Tuesday, February 09, 2021

Sweden Confirms First Detection of Chronic Wasting Disease in Moose (Alces alces)

Sweden Confirms First Detection of Chronic Wasting Disease in Moose (Alces alces)

First Detection of Chronic Wasting Disease in Moose (Alces alces) in Sweden

Journal of Wildlife Diseases, 57(2), 2021, pp. 000–000 Ó Wildlife Disease Association 

2021 LETTERS

First Detection of Chronic Wasting Disease in Moose (Alces alces) in Sweden

Erik O. A ̊gren,1,5 Kaisa So ̈re ́n,1 Dolores Gavier-Wide ́n,1,2 Sylvie L. Benestad,3 Linh Tran,3 Karolina Wall,4 Gustav Averhed,1 Neele Doose,1 Jørn Va ̊ge,3 and Maria No ̈remark1 1National Veterinary Institute, 751 89

Uppsala, Sweden; 2Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07 Uppsala, Sweden; 3Norwegian Veterinary Institute, 0454 Oslo, Norway OIE Reference Laboratory for CWD; 4Swedish Board of Agriculture, 551 82 Jo ̈nko ̈ping, Sweden; 5Corresponding author (email: erik.agren@sva.se)

ABSTRACT: We report the first detection of chronic wasting disease (CWD) in Sweden, in three old female moose (Alces alces). Prions (PrPCWD) were detected in brain but not in lymph nodes. The findings are similar to previ- ously described CWD cases in old moose in Norway, where a spontaneous origin is hypothe- sized.

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) affecting cervids, first described in captive deer in Colorado in 1967 (Williams 2005). In North America, CWD has spread over large geographic areas, and prevalence in several affected populations is increasing (Carlson et al. 2017). The disease is lethal and difficult to control, partly due to environ- mental persistence of infectious prions (PrPCWD). Studies indicate that CWD can negatively impact cervid populations (e.g., Edmunds et al. 2016).

In Europe, CWD was first detected in Norway: in wild reindeer (Rangifer tarandus) in 2016 (Benestad et al. 2016), moose (Alces alces) in 2016 (Pirisinu et al. 2018), and a red deer (Cervus elaphus) in 2017 (Vikøren et al. 2018). One CWD-positive wild moose was found in Finland in 2018 (Evira 2019). In Norway, the findings in wild reindeer differ from the findings in moose and red deer, and the hypothesis has been raised that the cases in moose might be of spontaneous origin (Pirisinu et al. 2018).

Following the detection of CWD in Nor- way, surveillance for CWD became mandato- ry in European union [EU]-member states with populations of moose or reindeer: Sweden, Finland, Estonia, Latvia, Lithuania, and Poland (Commission Regulation [EU] 2017/1972). The surveillance also includes roe
deer (Capreolus capreolus) and red deer, and primarily targets animals showing clinical signs compatible with CWD: animals eutha- nized due to disease, and fallen stock, including road- and predator-killed animals. A minimum of 6,000 wild, farmed, or semidomesticated cervids per member state were to be tested from 2018 to 2020.
Swedish cervid populations are managed by hunting, with an annual hunting bag of about 100,000 moose, approximately 100,000 roe deer, and 11,000 red deer (Viltdata 2020). In the southern half of Sweden, moose, red deer, and roe deer cohabit in varying densities, whereas in the northern half, about 250,000 free-grazing semidomesticated reindeer co- habit with moose, and less commonly with red deer or roe deer. There are approximately 120 deer farms farming red deer.

In March 2019, the first CWD case in Sweden was detected in the municipality of Arjeplog (668603700N, 1782704200E). It was a female moose that had been euthanized and sampled after being observed emaciated and apparently blind, walking in circles on a frozen lake. The moose was 16 yr old based on examination of dental cementum annuli of molar tooth M1 (Hamlin et al. 2000). In May 2019, the second case was detected in the neighboring municipality of Arvidsjaur, only 70 km from the first case (Fig. 1). This was also a female, euthanized after showing behavioral changes, and was also aged by dental cementum annulation as 16 yr old.

After these two cases of CWD were detected, intensified surveillance was imple- mented in the region, targeting all adult moose shot during the hunting season starting in September 2019. In total, 661 moose were sampled. During the first week of hunting, the third case was detected, in an apparently healthy female moose in normal body condi- tion shot in the municipality of Arjeplog. The moose was aged by dental cementum annuli counting as at least 10 yr old.

The TeSeE SAP ELISA CWD protocol (Bio-Rad, Hercules, California, USA) was used as a rapid screening test of both the medulla oblongata at the level of the obex and the retropharyngeal lymph nodes. All three moose were positive in obex samples but negative in lymph node samples. The diagno- sis was confirmed by TeSeE Western Blot (WB; Bio-Rad). In formalin-fixed tissues, using immunohistochemistry as described (Benestad et al. 2016), PrPCWD was detected in the brain but not in the retropharyngeal lymph nodes. The WB glycoprofile and the
prion deposition pattern were similar to the CWD cases in Norwegian moose (Pirisinu et al. 2018).

Further characterization of the cases in moose in Sweden, including biochemical analyses and transmission studies in different transgenic mice, is ongoing. The results, coupled with additional surveillance and epidemiological analysis, will add clarity regarding the type of CWD prion involved. Similarities with the cases in moose in Norway include old age, low molecular weight of the PrPCWD. and presence of prions in the brain but not in lymph nodes. These characteristics differ from previously described CWD cases in cervids, including the few described CWD cases in moose (Alces alces shirasi) from North America and CWD in wild reindeer in Norway (Baeten et al. 2007; Benestad et al. 2016; Pirisinu et al. 2018; Nonno et al. 2020).

The age structure of the Swedish moose population is skewed due to hunting, with few animals reaching a high age. Old moose are mostly females, because hunters often avoid harvesting reproductive females; males rarely reach ages above 10 yr. No CWD case has been detected in younger moose among the more than 24,000 moose tested in Norway and Sweden (National Veterinary Institute 2020; Norwegian Veterinary Institute 2020).

The three cases in Sweden were geograph- ically clustered. However, clustering by itself is not evidence of contagiousness, because increased awareness and sampling in the area where the first case was detected might have contributed to the detection of cases two and three. Geographically clustered cases have also been reported from Norway (Va ̊ge et al, 2020); further analysis of Swedish and Nor- wegian surveillance data focusing on this aspect is ongoing.

When developing strategies to control or limit prion disease, strain diversity related to epidemiology is highly relevant. Other rumi- nant transmissible spongiform encephalopa- thies (TSEs; bovine spongiform encephalopathy and scrapie) have different control strategies according to their classifica- tion as atypical or classical strains. The atypical strains are believed to be spontane-ously occurring in older animals and not contagious between living animals (Anony- mous, 2001). The recently reported diversity of CWD strains in Europe, with the report of atypical forms in old moose and a red deer (Koutsoumanis et al. 2019; Pirisinu et al. 2018; Vikøren et al. 2018), needs to be considered in planning management strategies. Character- ization of the phenotype of this prion disease and the prion strain involved, and epidemio- logical studies, will be fundamental to under- stand the nature of this disease in moose.
We thank the local hunters and the Swedish association for wildlife hunting and manage- ment for sampling efforts. Funding was provided by the Swedish Environmental Protection Agency.

LITERATURE CITED

Anonymous, 2001. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off J Eur Communities 44:L147;1– 40.
Baeten LA, Powers BE, Jewell JE, Spraker TR, Miller MW. 2007. A natural case of chronic wasting disease in a free-ranging moose (Alces alces shirasi). J Wildl Dis 43:309–314.

Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T. 2016. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res 47:88.

Carlson CM, Hopkins MC, Nguyen NT, Richards BJ, Walsh DP, Walter D. 2017. Chronic wasting disease—Status, science, and management support by the U.S. Geological Survey, Open-File Report 2017-1138. doi: 10.3133/ofr20171138.

Edmunds DR, Kauffman MJ, Schumaker BA, Lindzey FG, Cook WE, Kreeger TJ, Grogan RG, Cornish TE. 2016. Chronic wasting disease drives population decline of white-tailed deer. PLoS One. 11:e0161127.

Evira. 2019. Moose found dead in forest with chronic wasting disease. Finnish Food Safety Authority (Evira). 


Hamlin KL, Pac DF, Sime CA, DeSimone RM, Dusek GL. 2000. Evaluating the accuracy of ages obtained by two methods for Montana ungulates. J Wildl Manag 64:441–449.

Koutsoumanis K, Allende A, Alvarez-Ordonˇez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, de Cesare A, Herman L, Hilbert F, et al. 2019. Update on chronic wasting disease (CWD) III. EFSA J 17:5863.

National Veterinary Institute. 2020. Statistics of CWD surveillance in Sweden (in Swedish). National Veter- inary Institute, Uppsala, Sweden. https://svastatichosting.z6.web.core.windows.net/maps/cwd_table_wild/table_wild.html  Accessed July 2020.

Nonno R, Di Bari MA, Pirisinu L, D’Agostino C, Vanni I, Chiappini B, Marcon S, Riccardi G, Tran L, Vikøren T. et al, 2020. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci U S A 117:31417–31426.

Norwegian Veterinary Institute. 2020. Statistics of CWD surveillance in Norway (in Norwegian). 

Pirisinu L, Tran L, Chiappini B, Vanni I, Di Bari MA, Vaccari G, Vikøren T, Madslien KI, Vage J, Spraker J et al. 2018. Novel type of chronic wasting disease detected in European moose (Alces alces), Norway. Emerg Infect Dis 24:2210–2218.

Vikøren T, Madslien K, Røed K, Rolandsen C, Tran L, Hopp P, Veiberg V, Heum M, Moldal T, Das Neves C, et al. 2018. First detection of chronic wasting disease in a wild red deer (Cervus elaphus) in Europe. J Wildl Dis 55:970–972.

Va ̊ge J, Hopp P, Vikøren T, Madslien K, Tarpai A, Moldal T, Lafond Benestad V. 2020. The surveillance programme for chronic wasting disease (CWD) in free-ranging and captive cervids in Norway 2019. Norwegian Veterinary Institute, Oslo, Norway. 

Viltdata. 2020. Game bag statistics 2018/2019 (in Swed- ish). https://www.viltdata.se/. Accessed July 2020. Williams ES. 2005. Chronic wasting disease. Vet Pathol
42:530–549.

Submitted for publication 29 July 2020. Accepted 3 December 2020.


***> The findings are similar to previously described CWD cases in old moose in Norway, where a spontaneous origin is hypothesized.

this is horseshit science at it's best. like the infamous sporadic/spontaneous CJD, 85%+ of all human tse prion, it's just so easy to claim spontaneous, an old peoples disease, until the young started dying with it. this atypical cwd, or old cervid disease theory, hypothesis, atypical Nor-98 Scrapie in sheep and the atypical Nor-98 Scrapie/CWD in cervid in the EU, and it not being transmissible, or, not as transmissible, is a very foolish move, it's a very dangerous road to go down, making up science as you go. but the USDA has been doing it with atypical Nor-98 scrapie, knowing it does transmit. in fact, the USDA et al  deemed it not a concern with trade, just trade it along with the sheep or goats. seems every atypical case of cwd that comes up now in Europe they run with the old 'spontaneous', or 'old cervid disease' just like the sporadic spontaneous cjd, it's called corporate science policy, just ask the UK how that worked out for them. it's not one strain, it's multiple strains, and they have no clue which ones will transmit and which ones will not, under all scenarios i.e. dose, strain, route, genetics, etc., and that may take decades, but let's repeat again with the Nor-98 type cwd in cervid, what was repeated with the BSE, to nvCJD, to sporadic CJD, and see what happens next. this is what we call TSE Prion Poker, gambling on a whelm of predetermined science, with your life, or your loved ones life. ...terry

Research article Open Access Published: 25 November 2019 

Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods 

Jan P. M. Langeveld, Laura Pirisinu, Jorg G. Jacobs, Maria Mazza, Isabelle Lantier, Stéphanie Simon, Olivier Andréoletti, Cristina Acin, Elena Esposito, Christine Fast, Martin Groschup, Wilfred Goldmann, John Spiropoulos, Theodoros Sklaviadis, Frederic Lantier, Loukia Ekateriniadou, Penelope Papasavva-Stylianou, Lucien J. M. van Keulen, Pier-Luigi Acutis, Umberto Agrimi, Alex Bossers & Romolo Nonno Veterinary Research volume 50, Article number: 97 (2019) Cite this article

1418 Accesses

2 Citations

3 Altmetric

Metricsdetails

Abstract Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants—CS-1 and CS-2 (mainly Italy)—which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters.

Introduction Prion diseases or transmissible spongiform encephalopathies (TSEs) are lethal neurological infections in mammals caused by prions from either sporadic, familial or transmissible origin [1, 2]. Since the 1980s, a zoonotic form of the disease emerged in cattle as bovine spongiform encephalopathy (BSE, C-type) through consumption of contaminated meat and bone meal (MBM) [3, 4]. BSE was detected in the United Kingdom but later also in and outside of Europe although less frequently. In 1995, a human variant form of human Creutzfeldt-Jakob disease (vCJD) emerged with phenotypic similarities to BSE [5, 6]. A decennium later, TSE in cattle was differentiated by Western blotting in three types of BSE, C-type BSE and rare cases of H- and L-type BSE [7,8,9]. Measures to prevent continual feeding of livestock with MBM circulation have led to the near disappearance of BSE and vCJD worldwide. Critical herein were also diagnostic post mortem tests with prion protein (PrP) specific antibodies that reveal the presence of protease resistant prion material that is composed of malformed PrP (PrPSc) [10]. Awareness and strict surveillance of prion infections remain necessary, not only because of the zoonotic and epizootic risks of BSE but also other forms of TSE with different transmittabilities such as chronic wasting disease (CWD) in cervids in North America and South Korea, and newly discovered TSEs in cervids in Norway and camelids in Algeria [11,12,13].

Like other infectious agents, prions also exist as strains. Their transmissibility depends uniquely and largely on the amino acid sequence of normal cellular PrP (PrPC), and possibly on host factors during conversion of PrPC to PrPSc [14]. Strain characteristics are phenotypical properties such as incubation time, lesion profile, and variations in deposition and molecular features of PrPSc. Multiple strains from scrapie in sheep have been described in rodent bioassays, while bovine BSE behaves as a single strain [1, 5, 15].

However, in goats strain typing efforts have rarely been reported [16,17,18]. While scrapie in sheep is known to have existed for centuries, there are no indications that under natural conditions other species are infected by scrapie except goats. The source of the BSE epidemic is still uncertain, but plausible explanations are that it has evolved from small ruminant scrapie or from a sporadic case of BSE in cattle [3, 9]. Sheep and goats are known to be susceptible to BSE, but in the field only two cases in goats have been reported and these most probably originated from ingesting BSE contaminated feed [19,20,21].

Before deciding to carry out strain typing bioassays in rodents with their long lasting incubation times, ELISA and Western blotting (WB) with infected brain samples are important to rapidly classify scrapie like TSE typesFootnote1 and to exclude the presence of BSE [22,23,24,25,26,27,28,29,30]. In sheep, scrapie occurs in different biochemical types such as classical scrapieFootnote2 (CS), atypical/Nor98 scrapie (AS) and a rare form of CS, CH1641 scrapie. Proteolytic digestion with proteinase K (PK) of the PrPSc aggregate and its subsequent unfolding and dissociation are essential for binding by PrP site-specific antibodies. CH1641 scrapie exhibits similarities with BSE since in both types distinct N-terminal PrP epitopes are protease sensitive [31]. In addition, mixtures of TSE forms could be present in a single animal, which hamper recognition of low BSE levels [32].

During 2004–2014, we collected over seventy TSE goat brain samples from seven European countries based on various criteria such as tissue quality, geographical distribution, breed, PRNP genotype. From this unique collection, over thirty goat TSE isolates from seven EU countries have been subjected to biochemical TSE-typing. These samples were probed by ELISA and Western blotting for the presence of different sequence domains in PrPSc under different conditions of pre-treatment and proteolysis when preparing its proteinase K (PK) resistant domain (PrPres). Samples such as CS, AS, BSE and CH1641 scrapie served as references. These materials are also under strain typing investigation by rodent bioassays.

Materials and methods

snip...

Results

Analyses to discriminate between BSE, classical scrapie and Nor98/atypical scrapie

Initial analyses were carried out by CEA-ELISA on goat samples from all countries except on those from UK and G11–G17 from Greece. Most fields cases scored as CS with Aʹ/A ratios > 1.43, except for sample I3 which showed a borderline BSE value of 1.35 and sample I15 a ratio of 0.05 indicative for AS-like scrapie (Figure 1A). All experimental CS and BSE samples including ic-gtBSE1 resulted in values as expected for CS and BSE, respectively.

In ISS-WB analysis (see Additional file 3), most field cases fulfilled the two criteria for CS except for samples UK-B2 and I15 (Figures 1B and C). UK-B2 exhibited BSE-like features by showing both a low N-terminal epitope PrPres content (P4/SAF84 signal ratio < 0.5) and N-band PrPres molecular mass > 0.5 kDa lower than that of the CS reference I11.

The PrPres banding pattern of sample I15 was as in AS-like samples with a major band at 8 kDa, when using antibody P4, while SAF84 did not show binding (see Additional file 3). This was further confirmed in IZSTO-WB with mAbs 12B2, 9A2, Sha31 and SAF84 (data not shown).

Similar results were obtained as above with ISS-WB but now they were estimated relative to the Sha31 signal instead to SAF84. The results can be summarized as follows:

snip...

Banding patterns of Sha31 and SAF84 in UK-B2 were different from CS and BSE samples, but similar to that of control samples C-shCH1641 and C-gtCH1641 in which typically two PrPres triplets were present (triplet #1 bands D1, M1 and N1, triplet #2 bands D2, M2, and N2 in Figure 2). Of these two triplets, one migrated between 18 and 29 kDa similar to that obtained with mAb Sha31 (PrPres#1), and the other between 10 and 24 kDa (PrPres#2) only bound by SAF84 (see Additional file 6). Proof for presence of such double triplet composition could be confirmed by using at 24–25 kDa signal of the SAF84 and Sha31 fractions in the 18–29 kDa region (ratio SAF84/Sha31 at 24 kDa), which in case of CH1641 yields a value around two while single populations are around one. All BSE and CS samples varied around one (range 0.8–1.2) (Figure 3A).

PK sensitivity of PrPres N-terminal epitope of CS cases The PK-sensitivity of the PrPres N-terminus of CS cases in the two WB methods (see Additional file 4) was further tested by stepwise increasing the PK concentration from 0.02 to 4 mg PK mL−1 in several samples comparing the relative binding of P4 and SAF84 epitopes (Figures 4A and B). After confirming the reproducibility, all CS samples were subjected to one single PK digestion at 1 mg mL−1 to estimate the P4/SAF84 ratio (ISS-PK method). All Italian samples and F16 were clearly below a ratio cut-off value of 1.4 and considered as a separate group of CS type. These biochemical groups are here defined for > 1.4 and < 1.4 as type CS-1 and CS-2 respectively (Figure 4C).

Structural stability of total PrPres We also investigated the PK resistance of the PrPres core region as an indicator of structural stability. This was carried out with two different approaches and WB to probe the effect.

After 3.5 M Gdn-HCl pre-treatment in the ISS-Gdn method, core epitope loss was probed by ISS-WB to measure the SAF84 signals at 3.5 M relative to that without pre-treatment. All CS study cases and CH1641 specimens were quite sensitive for PK digestion with 3.5 M/0 M ratios lower than 0.35 (i.e. > 65% core epitope loss) including UK-B2 (89% loss), while BSE samples were significantly more resistant with less than 45% loss (Figure 5A).

snip...

Discussion The combined efforts in different laboratories, which shared the same goat brain macerates, enabled a thorough investigation using various chemical pre-treatments and subsequent biochemical analyses to clearly establish that none of the field cases was BSE.

On the other hand, the combined biochemical evidence from over 30 different field cases of prion disease collected from seven different European countries shows clearly that in goats similar types of scrapie occur as in sheep, which are atypical/Nor98 (AS) scrapie and several forms of classical scrapie (CS). Potentially three types of CS could be discriminated differing in increasing order of protease sensitivity of the N-terminus of PrPSc: CS-1 occurring most frequently, CS-2 occurring—but probably not only—in Italy, and one unambiguous CH1641-like case found in a scrapie infected herd in the United Kingdom (see column Molecular TSE-type, Table 1).

Biochemical parameters for typing TSEs In this study, nine different molecular PrPres parameters appeared useful to discriminate TSE types in brain homogenates of native goat samples (Table 2). These were glycoprofile (M/D and %N), PK resistance of the N-terminus (three approaches), molecular mass of PrPres bands (reflected in the non-glycosylated fraction), double triplet composition, core sequence stability and—for AS—absence of a C-terminal fragment covering roughly the 154–234 PrP sequence corroborating a previous study [45].

Table 2 PrPres paramet

One of these parameters is a new candidate and dependent on a 1 mg mL−1 PK treatment that effectively leads to differentiation between the CS subclasses CS-1 and CS-2. While in the three tests using Western blotting (ISS-WB, Triplex-WB and ISS-P with high PK concentrations) the difference in PK susceptibility of the PrPres N-terminal domain was obvious this was not the case in the ELISA. The explanation could well be that the ELISA is dependent on the presence of a more N-terminally located epitope between PrP amino acid residues 70–76 used in the ELISA compared to the P4 and 12B2 epitopes in these three WB tests which epitopes are located more down stream the PrP-sequence i.e. between residues 93–97. The ELISA is therefore more sensitive for removal of N-terminal amino acids at sites in the 70–93 amino acid region of PrP, which might be helpful in finding the deviant cases but not to recognize truly BSE-like cases.

For differentiating CS-CH1641 from BSE several robust parameters were available which are the two glycoprofile markers M/D ratio and percentage of the N-fraction, structural stability and the unique presence of two PrPres triplets.

Are biochemically distinct classical scrapie types related to different strains? The different PrPres signatures of the CS-1, CS-2 and CS-CH1641 cases might have at least two different origins. One would be that it is a host dependent phenomenon in which a common scrapie strain in certain hosts shows up with a PrPres triplet property as observed under the current biochemical treatments for diagnosis. In this case, the host is determining the biochemical phenotype of the strain by yet unknown factors. The other possibility could be that the phenomenon is a real strain property, which in the particular in case of CS-CH1641 is even rarely observed in sheep and goats. If so, it should be possible to make scrapie strain types visible in transgenic mice with various ovine (or caprine) PRNP expression levels [46]. Also, the effect of PrP polymorphisms need to be considered. To figure this out quite a number of rodent models are nowadays available to enable such typing studies.

Significance of TSE-type for resistance breeding and polymorphisms As with sheep, rapid typing of potential TSE agents in goats is necessary since different types can have different genetic susceptibilities [47, 48] or even different zoonotic potential [49]. Resistance/susceptibility to TSEs in mammals including the human species is dependent on genetic variation in the PRNP gene coding sequence [50,51,52,53]. In goats this polymorphism variability is partly similar to that in sheep and currently at least 51 coding polymorphisms have been described in goat [54]. In our set of field cases goats with several PRNP genotypes were selected (Table 1), including two scrapie positive goats (G11 and G12) carrying a scrapie resistance related lysine at codon 222 in heterozygosity both of which contained very low PrPres levels (see Additional file 2). However, there appeared to be no association between the variability in biochemical characteristics of PrPres and PRNP genotype in this study. Breed of animals could be another reason for phenotypical variability but although the breed of most animals was known it is not possible to connect this information to our results by lack of sufficient samples and because within the breed itself PrP polymorphism distribution can greatly differ [55, 56].

Geographical differences Little is actually known about geographical differences with respect to the occurrence of prion strains. In this study on goats from seven European countries—Italy, France, Greece, Cyprus, Spain, Netherlands and United Kingdom—material was collected and distributed to participating partners from single macerates. From our stability experiments, PK treatments and the two different antibody combinations (P4/SAF84 and 12B2/Sha31/SAF84) used in the WB analyses, CS-2 is an example of geographic variation of scrapie types. This form does occur mainly both in mainland Italy and Sicily, and possibly also sometimes in other countries such as France (example F16). Whether this CS-2 type has a source in Italy in the use of a vaccine against Mycoplasma agalactiae in both goats and sheep during the late 1990s is a possibility [57]. CS-1 might have existed before in Italy, but maybe the vaccination strain has become the dominant one.

Prospects Similarities between sheep and goats in genetics and the prion protein sequence itself were also encountered in the TSE types discerned in this study on goat scrapie field cases. Our consortium will report separately whether these biochemical typing studies in the macerates are linked to any strain type after first passage in an unprecedented broad set of rodent models. So far it seems, that the CS-2 cases also in the rodent models point to a separate strain that underscores the importance of further developing biochemical tools for TSE type discrimination [58].

Notes 1. “TSE type” is used for phenotypic observations in infected tissues based on microscopic or test tube experiments. “Strain type” is used as the outcome from passaging of infected tissue in another host, usually rodents such as inbred mouse or bank vole lines, or transgenic mice expressing PrP from another species.

2. In biochemical terms, classical TSEs yields in Western blot analyses a triplet of PrPres bands consisting of a di-, mono-, and non-glycosylated (resp. D, M and N) PrP fragment of similar amino acid sequence. For clarity in the use of uppercase N: non-glycosylated will be written with a regular capital N and amino terminus with the italics description N-terminus.

References


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


WEDNESDAY, MAY 29, 2019 

***> Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures 


THURSDAY, DECEMBER 31, 2020 

Autoclave treatment of the classical scrapie agent US No. 13-7 and experimental inoculation to susceptible VRQ/ARQ sheep via the oral route results in decreased transmission efficiency


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

Prion Conference 2015 Abstract


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021


P03.141 

***>  Aspects of the Cerebellar Neuropathology in Nor98 

 Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute, 

 Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans. 

 ***> The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans. 

Prion Conference 2007 Abstract Book

 PR-26 

 NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS 

 R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway 

 Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion. 

 ***> Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease. 

 119 

Neuroprion 2006 Conference Abstract Book

A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes 

 Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,? +Author Affiliations 

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway 

***> Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005) 

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. 

*** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health. 


Experimental Oral Transmission of Atypical Scrapie to Sheep

Marion M. Simmons, S. Jo Moore,1 Timm Konold, Lisa Thurston, Linda A. Terry, Leigh Thorne, Richard Lockey, Chris Vickery, Stephen A.C. Hawkins, Melanie J. Chaplin, and John Spiropoulos 

To investigate the possibility of oral transmission of atypical scrapie in sheep and determine the distribution of infectivity in the animals’ peripheral tissues, we challenged neonatal lambs orally with atypical scrapie; they were then killed at 12 or 24 months. Screening test results were negative for disease-specifi c prion protein in all but 2 recipients; they had positive results for examination of brain, but negative for peripheral tissues. Infectivity of brain, distal ileum, and spleen from all animals was assessed in mouse bioassays; positive results were obtained from tissues that had negative results on screening. 

***> These findings demonstrate that atypical scrapie can be transmitted orally and indicate that it has the potential for natural transmission and iatrogenic spread through animal feed. 

***> Detection of infectivity in tissues negative by current surveillance methods indicates that diagnostic sensitivity is suboptimal for atypical scrapie, and potentially infectious material may be able to pass into the human food chain.


This surveillance plan is designed to speed the eradication of classical scrapie. Cases of nonclassical (Nor98-like) scrapie will be found because of testing for classical scrapie but the plan is not designed to maximize these detections. Nor98-like scrapie has its own unique characteristics, and the Animal and Plant Health Inspection Service (APHIS) and the OIE have concluded that it is “clinically, pathologically, biochemically, and epidemiologically unrelated to classical scrapie, may not be contagious and may, in fact, be a spontaneous degenerative condition of older sheep.” As a result, APHIS does not restrict or depopulate animals exposed to Nor98-like scrapie.


***> As a result, APHIS does not restrict or depopulate animals exposed to Nor98-like scrapie.

incredible stupidity, not based on sound science, see;

WEDNESDAY, NOVEMBER 20, 2019 

Review: Update on Classical and Atypical Scrapie in Sheep and Goats 


FRIDAY, FEBRUARY 11, 2011 

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues 


SEE HADLOW AND SCRAPIE !



WEDNESDAY, JUNE 10, 2020 

Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice

Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.

our results clearly indicate that atypical BSE adaptation to an ovine-PrP sequence could modify the prion agent to potentially infect humans, showing strain features indistinguishable from those of classic sCJD prions, even though they might or might not be different agents.

However, the expanding range of TSE agents displaying the capacity to transmit in human-PrP–expressing hosts warrants the continuation of the ban on meat and bone meal recycling and underscores the ongoing need for active surveillance


THURSDAY, SEPTEMBER 24, 2020 

The emergence of classical BSE from atypical/ Nor98 scrapie


FRIDAY, OCTOBER 30, 2020 

Efficient transmission of US scrapie agent by intralingual route to genetically susceptible sheep with a low dose inoculum


SUNDAY, OCTOBER 11, 2020 

Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ 


WEDNESDAY, JULY 31, 2019 

The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L


MONDAY, JULY 27, 2020 

APHIS USDA Nor98-like scrapie was confirmed in a sheep sampled at slaughter in May 2020


FRIDAY, OCTOBER 23, 2020 

Scrapie TSE Prion Zoonosis Zoonotic, what if?


TUESDAY, SEPTEMBER 22, 2020 

APHIS USDA MORE SCRAPIE ATYPICAL Nor-98 Confirmed USA September 15 2020

Personal Communication from USDA et al Mon, Jan 4, 2021 11:37 am...terry

17 cases of the Nor98 in the USA to date

17 Nor98-like cases since the beginning of RSSS.


TUESDAY, JANUARY 12, 2021 

Annual Scrapie Report Available for Fiscal Year 2020 USA October 1, 2019 to September 30, 2020


THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021


*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;


A REVIEW of facts and science on scrapie zoonosis potential/likelihood and the USA incredible failure of the BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

***> 1st up BSE 589.2001 FEED REGULATIONS 


IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***


WEDNESDAY, DECEMBER 23, 2020 

Idiopathic Brainstem Neuronal Chromatolysis IBNC BSE TSE Prion a Review 2020


***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice

Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2

1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO

Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.

Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.

Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.

Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.

snip... 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


CH1641


WEDNESDAY, JULY 31, 2019

The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L

49. The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L

E. D. Cassmanna,b, S. J. Moorea,b, R. D. Kokemullera, A. Balkema-Buschmannc, M. H. Groschupcand J. J. Greenleea

aVirus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, USA (EDC, SJM, RDK, JJG); bOak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. (EDC, SJM), Department of Veterinary Pathology, Iowa State University, Ames, IA, USA (JDS); cInstitute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Isle of Riems, Germany (ABB, MHG)

CONTACT E. D. Cassmann eric.cassmann@usda.gov

ABSTRACT

Introduction: Transmissible mink encephalopathy (TME) is a fatal neurologic prion disease of farmed mink. Epidemiologic and experimental evidence following a Wisconsin outbreak in 1985 has linked TME to low-type bovine spongiform encephalopathy (BSE-L). Evidence suggests that farmed mink were likely exposed through feeding of BSE-L infected downer cattle. The interspecies transmission of TME to cattle has been documented. Recently, we demonstrated the susceptibility of sheep to cattle passaged TME by intracranial inoculation. The aim of the present study was to compare ovine passaged cattle TME to other prion diseases of food-producing animals. Using a bovine transgenic mouse model, we compared the disease phenotype of sheep TME to BSE-C and BSE-L.

Materials and Methods: Separate inoculants of sheep passaged TME were derived from animals with the VRQ/VRQ (VV136) and ARQ/VRQ (AV136) prion protein genotype. Transgenic bovinized mice (TgBovXV) were intracranially inoculated with 20 µl of 1% w/v brain homogenate. The disease phenotypes were characterized by comparing the attack rates, incubation periods, and vacuolation profiles in TgBovXV mice.

Results: The attack rate for BSE-C (13/13), BSE-L (18/18), and TMEVV (21/21) was 100%; whereas, the TMEAV group (15/19) had an incomplete attack rate. The average incubation periods were 299, 280, 310, and 541 days, respectively. The vacuolation profiles of BSE-L and TMEVV were most similar with mild differences observed in the thalamus and medulla. Vacuolation profiles from the BSE-C and TMEAV experimental groups were different than TMEVVand BSE-L.

Conclusion: Overall the phenotype of disease in TME inoculated transgenic mice was dependent on the sheep donor genotype (VV vs AV). The results of the present study indicate that TME isolated from VRQ/VRQ sheep is similar to BSE-L with regards to incubation period, attack rate, and vacuolation profile. Our findings are in agreement with previous research that found phenotypic similarities between BSE-L and cattle passaged TME in an ovine transgenic rodent model. In this study, the similarities between ovine TME and BSE-L are maintained after multiple interspecies passages.

Prion2019 Conference


2007


doi:10.1016/S0021-9975(97)80022-9 Copyright © 1997 Published by Elsevier Ltd.

Second passage of a US scrapie agent in cattle

R.C. Cutlip, J.M. Miller and H.D. Lehmkuhl

United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA

Received 10 September 1996; accepted 31 July 1997. Available online 25 May 2006.

Summary

Scrapie and bovine spongiform encephalopathy are similar chronic neurodegenerative diseases of sheep and cattle. An earlier study showed that, on first passage in cattle, a US scrapie agent caused an encephalopathy that was distinct from bovine spongiform encephalopathy (BSE). The present report describes a second passage in cattle, carried out because diseases caused by the spongiform encephalopathy agents often change in character with additional passages in abnormal hosts. For this work, young calves were inoculated intracerebrally with a pooled suspension of brain from cattle that had died of encephalopathy after experimental inoculation with brain from scrapie-affected sheep. The second passage disease was essentially identical with the first passage disease, as judged by clinical signs, histopathological findings and distribution of "prion protein scrapie" (PrPsc). This represents additional evidence to suggest that the US sheep scrapie agent tested is incapable of causing BSE in cattle.


August 1988

Evidence That Transmissible Mink Encephalopathy Results From Feeding Infected Cattle


Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. snip... The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




(b) the epidemiological and laboratory studies in the USA suggest the possibility of an occurrence of BSE infection in cattle as the origin of outbreaks of TME.

{c) there is also evidence from two experiments conducted in the USA that cattle, though susceptible to scrapie inocula prepared from sheep, express a pathology quite different from that of BSE and not convincingly diagnostic of an SE by histopathological criteria. Furthermore, neither of these studies can be regarded as a basis for extrapolation to the situation in the UK because the inocula used were either experimentally passaged or natural scrapie originating from Suffolk sheep; a minority breed in this country.


Is There a Scrapie-Like Disease in Cattle? R.F. Marsh*, DVM, PhD and G.R. Hartsough, DVM

Transmissible mink encephalopathy (TME) is a rare disease of ranch-reared mink which is indistinguishable from sheep scrapie. Previous studies on the epidemiology of TME have not identified a definite source of infection for mink. Studies on experimental transmission have shown that mink are susceptible to intracerebral inoculation of American Suffolk scrapie, but that the incubation periods are longer (>1 year) than those observed in natural outbreaks of TME (<1 year).

In April of 1985, a mink rancher in Wisconsin reported a debilitating neurologic disease in his herd which we diagnosed as TME by histopathologic findings confirmed by experimental transmission to mink and squirrel monkeys. The rancher was a “dead stock" feeder using mostly (>95%) downer or dead dairy cattle and a few horses. Sheep had never been fed.

We believe that these findings may indicate the presence of a previously unrecognized scrapie-like disease in cattle and wish to alert dairy practitioners to this possibility.

* Department of Veterinary Science, University of Wisconsin-

- Madison, Madison, WI 53706, .

* Director of the GLMA/EMBA Ranch Service, P.0. Box 342, Thiensville, WI 53092.

PROCEEDINGS OF THE SEVENTH ANNUAL WESTERN CONFERENCE FOR FOOD ANIMAL VETERINARY MEDICINE, University of Arizona, March 17-19, 1986 

August 1988

Evidence That Transmissible Mink Encephalopathy Results From Feeding Infected Cattle


WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al


THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021


MONDAY, NOVEMBER 23, 2020 

Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


FRIDAY, FEBRUARY 05, 2021 

USA 50 STATE CWD TSE Prion UPDATE FEBRUARY 2021


Experimental interspecies transmission studies of the transmissible spongiform encephalopathies to cattle: comparison to bovine spongiform encephalopathy in cattle 

Amir N. Hamir, Marcus E. Kehrli, Jr,1 Robert A. Kunkle, Justin J. Greenlee, Eric M. Nicholson, Jürgen A. Richt, Janice M. Miller, Randall C. Cutlip 

Abstract. 

Prion diseases or transmissible spongiform encephalopathies (TSEs) of animals include scrapie of sheep and goats; transmissible mink encephalopathy (TME); chronic wasting disease (CWD) of deer, elk and moose; and bovine spongiform encephalopathy (BSE) of cattle. The emergence of BSE and its spread to human beings in the form of variant Creutzfeldt-Jakob disease (vCJD) resulted in interest in susceptibility of cattle to CWD, TME and scrapie. Experimental cross-species transmission of TSE agents provides valuable information for potential host ranges of known TSEs. Some interspecies transmission studies have been conducted by inoculating disease-causing prions intracerebrally (IC) rather than orally; the latter is generally effective in intraspecies transmission studies and is considered a natural route by which animals acquire TSEs. The “species barrier” concept for TSEs resulted from unsuccessful interspecies oral transmission attempts. Oral inoculation of prions mimics the natural disease pathogenesis route whereas IC inoculation is rather artificial; however, it is very efficient since it requires smaller dosage of inoculum, and typically results in higher attack rates and reduces incubation time compared to oral transmission. A species resistant to a TSE by IC inoculation would have negligible potential for successful oral transmission. To date, results indicate that cattle are susceptible to IC inoculation of scrapie, TME, and CWD but it is only when inoculated with TME do they develop spongiform lesions or clinical disease similar to BSE. Importantly, cattle are resistant to oral transmission of scrapie or CWD; susceptibility of cattle to oral transmission of TME is not yet determined.

Key words: Bovine spongiform encephalopathy; cattle; chronic wasting disease, prion diseases; PrP immunohistochemistry; PrP Western blot; spongiform encephalopathy; transmissible mink encephalopathy; variant Creutzfeldt-Jakob disease.

https://journals.sagepub.com/doi/pdf/10.1177/1040638711403404 

Minimum Effective Dose of Cattle and Sheep BSE for Oral Sheep Infection

Gillian McGovern,Stuart Martin,Martin Jeffrey,Glenda Dexter,Steve A. C. Hawkins,Sue J. Bellworthy,Lisa Thurston,Lynne Algar,Lorenzo González 

Published: March 11, 2016https://doi.org/10.1371/journal.pone.0151440

Abstract

The minimum dose required to cause infection of Romney and Suffolk sheep of the ARQ/ARQ or ARQ/ARR prion protein gene genotypes following oral inoculation with Romney or Suffolk a sheep Bovine spongiform encephalopathy (BSE)-derived or cattle BSE-derived agent was investigated using doses ranging from 0.0005g to 5g. ARQ/ARQ sheep which were methionine (M) / threonine (T) heterozygous or T/T homozygous at codon 112 of the Prnp gene, dosed ARQ/ARR sheep and undosed controls did not show any evidence of infection. Within groups of susceptible sheep, the minimum effective oral dose of BSE was found to be 0.05g, with higher attack rates following inoculation with the 5g dose. Surprisingly, this study found no effect of dose on survival time suggesting a possible lack of homogeneity within the inoculum. All clinical BSE cases showed PrPd accumulation in brain; however, following cattle BSE inoculation, LRS involvement within Romney recipients was found to be significantly lower than within the Suffolk sheep inoculated group which is in agreement with previous reports.


***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




 Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 


THURSDAY, SEPTEMBER 26, 2019 

Sweden The third case of CWD in moose in Arjeplog is now established


SATURDAY, JUNE 01, 2019 

Sweden Documents Another Case of Chronic Wasting Disease CWD TSE Prion Norrbotten


FRIDAY, APRIL 12, 2019 

Sweden Wasting Disease (CWD) discovered on moose in Norrbotten County


Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home