P178 Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD
Dr Laura Pirisinu1, Dr Linh Tran2, Dr Gordon Mitchell3, Dr Aru Balachandran3, Dr Thierry Baron4, Dr Cristina Casalone5, Dr Michele Di Bari1, Dr Umberto Agrimi1. Dr Romolo Nonno1, Dr Sylvie Benestad2
1Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, Rome, Italy, 2Norwegian Veterinary Institute, Oslo, Norway, 3Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, Canada, 4Neurodeqenerative Diseases Unit, ANSES - French Agency for Food, Environmental and Occupational Health & Safety, Lyon, France, 5Istituto Zooprofilattico Sperimentale del Pietnonte, Liguria e Valle d'Aosta, Turin, Italy
Aims: In 2016, Chronic Wasting Disease (CWD) was detected for the first time in Europe in three wild Norwegian reindeer (Rangifer tarandus tarandus) and in two moose (Alces alces). The biochemical analysis and the immunohistochemical distribution of PrPSc from Norwegian reindeer revealed a pattern similar to North American (NA) isolates1. In this study, we studied the biochemical features of PrPSc from the two CWD cases in Norwegian moose.
Methods: Western blot (WB) analysis of PK-treated PrPSc (PrPres) from Norwegian moose and reindeer isolates was performed according to the ISS discriminatory WB protocol (used in BSE and scrapie Italian surveillance). PrPres fragments were determined by epitope mapping (SAF84, L42, 9A2, 12B2 mAbs), before and after deglycosylation. CWD isolates from Canadian cervids (wapiti, moose and white tailed deer) and a panel of small ruminant and bovine prion strains circulating in Europe were also analysed.
Results: WB analysis with different mAbs showed that PrPres from both Norwegian moose samples was different from that usually associated with CWD in cervids. Indeed, their main C-terminal fragment had a MW lower than the other CWD isolates, and could be discriminated by the absence of the 12B2 epitope. Furthermore, while NA CWD PrPSc is composed of a single PrPres fragment, Norwegian moose samples had an additional C-terminal PrPres fragment of ~13 kDa (CTF13).
Among ovine TSEs, classical scrapie and Nor98 were discriminated from both Norwegian moose isolates, while CH1641 samples had molecular features partially overlapping with the moose, i.e. a low MW PrPres and the presence of CTF13. In contrast, moose PrPSc did not overlap with any bovine PrPSc. Indeed, the MW of moose PrPres was lower than H-BSE and similar to C-BSE and L-BSE PrPres, but the two bovine prions lacked additional PrPres fragments.
Conclusions: Unexpectedly, PrPSc from Norwegian moose revealed features substantially different from all other CWD isolates. The PrPSc pattern of Norwegian moose was also different from Canadian moose, suggesting that the variant PrPSc type observed does not simply reflect a host factor and could represent a new CWD strain. Furthermore, PrPSc of Norwegian moose can be easily discriminated from all BSE types, classical scrapie and Nor98, while showing significant overlapping only with CH1641.
Bioassay in voles will help to clarify whether the different PrPSc types observed reflect the presence of a new CWD strain in Norwegian moose, and its relationships with known animal TSEs.
References: 1Benestad et al, Vet Res (2016}47:88
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
please see;
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice
Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2
1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO
Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.
Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.
Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.
Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
WS-02
Scrapie in swine: A diagnostic challenge
Justin J Greenlee1, Robert A Kunkle1, Jodi D Smith1, Heather W. Greenlee2
1National Animal Disease Center, US Dept. of Agriculture, Agricultural Research Service, United States; 2Iowa State University College of Veterinary Medicine
A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested.
Since swine can be fed rations containing ruminant derived components in the United States and many other countries, we conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Scrapie inoculum was a pooled 10% (w/v) homogenate derived from the brains of clinically ill sheep from the 4th passage of a serial passage study of the U.S scrapie agent (No. 13-7) through susceptible sheep that were homozygous ARQ at prion protein residues 136, 154, and 171, respectively. Pigs were inoculated intracranially (n=19) with a single 0.75 ml dose or orally (n=24) with 15 ml repeated on 4 consecutive days. Necropsies were done on a subset of animals at approximately six months post inoculation (PI), at the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of TSE until study termination at 80 months PI or when removed due to intercurrent disease (primarily lameness). Brain samples were examined by immunohistochemistry (IHC), western blot (WB), and enzyme-linked immunosorbent assay (ELISA). Brain tissue from a subset of pigs in each inoculation group was used for bioassay in mice expressing porcine PRNP.
At six-months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more methods: IHC (n=4), WB (n=3), or ELISA (n=5). Interestingly, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study).
Swine inoculated with the agent of scrapie by the intracranial and oral routes do not accumulate abnormal prion protein (PrPSc) to a level detectable by IHC or WB by the time they reach typical market age and weight. However, strong support for the fact that swine are potential hosts for the agent of scrapie comes from positive bioassay from both intracranially and orally inoculated pigs and multiple diagnostic methods demonstrating abnormal prion protein in intracranially inoculated pigs with long incubation times.
Curriculum Vitae
Dr. Greenlee is Research Veterinary Medical Officer in the Virus and Prion Research Unit at the National Animal Disease Center, US Department of Agriculture, Agricultural Research Service. He applies his specialty in veterinary anatomic pathology to focused research on the intra- and interspecies transmission of prion diseases in livestock and the development of antemortem diagnostic assays for prion diseases. In addition, knockout and transgenic mouse models are used to complement ongoing experiments in livestock species. Dr. Greenlee has publications in a number of topic areas including prion agent decontamination, effects of PRNP genotype on susceptibility to the agent of sheep scrapie, characterization of US scrapie strains, transmission of chronic wasting disease to cervids and cattle, features of H-BSE associated with the E211 K polymorphism, and the development of retinal assessment for antemortem screening for prion diseases in sheep and cattle. Dr. Greenlee obtained his DVM degree and completed the PhD/residency program in Veterinary Pathology at Iowa State University. He is a Diplomate of the American College of Veterinary Pathologists.
RESEARCH ARTICLE
Phenotype Shift from Atypical Scrapie to CH1641 following Experimental Transmission in Sheep
Marion M. Simmons*, S. Jo Moore¤a, Richard Lockey¤b, Melanie J. Chaplin, Timm Konold, Christopher Vickery, John Spiropoulos
Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
¤a Current address: School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
Abstract
The interactions of host and infecting strain in ovine transmissible spongiform encephalopathies are known to be complex, and have a profound effect on the resulting phenotype of disease. In contrast to classical scrapie, the pathology in naturally-occurring cases of atypical scrapie appears more consistent, regardless of genotype, and is preserved on transmission within sheep homologous for the prion protein (PRNP) gene. However, the stability of transmissible spongiform encephalopathy phenotypes on passage across and within species is not absolute, and there are reports in the literature where experimental transmissions of particular isolates have resulted in a phenotype consistent with a different strain. In this study, intracerebral inoculation of atypical scrapie between two genotypes both associated with susceptibility to atypical forms of disease resulted in one sheep displaying an altered phenotype with clinical, pathological, biochemical and murine bioassay characteristics all consistent with the classical scrapie strain CH1641, and distinct from the atypical scrapie donor, while the second sheep did not succumb to challenge. One of two sheep orally challenged with the same inoculum developed atypical scrapie indistinguishable from the donor. This study adds to the range of transmissible spongiform encephalopathy phenotype changes that have been reported following various different experimental donor-recipient combinations. While these circumstances may not arise through natural exposure to disease in the field, there is the potential for iatrogenic exposure should current disease surveillance and feed controls be relaxed. Future sheep to sheep transmission of atypical scrapie might lead to instances of disease with an alternative phenotype and onward transmission potential which may have adverse implications for both public health and animal disease control policies.
snip...
Despite naturally-occurring atypical scrapie being observed in a range of genotypes, successful experimental transmissions of clinical disease have so far only been reported within a particular homologous donor-recipient genotype model using sheep which are AHQ/AHQ homozygous [8,15,16]. These published transmissions represent part of a large study at APHA which has been running since 2004, investigating the potential transmissibility of atypical scrapie in a range of both homologous and cross-genotype combinations. Here we describe an unexpected and interesting finding from that study where one experimental challenge in which atypical scrapie from an ARR/ARR donor was inoculated intracerebrally into two AHQ/AHQ recipient sheep, and in one of them the resulting disease had a phenotype that was indistinguishable from CH1641 [29], a classical scrapie strain which has some BSE-like Western blot properties.
*** One of these isolates (TR316211) behaved like the CH1641 isolate, with PrPres features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrPres phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrPres, the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrPres from "CH1641-like" isolates showed lower levels of diglycosylated PrPres. From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrPres profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrPres, and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
Subject: more on scrapie/BSE strain CH1641
From: tom
Reply-To: Bovine Spongiform Encephalopathy
Date: Sun, 10 Jan 1999 21:52:05 -0800
Content-Type: text/plain
Parts/Attachments: Parts/Attachments text/plain (37 lines) Reply Reply
Recall a forthcoming J Gen Virol Jan 1999 v80:1 - 4 says there are similarities between BSE and an experimental isolate of natural scrapie, CH1641. This might then be the long-sought missing scrapie strain that could have given rise to the BSE epidemic. It would raise additional questions about the harmlessness to humans of scrapie.
On the other hand, CH1641 happened to be one of the scrapie strains studied very recently by Collinge's group, Neurosci Lett. 1998 Oct 23;255(3):159-62. It did not have the prp-sc type identical to BSE passaged in sheep.
The CH1641 strain is mentioned only twice before in Medline abstracts (though there could be many fulltext mentions), one of these being the original naming of the strain in 1988:
The unusual properties of CH1641, a sheep-passaged isolate of scrapie.
Foster JD, Dickinson AG Vet Rec 1988 Jul 2;123(1):5-8
An isolate of scrapie designated CH1641 was identified from a natural case of scrapie in a Cheviot sheep by passage in sheep and goats. It has not been possible to transmit scrapie to mice from this source. The Sip gene which controls the incubation periods of experimental scrapie in Cheviot sheep has two alleles; sA which shortens and pA which lengthens the incubation periods of most strains of scrapie after the first experimental injection in sheep (the A group of strains). The CH1641 isolate differs from them in that the alleles of Sip act in the opposite way, with incubation being shorter in the pA homozygotes. There is some evidence that one or more genes, in addition to Sip, may be implicated in the control of scrapie incubation in sheep and the possibility of a carrier infection with CH1641 is also discussed.
Novel polymorphisms in the caprine PrP gene: a codon 142 mutation associated with scrapie incubation period.
J Gen Virol 1996 Nov;77 ( Pt 11):2885-91 Published erratum appears in J Gen Virol 1997 Mar;78(Pt 3):697 Goldmann W, Martin T, Foster J, Hughes S, Smith G, Hughes K, Dawson M, Hunter N
Age at disease onset and rate of progression of transmissible spongiform encephalopathies in man, sheep and mice are modulated by the host genome, in particular by the PrP gene and its allelic forms. Analysis of the caprine PrP gene revealed several different alleles. Four PrP protein variants were found, three of which were goat specific with single amino acid changes at codons 142, 143 and 240. The fourth was identical to the most common sheep PrP protein variant (Ala136-Arg154-Gln171). The dimorphism at codon 142 (Ile --> Met) appeared to be associated with differing disease incubation periods in goats experimentally infected with isolates of bovine spongiform encephalopathy, sheep scrapie CH1641 or sheep-passaged ME7 scrapie.
TSE PRION UPDATE USA 2012
re-BSE in goats can be mistaken for scrapie
Wednesday, January 18, 2012
BSE IN GOATS CAN BE MISTAKEN FOR SCRAPIE
February 1, 2012
Wednesday, January 18, 2012
Selection of Distinct Strain Phenotypes in Mice Infected by Ovine Natural Scrapie Isolates Similar to CH1641 Experimental Scrapie
Journal of Neuropathology & Experimental Neurology:
February 2012 - Volume 71 - Issue 2 - p 140–147
Monday, March 21, 2011
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
snip...
On the other hand, this component would not be distinguishable from bovine-passaged BSE prions due to the current limits of the standard biological methods and/or the molecular tools employed here to characterize prion strains. Whatever the mechanism, the notion that a passage through an intermediate species can profoundly alter prion virulence for the human species has important public-health issues, regarding emerging and/or expanding TSEs, like atypical scrapie or CWD.
snip...
Taken all together, our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, which has important implications on public and animal health policies. On one hand, although the exact magnitude and characteristic of the vCJD epidemic is still unclear, its link with cattle BSE is supported by strong epidemiological ground and several experimental data. On the other hand, the molecular typing performed in our studies, indicates that the biochemical characteristics of the PrPres detected in brains of our sheep and goat BSE-inoculated mice seem to be indistinguishable from that observed in vCJD. Considering the similarity in clinical manifestation of BSE- and scrapie-affected sheep [48], a masker effect of scrapie over BSE, as well as a potential adaptation of the BSE agent through subsequent passages, could not be ruled out. As BSE infected sheep PrPSc have been detected in many peripheral organs, small ruminant-passaged BSE prions might be a more widespread source of BSE infectivity compared to cattle [19], [49], [50].
*** This fact is even more worrying since our transmission studies suggest that apparently Met129 human PrP favours a BSE agent with ovine rather than a bovine sequence. Finally, it is evident that, although few natural cases have been described and so far we cannot draw any definitive conclusion about the origin of vCJD, we can not underestimate the risk of a potential goat and/or sheep BSE agent.
snip...
Technical Abstract:
Prion strains may vary in their ability to transmit to humans and animals. Few experimental studies have been done to provide evidence of differences between U.S. strains of scrapie, which can be distinguished by incubation times in inbred mice, microscopic lesions, immunoreactivity to various antibodies, or molecular profile (electrophoretic mobility and glycoform ratio). Recent work on two U.S. isolates of sheep scrapie supports that at least two distinct strains exist based on differences in incubation time and genotype of sheep affected. One isolate (No. 13-7) inoculated intracerebrally caused scrapie in sheep AA at codon 136 (AA136) and QQ at codon 171 (QQ171) of the prion protein in an average of 19 months post-inoculation (PI) whereas a second isolate (No. x124) caused disease in less than 12 months after oral inoculation in AV136/QQ171 sheep. Striking differences were evident when further strain analysis was done in R111, VM, C57Bl6, and C57Bl6xVM (F1) mice. No. 13-7 did not induce disease in any mouse strain at any time post-inoculation (PI) nor were brain tissues positive by western blot (WB). Positive WB results were obtained from mice inoculated with isolate No. x124 starting at day 380 PI. Incubation times averaged 508, 559, 601, and 633 days PI for RIII, C57Bl6, VM, and F1 mice, respectively. Further passage will be required to characterize these scrapie strains in mice. This work provides evidence that multiple scrapie strains exist in U.S. sheep.
One of these isolates (TR316211) behaved like the CH1641 isolate, with PrPres features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrPres phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrPres, the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrPres from "CH1641-like" isolates showed lower levels of diglycosylated PrPres. From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrPres profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrPres, and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
snip...see ;
Thursday, July 14, 2011
Histopathological Studies of "CH1641-Like" Scrapie Sources Versus Classical Scrapie and BSE Transmitted to Ovine Transgenic Mice (TgOvPrP4)
SHEEP AND BSE
PERSONAL AND CONFIDENTIAL
SHEEP AND BSE
A. The experimental transmission of BSE to sheep.
Studies have shown that the ''negative'' line NPU flock of Cheviots can be experimentally infected with BSE by intracerebral (ic) or oral challenge (the latter being equivalent to 0.5 gram of a pool of four cow brains from animals confirmed to have BSE).
RB264
BSE - TRANSMISSION STUDIES
Wednesday, January 18, 2012
Selection of Distinct Strain Phenotypes in Mice Infected by Ovine Natural Scrapie Isolates Similar to CH1641 Experimental Scrapie
Journal of Neuropathology & Experimental Neurology:
February 2012 - Volume 71 - Issue 2 - p 140–147
Tuesday, February 01, 2011
Sparse PrP-Sc accumulation in the placentas of goats with naturally acquired scrapie
Research article
snip...
Date: Tuesday, February 01, 2011 5:03 PM
To: Mr Terry Singeltary
Subject: Your comment on BMC Veterinary Research 2011, 7:7
Dear Mr Singeltary
Thank you for contributing to the discussion of BMC Veterinary Research 2011, 7:7 .
Your comment will be posted within 2 working days, as long as it contributes to the topic under discussion and does not breach patients' confidentiality or libel anyone. You will receive a further notification by email when the posting appears on the site or if it is rejected by the moderator.
Your posting will read:
Mr Terry Singeltary,
retired
***Scrapie cases Goats from same herd USA Michigan
Comment: " In spite of the poorly defined effects of PRNP genetics, scrapie strain, dose, route and source of infection, the caprine placenta may represent a source of infection to progeny and herd mates as well as a source of persistent environmental contamination. "
Could this route of infection be the cause of the many cases of Goat scrapie from the same herd in Michigan USA ?
Has this been investigated ?
(Figure 6) including five goat cases in FY 2008 that originated from the same herd in Michigan. This is highly unusual for goats, and I strenuously urge that there should be an independent investigation into finding the common denominator for these 5 goats in the same herd in Michigan with Scrapie. ...
Kind Regards, Terry
snip...
UPDATED RESPONSE ON MY CONCERNS OF GOAT SCRAPIE IN MICHIGAN ;
----- Original Message -----
From: "BioMed Central Comments"
To:
Sent: Wednesday, February 16, 2011 4:13 AM
Subject: Your comment on BMC Veterinary Research 2011, 7:7
Your discussion posting "Scrapie cases Goats from same herd USA Michigan" has been rejected by the moderator as not being appropriate for inclusion on the site.
Dear Mr Singeltary,
Thank you for submitting your comment on BMC Veterinary Research article (2011, 7:7). We have read your comment with interest but we feel that only the authors of the article can answer your question about further investigation of the route of infection of the five goats in Michigan. We advise that you contact the authors directly rather than post a comment on the article.
With best wishes,
Maria
Maria Kowalczuk, PhD Deputy Biology Editor BMC-series Journals
BioMed Central 236 Gray's Inn Road London, WC1X 8HB
+44 20 3192 2000 (tel) +44 20 3192 2010 (fax)
Regards
BMC Veterinary Research
SNIP...PLEASE SEE FULL TEXT ;
Tuesday, February 01, 2011
Sparse PrP-Sc accumulation in the placentas of goats with naturally acquired scrapie
Research article
Thursday, March 29, 2012
atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012
NIAA Annual Conference April 11-14, 2011San Antonio, Texas
***SCRAPIE GOATS CALIFORNIA 13 CASES TO DATE ! ***
***SCRAPIE GOATS MICHIGAN 8 CASES TO DATE ! ***
(an unusually high amount of scrapie documented in goats for a happenstance of bad luck, or spontaneous event, THAT DOES NOT HAPPEN IN OTHER STATES ??? )
2016 - 2017
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Chronic Wasting Disease CWD TSE Prion to Humans, who makes that final call, when, or, has it already happened?
IF human transmission studies are unethical and will never take place, how much evidence is enough, and how much exposure do we allow, before a call is made.
HOW many humans do we expose before enough is enough?
How many body bags now are enough, for a very long incubating disease that the body bags will for sure mount later, if something is NOT finally done NOW.
the public must know.
Now, i will tell you all how this will be interpreted by our fine federal friends, and their lobbyist et al from corporate America, and Doctors there from, here is how this will still read, rubber stamped ;
''There is no direct evidence that CWD can transmit to humans, and CWD has never been identified in humans anywhere in the world, including in areas where CWD has been present in animal populations for decades.''
this is absurd, and fake news at it's finest.
what is 'direct evidence', if human transmission is not possible?
there is more than enough evidence to make that call now.
with that, who will finally make that judgement call, knowing that if cwd transmits to humans, it will look like the most common human tse prion i.e. sporadic cjd?
who makes that final call, when, and how many more humans must die before that decision is made and put in the public domain so we can go on with this and try to implement rules and regulations that might finally turn the tide, or do just let corporate science run rampant?
or, will they continue to run with the infamous UKBSEnvCJD only theory$
with cwd now being documented to transmit macaque, AND TO PIGS orally (lot of human medicine made from pigs), the price of continuing to play TSE Prion Poker with humans goes up drastically.
This is criminal negligence now, imo...terry
*** Subject: CWD TRANSMITS TO MACAQUE ORALLY MUSCLE INTAKE ***
Notice to Members Regarding Chronic Wasting Disease (CWD)
Posted on: May 31st, 2017
To: MNA Members From: Métis Nation of Alberta
Date: Wednesday, May 31, 2017
*** Métis Nation of Alberta (MNA) was made aware of a recent Canadian research study examining the transmission of Chronic Wasting Disease. The initial results of the study indicate that macaque monkeys (genetically similar to humans) can be infected with Chronic Wasting Disease (CWD) after eating deer that is infected with CWD. CWD is a prion disease, which are fatal, transmissible diseases characterized by abnormal proteins in the brain and nervous system. To date no research has shown that CWD can be passed on to humans, and no human cases of CWD have ever been identified. However, this new research indicates that it is a possibility. The Deputy Chief Medical Officer of Health has reached out to us to share with our Métis harvesters this important information. For more information you can visit:
and
What the Alberta Government knows:
CWD is present in southeastern Alberta, with the area slowly spreading westward over time (introduced into Alberta from Saskatchewan) – see map for more information at
CWD circulates in deer populations, particularly mule deer; it has been found in about 4% of deer tested in 2016; Elk can be infected in areas where CWD has been present in deer for a long period of time; Moose can also be infected, but this would be fairly rare. Necessary Precautions for Harvesters: Hunters and others who handle carcasses follow basic handling precautions (available here
All deer, moose and elk harvested from CWD mandatory submission wildlife management units (WMUs) be tested for CWD; and A negative result (no CWD detected by the test) must be obtained before any part of an animal is eaten.
For more information, contact: Amy Quintal Métis Nation of Alberta Métis Harvesting Liaison Tel: (780) 455 – 2200 aquintal@metis.org
Chronic Wasting Disease: CFIA Research Summary
Embargoed until May 23, 2017
(OCR of a scanned original)
Research Findings
Chronic Wasting Disease (CWD) is a progressive, fatal disease of the nervous system of cervids including deer, elk, moose, and reindeer that is caused by abnormal proteins called prions. It is known as a transmissible spongiform encephalopathy (TSE). Other TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jakob disease (CJD) in humans.
A limited number of experimental studies have demonstrated that non-human primates, specifically squirrel monkeys, are susceptible to CWD prions. An ongoing research study has now shown that CWD can also be transmitted to macaques, which are genetically closer to humans.
The study led by Dr. Stefanie Czub, a scientist at the Canadian Food Inspection Agency (CFIA), and funded by the Alberta Prion Research institute has demonstrated that by orally administering material under experimental conditions from cervids (deer and elk) naturally infected with CWD, the disease can be transmitted to macaques.
in this project, which began in 2009, 18 macaques were exposed to CWD in a variety of ways: by injecting into the brain, through contact with skin, oral administration, and intravenously (into the bloodstream through veins). So far, results are available from 5 animals. At this point, two animals that were exposed to CWD by direct introduction into the brain, one that was administered infected brain material by oral administration and two that were given infected muscle by oral administration have become infected with CWD. The study is ongoing and testing continues in the remaining animals. The early results will be presented at PRlON 2017, the annual international conference on prion diseases, in Edinburgh, Scotland, May 23 to 26, 2017.
Potential impacts of the new finding
Since 2003 Canada has a policy that recommends that animals and materials known to be infected with prions be removed from the food chain and from health products. Although no direct evidence of CWD prion transmission to humans has ever been recorded, the policy advocates a precautionary approach to managing CWD and potential human exposure to prions. These initial findings do not change Health Canada’s Health Products and Food Branch (HPFB) position on food and health products. A precautionary approach is still recommended to manage the potential risks of exposure to prions through food and health products. Measures are in place at federal, provincial and territorial levels to reduce human exposure to products potentially contaminated by CWD by preventing known infected animals from entering the marketplace.
While Federal and P/T government’s animal disease control policies continue to divert known CWD-infected animals away from entering the food and feed supply, research and development of sensitive detection methods including live-animal sampling techniques remain crucial for ensuring an accurate diagnosis. In addition, consistent federal, provincial and territorial communications of appropriate precautionary measures for hunters and indigenous communities are required.
Next Steps
The CFlA will continue to collaborate with national and international partners to develop and validate new diagnostic techniques. The CFlA will also continue to offer confirmatory testing services and reference laboratory expertise to provincial and territorial partners on demand.
Currently, CFlA laboratories are leading or collaborating on several research projects to understand the potential for CWD to infect humans. These projects use non‐human primates, genetically modified mice, and cell-free amplification approaches. Given the present findings, CFiA encourages continued research into TSEs.
The results of this study reinforce the need to redesign the federal program to foster greater adoption of risk mitigation measures for farmed cervids. Federal and provincial government collaboration will continue as new program options are assessed.
The results of Dr. Czub’s research into CWD will be of interest to scientists, governments, industry and people who consume cervid products. After the presentation at PRION 2017, the research will follow the normal steps of completion, peer review and publication. The Government of Canada will monitor the response to this research and determine whether further review of the science is required. Other studies underway by other researchers may also become public as a result of the presentation of Dr. Czub’s research.
The Public Health Agency of Canada, Health Canada, CFlA and other Federal partners are working together to assess what policies or programs need further review as well as preparing other communications about the research and health policy and advice to Canadian. 2017/04/28
===end...UNOFFICIAL...NO URL LINK...TSS===UPDATE, THE ABOVE INTERNAL DOCUMENT HAS NOW BEEN CONFIRMED, but still no link...TSS===
0:30 First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Dr Stefanie Czub University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency Canada
see science to date that the call should be made NOW, that cwd to humans is possible, and all precautions there fore, should be take will great urgency.
WEDNESDAY, MAY 03, 2017
*** First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).snip...It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).snip...In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...snip...In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)snip...see full report ;http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdfyou can see more evidence here ;http://chronic-wasting-disease.blogspot.com/2016/05/zoonotic-potential-of-cwd-prions-update.html
Wednesday, May 24, 2017
PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1
In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells
3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...
snip...see full text ;
Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. snip... The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...
In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells 3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...
The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province! ...page 26.
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin
Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:
Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.
Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.6>
Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:6>6>
This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.
CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....
snip...see much more here ;
WEDNESDAY, APRIL 05, 2017
Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
TUESDAY, JUNE 06, 2017
CHRONIC WASTING DISEASE CWD TSE PRION ZOONOSIS ZOONOTIC INSIDIOUS AND DIRE CONSEQUENCES AHEAD
SATURDAY, JUNE 10, 2017
Chronic Wasting Disease CWD TSE Prion to Humans, who makes that final call, when, or, has it already happened?
MONDAY, JUNE 12, 2017
Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?
THURSDAY, MARCH 30, 2017
Norway CWD Skrantesjuke: VKM report supports the National Veterinary Institute perception management
MONDAY, APRIL 11, 2016
DECLARATION OF EXTRAORDINARY EMERGENCY DUE TO A FOREIGN ANIMAL DISEASE TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION CHRONIC WASTING DISEASE CWD IN THE UNITED STATES AND NORTH AMERICA
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
Terry S. Singeltary Sr.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home