subsequently, the disease has also been reported in a single case of a 12 year old dromedary camel from the region of Tataouine, Tunisia (Agrimi, 2019; OIE bulletin 2019). 

There are many knowledge gaps about the biological characteristics of this new TSE, termed camel prion disease (CPD). Detection of infection in lymph nodes of one animal suggests extra-neural pathogenesis and, therefore, potential transmission of CPD between animals similar to that of classical scrapie and CWD. Such transmission of CPD could be facilitated over long distances by the traditional nomadic herding practices of dromedaries and the trade patterns between Algeria and other countries in North Africa and the Middle East (Bouslikhane, 2015). In light of the devastation caused by BSE, and its subsequent zoonotic transmission, CPD was used here to assess the probability of entry of a novel prion disease agent into the UK via livestock and livestock products. The approach used was to assess the aggregated probability, using the number of imports per year to avoid potential under-estimation as has previously been described (Kelly et al., 2018). Of note, the zoonotic potential of the disease is unknown and this assessment is of the probability of introduction of the CPD agent into the UK only, not of any onward transmission to humans or animals. 

snip...

3. Results

3.1. Risk assessment

3.1.1. Probability camel is infected with camel prion disease in exporting country (p1)

Detection of abnormal neurological signs since the 1980s within a restricted geographical area of Algeria suggests that the expansion of CPD to other areas (and countries) may be restricted or that the disease can remain largely undiagnosed. According to a recent presentation of the Mediterranean Animal Health Network, the disease was also reported in Tunisia and the incidence in the initial region of Algeria was described as ‘rapidly and progressively increasing’ (Agrimi, 2019). It is, therefore, possible that movement of camels has allowed infected animals to enter other countries. Asides from the legal trade of camels, approximately 268 million people in Africa practice some form of pastoralism (Luizza, 2017). For example, over 95% of cross-border trade within the Horn of Africa is unofficial and carried out by nomadic pastoralists trading livestock. Given that disease was first noticed in the 1980s and the nomadic way of life in this area, exporting countries were therefore considered as those making up the regions of North Africa and the Middle East for the purpose of this assessment.

Twenty of 937 camels in 2015 and 51 of 1,322 in 2016 showed neurologic signs at slaughter giving an overall estimated apparent prevalence of 3.1% in dromedaries brought for slaughter (Babelhadj et al., 2018). In the absence of further information including confirmatory testing, an assumption was made that the prevalence of CPD in live camels in the regions of interest was high with high uncertainty because of the lack of testing data from countries other than Algeria and in only 3 camels in Algeria itself.

see full report;

Assessing the aggregated probability of entry of a novel prion disease agent into the United Kingdom


Monday, September 14, 2020 

Assessing the aggregated probability of entry of a novel prion disease agent into the United Kingdom


Camel prion disease: a possible emerging disease in dromedary camel populations?

The identification of a new prion disease in dromedary camels in Algeria and Tunisia, called camel prion disease (CPD), extends the spectrum of animal species naturally susceptible to prion diseases and opens up new research areas for investigation.

Camel prion disease was identified in 2018 in adult camels showing clinical signs at the ante mortem inspection at slaughterhouses in the region of Ouargla (Algeria), and in 2019 in the region of Tataouine (Tunisia). It adds to the group of existing animal prion diseases, including scrapie in sheep and goats, chronic wasting disease (CWD) in cervids and BSE (mainly in bovines). The detection of a new prion disease in the dromedary population requires attention and investigation needs to be carried out to assess the risks of this disease to animal and public health. As of today, very limited epidemiological information is available to assess the prevalence, geographical distribution and dynamic of the transmission of the disease.

Based on the clinical signs suggesting prion disease, CPD seems to have occurred in 3.1% of the dromedaries brought to the abattoir in Ouargla. Pathognomonic neurodegeneration and diseasespecific prion protein (PrPSc) were detected in brain tissue from three symptomatic animals (source: CDC article wwwnc.cdc.gov/eid/article/24/6/17-2007_article). ;

In May 2019, the OIE received a report from Tunisia on a single case of a 12-year-old slaughtered dromedary camel showing neurological signs confirmed as CPD by the Istituto Superiore di Sanità (ISS) based in Italy.

©B. Babelhadj/University Kasdi Merbah, Algeria www.oiebulletin.com 2

Is camel prion disease transmissible in natural conditions?

The involvement of lymphoid tissue in prion replication, observed both in the Algeria and Tunisia cases, is suggestive of a peripheral pathogenesis, which is thought to be a prerequisite for prion shedding into the environment. As with other animal prion diseases, such as scrapie and CWD, in which lymphoid tissues are extensively involved and horizontal transmission occurs efficiently under natural conditions, the detection of prion proteins in lymph nodes is suggestive of the infectious nature of CPD and concurs to hypothesise the potential impact of CPD on animal health. No evidence is currently available with which to argue for the relevance of CPD for human health. However, no absolute species barrier exists in prion diseases and minimising the exposure of humans to prion-infected animal products is an essential aspect of public health protection. As for the relationship between CPD and other animal prion diseases, preliminary analyses suggest that CPD prions have a different molecular signature from scrapie and BSE.

Actions on the follow up of CPD

Since the first description of CPD, the OIE promoted discussions on the impact of this new disease through the OIE Scientific Commission for Animal Diseases (Scientific Commission). The Scientific Commission consulted two OIE ad hoc Groups, one on BSE risk status evaluation of Members and the other on camelids. It analysed the information available from the Algeria and Tunisia cases to evaluate if CPD should be considered an ‘emerging disease’ based on the criteria listed in the Terrestrial Animal Health Code1

. The OIE Scientific Commission noted that limited surveillance data were available on the prevalence of CPD and that the evidence was not sufficient to measure, at that time, the impact of the disease on animal or public health. Therefore, it was concluded that, with the current knowledge, CPD did not currently meet the criteria to be considered an emerging disease. Nonetheless, it was emphasised that CPD should be considered as a new disease not to be overlooked and called for the collection of further scientific evidence through research and surveillance in the affected countries and in countries with dromedary camel populations to measure the impact of the disease. As new scientific evidence becomes available,the OIE Scientific Commission will reassess whether this disease should be considered as an emerging disease.

The worldwide camel population is ~35 million head (FAO, 2019), 88% of which is found in Africa. The camel farming system is evolving rapidly, and these animals represent vital sources of meat, milk and transportation for millions of people living in the most arid regions of the world. This makes it necessary to assess the risk for animal and human health and to develop evidence-based policies to control and limit the spread of the disease in animals, and to minimise human exposure. As a first step, the awareness of Veterinary Services about CPD and its diagnostic capacity needs to be improved in all countries where dromedaries are part of the domestic livestock.

At the regional level, CPD was first discussed in the 18th Joint Permanent Committee of the Mediterranean Animal Health Network (REMESA) held in Cairo, Egypt, in June 2019 where an expert 1 a new occurrence in an animal of a disease, infection or infestation, causing a significant impact on animal or public health resulting from a) a change of a known pathogenic agent or its spread to a new geographic area or species, or b) a previously unrecognised pathogenic agent or disease diagnosed for the first time www.oiebulletin.com

3

from ISS, Italy, shared the knowledge available on the new disease with the 15 REMESA Member Countries. The discussion highlighted the need to strengthen surveillance systems in order to collect epidemiological data to inform the risk assessments. The results of these risk assessments will support the implementation of evidence-based policies to manage the risks in both animals and humans.

CPD was recently discussed at the 15thConference of the OIE Regional Commission for the Middle East in November. During this conference, the CAMENET (Camel Middle East Network) launched a wideranging proposal for training, coordinated surveillance and research on CPD. In addition, the ERFAN (Enhancing Research forAfrica Network), a platform aimed at enhancing scientific cooperation between Africa and Italy, during its 2nd ERFAN meeting for North Africa, presented a project on CPD with the objective of increasing CPD coordinated surveillance in North Africa.

The OIE, through its Reference Laboratories for prion diseases, and by involving the above scientific initiatives, is keeping a close watch on the evolution of the disease to gather scientific evidence and to allow a proper and more thorough assessment of the risk associated with this novel disease.

◼ December 2019


THURSDAY, AUGUST 06, 2020 

Scrapie Documented in Tunisia


Thursday, August 1, 2019 

Camel prion disease detected in Tunisian camels Camel prion disease detected in Tunisian camels

A novel prion disease first reported in three dromedary camels in Algeria in 2018 has now been detected in dromedaries in Tunisia, the second country to be affected within a year, ProMED Mail, the online reporting system of the International Society for Infectious Diseases, reported yesterday.

The Tunisian detection and the latest information about the disease, called camel prion disease (CPD) and sometimes referred to as "mad camel disease", came from a presentation at the Mediterranean Animal Health Network meeting, held in Cairo on Jun 26 and 27. According to the meeting presentation, CPD is spreading rapidly in the Ouargla region of Algeria where the disease was first identified in older camels at a slaughterhouse.

The scientists who presented at the meeting also said preliminary results suggest that the CPD prion is different from scrapie and bovine spongiform encephalitis (BSE, or "mad cow disease").

A comment from the ProMED Mail moderator Arnon Shimshony, DVM, associate professor of veterinary medicine at Hebrew University of Jerusalem, notes that the area where CPD was first found in Algeria is about 174 miles from the Tunisian border.

In the initial report on the first detection in Algerian camels, published in April 2018 in Emerging Infectious Diseases, described disease-specific prion protein in brain tissues from symptomatic camels, including positive samples in lymph nodes, suggesting infection. The moderator also requested more details about the detections in Tunisia, including location, clinical signs, and ages and origins of affected camels. Jul 29 ProMED Mail post Apr 18, 2018, CIDRAP News story "'Mad camel' disease? New prion infection causes alarm"



***> NEW TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE (MAD CAMEL DISEASE) IN A NEW SPECIES <***

NEW OUTBREAK OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE IN A NEW SPECIES

Subject: Prion Disease in Dromedary Camels, Algeria

Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.



Wednesday, May 30, 2018 

Dromedary camels in northern Africa have a neurodegenerative prion disease that may have originated decades ago


***> IMPORTS AND EXPORTS <***

***> SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN

Saturday, April 14, 2018

Dromedary Camels Algeria Prion (Mad Camel Disease) TSE BSE MRR Import Export Risk Factors Excluding Grains and Plants

Dromedary Camels Algeria Prion (Mad Camel Disease) TSE BSE MRR Import Export Risk Factors Excluding Grains and Plants

(Grains and Plants Materials Could Harbor the Transmissible Spongiform Encephalopathy TSE Prion agent...TSS)

Dromedary Camels Algeria Prion (Mad Camel Disease) TSE BSE MRR Import Export Risk Factors Excluding Grains and Plants



America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


 ***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



''Why is USDA "only" testing 25,000 samples a year? 

TUESDAY, AUGUST 18, 2020 

Sheep Scrapie, Bovine BSE, Cervid CWD, ZOONOSIS, TSE Prion Roundup August 18, 2020 


MONDAY, AUGUST 24, 2020 

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease

Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home