Wednesday, January 12, 2022

Wisconsin CWD TSE Prion Spreads To More Wild Deer In New Counties of Monroe and Oconto

Wisconsin CWD TSE Prion Spreads To More Wild Deer In New Counties of Monroe and Oconto

FOR IMMEDIATE RELEASE: 2022-01-11

Contact: Scott Roepke, DNR Area Wildlife Supervisor

Scott.Roepke@wisconsin.gov or 715-284-1403

DNR CONFIRMS CWD IN WILD DEER HARVESTED IN MONROE COUNTY

BAITING AND FEEDING BANS RENEWED FOR MONROE COUNTY

MADISON, Wis. – The Wisconsin Department of Natural Resources (DNR) confirms two wild deer tested positive for chronic wasting disease (CWD) in Monroe County during the fall 2021 hunting season. The two deer were adult bucks harvested in the towns of Ridgeville and Glendale. These are the first confirmed wild positive cases of CWD in Monroe County.

As required by state law, the DNR enacts three-year baiting and feeding bans in counties where CWD has been detected and two-year bans in adjoining counties that lie within 10 miles of a CWD detection. Following state law, the DNR will renew a three-year baiting and feeding ban in Monroe County.

Baiting or feeding deer encourages them to congregate unnaturally around a shared food source where sick deer can spread CWD through direct contact with healthy deer or by leaving behind infectious prions in their bodily secretions.

More information regarding baiting and feeding regulations and CWD in Wisconsin is available here.

The DNR asks deer hunters in Monroe county to assist with efforts to identify where CWD occurs. Those harvesting deer within 10 miles of the newly detected positive case are especially encouraged to have their harvested adult deer tested for CWD. Collecting CWD samples is essential for assessing where and to what extent CWD occurs in deer across the state.

Information on how to have deer tested during the 2021-2022 hunting seasons is available here.

The DNR will hold a virtual informational meeting on Thursday, Feb. 3 from 6-8 p.m. to discuss CWD in Monroe County. Members of the public are invited to attend this meeting and will have the opportunity to provide input.

CWD is a fatal, infectious nervous system disease of deer, moose, elk and reindeer/caribou. It belongs to the family of diseases known as transmissible spongiform encephalopathies (TSEs) or prion diseases. The Wisconsin DNR began monitoring the state's wild white-tailed deer population for CWD in 1999. The first positives were found in 2002. 

MEETING DETAILS

WHAT: CWD In Monroe County

WHEN: 6-8 p.m. Feb. 3, 2022

WHERE: Join by Zoom here.

Join by phone: 833-548-0282, Meeting ID: 818 9196 0967


FOR IMMEDIATE RELEASE: 2022-01-11

Contact: Janet Brehm, Peshtigo Area Wildlife Supervisor

Janet.Brehm@wisconsin.gov or 715-409-3277

DNR CONFIRMS CWD IN WILD DEER HARVESTED IN OCONTO COUNTY

BAITING AND FEEDING BANS RENEWED FOR OCONTO AND MENOMINEE COUNTIES, ONGOING FOR SHAWANO COUNTY

Wisconsin DNR news release

The Wisconsin DNR confirms CWD in a wild deer harvested in Oconto County. Baiting and feeding bans are renewed for Oconto and Menominee Counties and remain in effect for Shawano County.

Photo credit: Wisconsin DNR

MADISON, Wis. – The Wisconsin Department of Natural Resources (DNR) confirms a wild deer tested positive for chronic wasting disease (CWD) in the Town of Underhill in Oconto County. The deer was a one-year-old hunter-harvested buck taken during the 2021 gun deer season. This is the first confirmed wild positive case of CWD in Oconto County.

Following state law, the DNR will renew a three-year baiting and feeding ban in Oconto County as well as a two-year ban in Menominee County, as the deer was harvested within 10 miles of the county line. Shawano County is also within 10 miles of the Oconto positive’s harvest location, but is already under a longer three-year baiting and feeding ban due to a positive CWD detection at a captive deer farm earlier this year.

Baiting or feeding deer encourages them to congregate unnaturally around a shared food source where sick deer can spread CWD through direct contact with healthy deer or by leaving behind infectious prions in their bodily secretions.

More information regarding baiting and feeding regulations and CWD in Wisconsin is available here.

Those harvesting deer within 10 miles of the newly detected positive case are especially encouraged to have their harvested adult deer tested for CWD. The Farmland Zone of Oconto County has an either-sex extended archery and crossbow deer hunt through Jan. 31, 2022; harvest authorizations are still available for purchase with your license. Collecting CWD samples is essential for assessing where and to what extent CWD occurs in deer across the state.

Information on how to have deer tested during the 2021-22 hunting seasons is available here.

Successful CWD management depends in part on citizen involvement in the decision-making process through local County Deer Advisory Councils (CDAC). The DNR and the Oconto and Shawano CDACs will hold a public meeting on the status of CWD and a response plan for sampling wild deer in Oconto and Shawano County. The virtual meeting is open to all members of the public and will take place on Tuesday, Feb. 1 from 6-8 p.m. via Zoom. The public may also call in to the meeting by dialing 888-475-4499, meeting ID 871 6740 0821.

CWD is a fatal, infectious nervous system disease of deer, moose, elk and reindeer/caribou. It belongs to the family of diseases known as transmissible spongiform encephalopathies (TSEs) or prion diseases. The Wisconsin DNR began monitoring the state's wild white-tailed deer population for CWD in 1999. The first positives were found in 2002.

MEETING DETAILS:

WHAT: CWD In Oconto County

WHEN: 6-8 p.m. Feb. 1, 2022

WHERE: Join by Zoom here.

Join by phone: 888-475-4499, Meeting ID: 871 6740 0821


FOR IMMEDIATE RELEASE: 2022-01-07

Contact: DNR Office of Communications

DNRPress@wisconsin.gov

VIRTUAL CWD RESPONSE PLAN REVIEW COMMITTEE MEETING JAN. 12

MADISON, Wis. – The Wisconsin Department of Natural Resources (DNR) today announced it will host the Chronic Wasting Disease Response Plan Review Committee meeting on Wednesday, Jan. 12 from 9 a.m. to 1:30 p.m. 

The DNR’s 15-year CWD Response Plan, in effect through 2025, helps guide the department’s approach to addressing CWD in Wisconsin. The plan was developed to fulfill its public trust responsibility to manage wildlife and ensure the health of Wisconsin’s wildlife populations. As part of the plan’s implementation, the department will review progress toward meeting its goals and objectives every five years.

The committee is comprised of a group of stakeholders representing conservation, business and hunting organizations and tribal governments. During its meetings, the committee will develop input on the plan’s implementation and actions to consider as it completes this second five-year review.

Chronic wasting disease is a fatal, infectious nervous system disease of deer, moose, elk and reindeer/caribou. The Wisconsin DNR began monitoring the state's wild white-tailed deer population for CWD in 1999. The first positives were found in 2002.

More information on CWD is available on the DNR's CWD webpage. 

Additional information on the DNR’s CWD Response Plan is available on the DNR’s website.


WHAT: CWD Response Plan Review Committee Meeting

WHEN: 9 a.m. – 1:30 p.m. Jan. 12, 2022

WHERE: The public is invited to watch live on the DNR’s YouTube channel here.

There is no registration required to attend, and a recording of the meeting will be posted to the DNR website.


WISCONSIN DNR CONFIRMS CWD IN WILD DEER HARVESTED IN VILAS COUNTY WITH A TOTAL OF 9,040 POSITIVE WILD CASES TO DATE

FOR IMMEDIATE RELEASE: 2021-12-17

Contact: DNR Office of Communications


DNR CONFIRMS CWD IN WILD DEER HARVESTED IN VILAS COUNTY

BAITING AND FEEDING BANS RENEWED FOR VILAS AND FOREST COUNTIES AND REMAIN IN EFFECT FOR ONEIDA COUNTY

The Wisconsin DNR confirms CWD in wild deer harvested in Vilas County. Baiting and feeding bans renewed for Vilas and Forest Counties and remain in effect for Oneida County. MADISON, Wis. – The Wisconsin Department of Natural Resources (DNR) confirms a wild deer tested positive for chronic wasting disease (CWD) in the Town of Lincoln in Vilas County. This is the first confirmed wild positive case of CWD in Vilas County.

As required by state law, the DNR enacts three-year baiting and feeding bans in counties where CWD has been detected and two-year bans in adjoining counties that lie within 10 miles of a CWD detection.

Following state law, the DNR will renew a three-year baiting and feeding ban in Vilas County as well as a two-year ban in Forest county, as the deer was harvested within 10 miles of the county line. Oneida County is also within 10 miles of the Vilas positive’s harvest location but is already under a longer three-year baiting and feeding ban due to a positive CWD detection at a game farm earlier this year.

Baiting or feeding deer encourages them to congregate unnaturally around a shared food source where sick deer can spread CWD through direct contact with healthy deer or by leaving behind infectious prions in their bodily secretions.

More information regarding baiting and feeding regulations and CWD in Wisconsin is available here.

The DNR asks deer hunters in Vilas, Forest and Oneida counties to assist with efforts to identify where CWD occurs. Those harvesting deer within 10 miles of the newly detected positive case are especially encouraged to have their harvested adult deer tested for CWD. Collecting CWD samples is essential for assessing where and to what extent CWD occurs in deer across the state.

The DNR will work with Vilas County Deer Advisory Council members to schedule a meeting in January to discuss response actions. Members of the public will be invited to attend this meeting and will have the opportunity to provide input.

CWD is a fatal, infectious nervous system disease of deer, moose, elk and reindeer/caribou. It belongs to the family of diseases known as transmissible spongiform encephalopathies (TSEs) or prion diseases. The Wisconsin DNR began monitoring the state's wild white-tailed deer population for CWD in 1999. The first positives were found in 2002.

Information on how to have deer tested during the 2020-21 hunting seasons is available here.



Wisconsin Portage County Deer Farm Tests Positive for CWD

Portage County Deer Farm Tests Positive for CWD

FOR IMMEDIATE RELEASE: December 17, 2021

Contact: Kevin Hoffman, Public Information Officer, (608) 224-5005, kevin.hoffman@wisconsin.gov

MADISON, Wis. – The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that two white-tailed deer at a Portage County hunt ranch have tested positive for chronic wasting disease (CWD). Positive samples were confirmed by the National Veterinary Services Laboratories in Ames, Iowa.

The 200-acre farm and its herd of approximately 370 deer are under quarantine while an epidemiological investigation is conducted by DATCP and U.S. Department of Agriculture (USDA) veterinarians and staff.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal’s death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements.

More information

 About CWD:


 DATCP’s farm-raised deer program:


###



This table shows available CWD test results for the selected year for each of DNR's four zones statewide. Results for an individual year are for the CWD year, which runs from April 1st through March 31st. For example, the results for the 2021 CWD year would be April 1st, 2021 through March 31st, 2022. Deer will not have full data until the datasheet is entered.

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 5669 3231 19

Central Forest Zone 509 284 3

Northern Forest Zone 1977 1024 0

Southern Farmland Zone 6864 4919 849

Unknown Zone 162 54 2

Totals: 15181 9512 873



This table shows available CWD test results for each of DNR's four zones statewide. It includes data released through December 16, 2021. Deer will not have full data until the datasheet is entered.

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 54182 51724 78

Central Forest Zone 7028 6801 47

Northern Forest Zone 29498 28539 6

Southern Farmland Zone 186740 184763 8904

Unknown Zone 3049 2933 5

Statewide Totals: 280497 274760 9040


Wisconsin Eau Claire County Deer Farm Tests Positive for CWD

Eau Claire County Deer Farm Tests Positive for CWD

FOR IMMEDIATE RELEASE: November 9, 2021

Contact: Kevin Hoffman, Public Information Officer, (608) 224-5005,


MADISON, Wis. – The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that a white-tailed deer from an Eau Claire County hunt ranch has tested positive for chronic wasting disease (CWD). Positive samples from a 3-year-old buck were confirmed by the National Veterinary Services Laboratories in Ames, Iowa.

The herd of approximately 15 deer is under quarantine while an epidemiological investigation is conducted by DATCP and U.S. Department of Agriculture (USDA) veterinarians and staff. The ranch was confirmed to have received the deer from a Waukesha County deer farm, which also has been placed under quarantine.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal’s death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements.

More information

About CWD:


DATCP’s farm-raised deer program:


###






Wisconsin Outagamie County Deer Farm Tests Positive for CWD

Outagamie County Deer Farm Tests Positive for CWD

FOR IMMEDIATE RELEASE: September 2, 2021

Contact: Kevin Hoffman, Public Information Officer, (608) 224-5005, kevin.hoffman@wisconsin.gov

Download PDF

MADISON, Wis. – The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that a deer farm in Outagamie County has tested positive for chronic wasting disease (CWD). Positive samples were confirmed by the National Veterinary Services Laboratories in Ames, Iowa.

The farm was already under quarantine after receiving animals from a CWD affected farm. The herd of approximately 30 deer will remain under quarantine while an epidemiological investigation is conducted by DATCP and U.S. Department of Agriculture (USDA) veterinarians and staff.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal's death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement and permit requirements.

More information



###


CARCASS MOVEMENT, PROCESSING AND DISPOSAL

The movement of dead or alive CWD positive deer, moose, elk or reindeer/caribou (natural or human-assisted) is a key pathway in the spread of CWD. The infectious nature of the CWD prion contributes to an increased risk of introduction and spread of CWD if dead carcasses are brought to new areas and not disposed of properly.

FIND CWD SAMPLING AND CARCASS DISPOSAL LOCATIONS NEAR YOU



Wisconsin Langlade County Deer Farm Tests Positive for CWD

Langlade County Deer Farm Tests Positive for CWD 

FOR IMMEDIATE RELEASE: September 1, 2021

Contact: Kevin Hoffman, Public Information Officer, (608) 224-5005, kevin.hoffman@wisconsin.gov

Download PDF

MADISON, Wis. – The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that a deer farm in Langlade County has tested positive for chronic wasting disease (CWD).

A positive sample from a 1-year-old doe was confirmed by the National Veterinary Services Laboratory in Ames, Iowa. All 57 deer at the 6-acre farm were already under quarantine after receiving animals from a CWD-affected farm. The herd will remain under quarantine while an epidemiological investigation is conducted by DATCP and U.S. Department of Agriculture (USDA) veterinarians and staff.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal's death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement and permit requirements.

More information



### 


Deer Farms in Sauk, Taylor Counties Test Positive for CWD

Release Date: August 11, 2021

Media Contact: Kevin Hoffman, Public Information Officer, (608) 224-5005, kevin.hoffman@wi.gov

MADISON — The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) confirms that deer farms in Sauk and Taylor counties have tested positive for chronic wasting disease (CWD). Results were confirmed by the National Veterinary Services Laboratory in Ames, Iowa.

Positive samples were taken from a 6-year-old doe in Taylor County and a 9-year-old buck in Sauk County. There is no connection between the two locations. The 227 whitetail deer at the 22-acre double-fenced Taylor County farm and the two whitetail deer at the 1-acre singlefenced Sauk County farm have been quarantined, meaning no live animals or whole carcasses are permitted to leave the property. The herds will remain under quarantine while an epidemiological investigation is conducted by DATCP and U.S. Department of Agriculture (USDA) veterinarians and staff.

CWD is a fatal, neurological disease of deer, elk and moose caused by an infectious protein called a prion that affects the animal's brain, and testing for CWD is typically only performed after the animal’s death. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement and permit requirements.

More information

About CWD:


DATCP’s farm-raised deer program:



Title: Chronic wasting disease in a Wisconsin white-tailed deer farm

Author item KEANE, DELWYN item BARR, DANIEL item BOCHSLER, PHILIP item HALL, S item GIDLEWSKI, THOMAS item O'Rourke, Katherine item SPRAKER, TERRY item SAMUEL, MICHAEL

Submitted to: Journal of Veterinary Diagnostic Investigation Publication Type: Peer Reviewed Journal Publication Acceptance Date: 5/5/2008 Publication Date: 9/2/2008

Citation: Keane, D.P., Barr, D.J., Bochsler, P.N., Hall, S.M., Gidlewski, T.E., O'Rourke, K.I., Spraker, T.R., Samuel, M.D. 2008. Chronic wasting disease in a Wisconsin white-tailed deer farm. Journal of Veterinary Diagnostic Investigation. 20(5):698-703. Interpretive Summary: Chronic wasting disease is a fatal disease of deer and elk. Clinical signs, including weight loss, frequent urination, excessive thirst, and changes in behavior and gait, have been reported in mule deer and elk with this disorder. Clinical signs in captive white tailed deer are less well understood. In a previous study, a captive facility housed 200 deer, of which half were positive for the disease with no clinical signs reported. In this study, we examined 78 white tailed deer from a captive facility with a history of chronic wasting disease and no animals with clinical signs. Examination of the brain and lymph nodes demonstrated that the abnormal prion protein, a marker for disease, was observed in 60 of the deer. Biopsy of the rectal mucosa, a test that can be performed on live deer, detected 83% of the infected animals. The prion genetics of the deer was strongly linked to the rate of infection and to disease progression. The results demonstrate that clinical signs are a poor indicator of the disease in captive white tailed deer and that routine testing of live deer and comprehensive necropsy surveillance may be needed to identify infected herds.

Technical Abstract: Chronic wasting disease CWD is a transmissible spongiform encephalopathy or prion disease of deer and elk in North America. All diseases in this family are characterized by long preclinical incubation periods following by a relatively short clinical course. Endpoint disease is characterized by extensive deposits of aggregates of the abnormal prion protein in the central nervous system,. In deer, the abnormal prion proteins accumulate in some peripheral lymphoid tissues early in disease and are therefore suitable for antemortem and preclinical postmortem diagnostics and for determining disease progression in infected deer. In this study, a herd of deer with previous CWD diagnoses was depopulated. No clinical suspects were identified at that time. Examination of the brain and nodes demonstrated that 79% of the deer were infected. Of the deer with abnormal prion in the peripheral lymphoid system, the retropharyngeal lymph node was the most reliable diagnostic tissue. Biopsy of the rectal mucosal tissue, a site readily sampled in the restrained or chemically immobilized deer, provided an accurate diagnosis in 83% of the infected deer. The retina in the eye of the deer was positive only in late stage cases. This study demonstrated that clinical signs are a poor indicator of disease, supports the use of the retropharyngeal lymph node as the most appropriate postmortem sample, and supports a further evaluation of the rectal mucosal tissue biopsy as an antemortem test on a herd basis.


Chronic Wasting Disease Positives in Farm-raised Deer

Revised: 3/1/2021

County (Premises #) Sample Collection Date of First CWD Positive in Farmraised Deer Sample Collection Date of Last CWD Positive in Farmraised Deer Total CWD Positive in Farm-raised Deer

Portage(1) 9/4/2002 1/18/2006 82

Walworth(1) 9/20/2002 12/13/2002 6

Manitowoc 3/5/2003 3/5/2003 1

Sauk(1) 10/3/2003 10/3/2003 1

Racine 5/1/2004 5/1/2004 1

Walworth(2) 7/28/2004 11/3/2004 3

Crawford 1/19/2005 1/25/2007 2

Portage(2) 9/22/2008 11/18/2008 2

Jefferson 12/1/2008 12/1/2008 1

Marathon 11/7/2013 11/9/2020 113

Richland(1) 9/13/2014 11/19/2014 8

Eau Claire 6/8/2015 11/24/2015 34

Oneida 11/4/2015 12/8/2020 23

Iowa(1) 1/22/2016 11/19/2020 5

Oconto 9/4/2016 1/15/2021 215

Shawano 9/18/2017 1/10/2021 63

Waupaca 9/21/2017 12/7/2017 12

Washington 2/18/2018 11/15/2018 12

Richland(2) 5/11/2018 5/11/2018 1

Dane 5/16/2018 5/16/2018 1

Iowa(2) 5/18/2018 5/18/2018 21

Marinette 5/19/2018 12/4/2020 2

Sauk(2) 6/4/2018 11/28/2018 2

Portage(3) 10/23/2018 10/23/2018 1

Portage(4) 11/16/2018 5/1/2019 8

Forest 1/8/2019 12/7/2020 8

Burnett(1) 7/30/2019 7/30/2019 1

Trempealeau 11/7/2019 11/4/2020 3

Burnett(2) 9/3/2020 9/3/2020 1


Registered Deer Farms and Past/Current CWD Farms

^_ Hunting Ranches Infected with CWD Currently in Operation

^_ Deer Farm Infected with CWD Currently in Operation

!( Past Positive CWD Farms, Depopulated

!( Currently Registered Farm-Raised Deer Farms

CWD Affected Counties March 2021





Wisconsin Buckhorn Flats CWD

The total number of deer to test positive from this farm from the initial discovery to final depopulation is 82. 

The nearly 80% prevalence rate discovered on Buckhorn Flats is the highest prevalence recorded in any captive cervid operation in North America.

see;

Title, Baiting and Feeding

Baiting and feeding deer brings a greater number of deer into close contact with each other. This increases the chances of Chronic Wasting Disease (CWD) being transmitted from deer to deer. One of the ways this can be done is nose to nose contact. Deer droppings and urine are also concentrated at bait sites or feeding station. That also increases the chances for a healthy deer to pick up the prions that cause CWD.

Outdoor News, Feb. 23, 2018 Pg. 9

The state's worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for CWD from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70 acer pen in January 2006, 60 of the remaining deer 76 deer carried CWD, a nearly 80 percent infection rate.

This proves that concentrating deer increases the spread of CWD.

Solution, ban baiting and feeding

BE IT RESOLVED, that the Conservation Congress, DNR and Legislative Bodies work together to write a law that puts a moratorium on baiting and feeding until a cure is found for wild deer in Wisconsin.

Harold Halverson

Private Citizen W12431 820th Ave. River Falls, Wi. 54022 PH 715-781-6804 



Chronic wasting disease in a Wisconsin white-tailed deer farm


Published: 06 September 2021

Chronic wasting disease: a cervid prion infection looming to spillover

Alicia Otero, Camilo Duque Velásquez, Judd Aiken & Debbie McKenzie 

Veterinary Research volume 52, Article number: 115 (2021) 


Voluntary Chronic Wasting Disease Herd Certification Program Annual Update, FY2020

Last Modified: Feb 9, 2021

U.S. Department of Agriculture

Animal and Plant Health Inspection Service (APHIS) Veterinary Services

Annual Update from the Cervid Health Team

Voluntary Chronic Wasting Disease Herd Certification Program (HCP)

The APHIS National CWD Herd Certification Program (HCP) was implemented in 2014. It is a voluntary Federal-State-industry cooperative program administered by APHIS and implemented by participating States. The program provides uniform national herd certification standards that minimize the risk of spreading CWD in farmed cervid populations. Participating States and herd owners must comply with requirements for animal identification, fencing, recordkeeping, inspections/inventories, as well as animal mortality testing and response to any CWD-exposed, suspect, and positive herds. APHIS monitors the Approved State HCPs to ensure consistency with Federal standards through annual reporting by the States.

With each year of successful surveillance, herds participating in the HCP will advance in status until reaching five years with no evidence of CWD, at which time herds are certified as being low risk for CWD. Only farmed cervids from enrolled herds certified as low risk for CWD may move interstate. FY 2020 marks the eighth year that Approved States have submitted their CWD HCP annual reports to APHIS.

The current Cervid Health Program staff officers are as follows: Dr. Mark Lyons, Dr. Jennifer Siembieda, and Dr. Tracy Nichols

Voluntary Herd Certification Participation Summary

Currently, 28 States participate in the voluntary CWD Herd Certification Program encompassing 2,145 enrolled herds, of which, 1,723 had the certified status in the program.

1,616 enrolled deer herds, of which, 1,297 were certified

371 enrolled elk herds, of which, 328 were certified

147 enrolled mixed species herds, of which, 98 were certified

CWD in Farmed Cervids Summary of CW Detections

There were 22 newly identified CWD positive herds in FY20

13 of these herds were not participants in the Federal HCP

2 herds were considered enrolled in the HCP

7 herds were certified in the HCP

Half of the herds were located within 20 miles of identified CWD in the wild, half were not CWD Herds by State

Pennsylvania: Eight new CWD positive herds

Breeding herd of 33 WTD, HCP certified, depopulated with Federal indemnity

Breeding herd of 6 WTD, not in HCP, depopulated with Federal indemnity

Breeding herd of 15 WTD, not in HCP, depopulated by owner\

Hunt preserve of 58 WTD, not in HCP, populated and under quarantine

Breeding herd of 75 WTD, not in HCP, populated and under quarantine

Breeding herd of WTD, not in HCP, populated and under quarantine

Breeding herd of 90 WTD, not in HCP, populated and under quarantine

Breeding herd of 4 WTD, not in HCP, populated and under quarantine

Iowa: Two new CWD positive herds

Breeding herd of 23 WTD, HCP certified, depopulated with Federal indemnity

Breeding herd of 13 WTD, HCP certified, depopulated with Federal indemnity

Minnesota: Two new CWD positive herds

Breeding herd of 3 WTD, enrolled in HCP, not certified, depopulated by owner

Breeding herd of 6 WTD, enrolled in HCP, not certified, depopulated with Federal indemnity

Colorado: Two new CWD positive herds

Breeding herd/hunt preserve of 9 elk, HCP certified, depopulated by owner

Breeding herd of 8 elk, HCP certified, populated and under quarantine

Utah: Two new CWD positive herds

Breeding herd of 465 elk, not in HCP, partial depopulation with Federal indemnity- removed purchased animals, populated-quarantine

Breeding herd of 103 elk, not in HCP, partial depopulation with Federal indemnity- removed purchased animals, populated-quarantine

Michigan: One new CWD positive herd

Hunt preserve of >600 WTD, not in HCP, populated and under quarantine

Montana: One new CWD positive herd

Breeding herd of 3 elk, not in HCP, populated and under quarantine

Texas: one new CWD positive herd

Breeding herd of 59 WTD, not in HCP, depopulated with Federal indemnity

Kansas: One new CWD positive herd

Breeding herd of 20 elk, HCP certified, depopulated with Federal indemnity

Ohio: Eight new CWD positive herd

Breeding herd of 138 WTD, HCP certified, depopulated with Federal indemnity

Research

Whole genome study investigating the association of genetics with CWD susceptibility has been published.

Blinded validation of the genetic predicative model is almost complete

A standardized protocol has been developed, in partnership with ARS, USGS, University of WI, and NIH for tissue sample testing using RT-QuIC

A study is starting shortly to determine the sensitivity and specify of RT-QuIC utilizing the standardized protocol

snip...

Voluntary Chronic Wasting Disease Herd Certification Program Annual Update, FY2020


Cervids: CWD Voluntary Herd Certification Program

Last Modified: Jun 29, 2021


CWD status of captive herds


“Regarding the current situation involving CWD in permitted deer breeding facilities, TPWD records indicate that within the last five years, the seven CWD-positive facilities transferred a total of 2,530 deer to 270 locations in 102 counties and eight locations in Mexico (the destinations included 139 deer breeding facilities, 118 release sites, five Deer Management Permit sites, and three nursing facilities).'' ...

It is apparent that prior to the recent emergency rules, the CWD detection rules were ineffective at detecting CWD earlier in the deer breeding facilities where it was eventually discovered and had been present for some time; this creates additional concern regarding adequate mitigation of the risk of transferring CWD-positive breeder deer to release sites where released breeder deer come into contact with free-ranging deer...

Commission Agenda Item No. 5 Exhibit B
DISEASE DETECTION AND RESPONSE RULES
PROPOSAL PREAMBLE
1. Introduction. 
snip...
 A third issue is the accuracy of mortality reporting. Department records indicate that for each of the last five years an average of 26 deer breeders have reported a shared total of 159 escapes. Department records for the same time period indicate an average of 31 breeding facilities reported a shared total of 825 missing deer (deer that department records indicate should be present in the facility, but cannot be located or verified). 
Listen here;
Nov 3, 2021
Nov 4, 2021
Counties where CWD Exposed Deer were Released, September 2021
Number of CWD Exposed Deer Released by County, September 2021
Oh, Deer, CWD, Heading Off a Wildlife Epidemic Texas Real Estate Research Center TAMU

Texas A & M University

Texas Real Estate Research Center 

Oh, Deer

Heading Off a Wildlife Epidemic

Charles E. Gilliland (Aug 18, 2021)

The Takeaway

Landowners in certain parts of the state need to be aware of chronic wasting disease, which can greatly reduce the number of deer. While there are no known cures or ways to eradicate the disease, the Texas Parks and Wildlife Department is taking measures to reduce its spread.

A multitude of risks threaten to undermine Texas landowners' efforts to manage their land. Some of those spring from past activities but can leave invisible living legacies behind. Anthrax, for example. An outbreak of anthrax in livestock leaves a scattering of spores across the countryside that can activate and infect replacement herds.

Chronic wasting disease (CWD) in wildlife poses a similar potential problem for landowners in certain parts of Texas. CWD infects members of the Cervidae family, namely deer, elk, moose, etc. CWD does not pose dangers to livestock, and scientists have not found evidence of the disease infecting humans. However, it is always fatal to stricken wildlife, threatening a destructive wave of infections among deer herds where the disease has spread. Therefore, CWD poses a direct threat to one of the primary motives for owning rural land: wildlife herd management.

Profiling CWD

CWD belongs to a family of disorders known as prion diseases, or transmissible spongiform encephalopathies (TSEs). It includes Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, or mad cow disease, in cattle. The Centers for Disease Control and Prevention describes these maladies in detail:

The causative agents of TSEs are believed to be prions. The term “prions" refers to abnormal, pathogenic agents that are transmissible and are able to induce abnormal folding of specific normal cellular proteins called prion proteins that are found most abundantly in the brain. The functions of these normal prion proteins are still not completely understood. The abnormal folding of the prion proteins leads to brain damage and the characteristic signs and symptoms of the disease. Prion diseases are usually rapidly progressive and always fatal.

CWD symptoms include dramatic weight loss, stumbling, listlessness, decreased social interaction, loss of fear of humans, and excessive salivating. However, animals typically exhibit no symptoms until 18-24 months after contracting the disease. In addition, these symptoms could be caused by other conditions, so formal testing is needed to reliably diagnose CWD.

Obviously, an infected animal may spread the disease to other members of the herd during the nonsymptomatic phase of infection. Perhaps even worse, the body casts off prions, so an infected animal will cast off diseased prions. Therefore, an infected herd can leave infection in the soil and remain infectious to host animals, much like anthrax. 

CWD Comes to Texas

Scientists first identified CWD in mule deer in Colorado in 1967. Since that time, CWD has spread to Wyoming, Montana, Wisconsin, Pennsylvania, and other states.

CWD first appeared in Hudspeth County in 2012 in free-ranging mule deer. In 2015, the Texas Parks and Wildlife Department (TPWD) found CWD in white-tailed deer in captive facilities in Medina County. By 2021, a total of 224 cases had been identified in 13 counties. Tests confirmed cases in two red deer, four elk, 49 mule deer, and 169 white-tailed deer.

See the TPWD site for details. Texas A&M AgriLife Extension provides a good overview of the disease in A Guide to Chronic Wasting Disease (CWD) in Texas Cervids.

Containing the Spread

Currently, there is no known cure for the disease nor any mechanism to eradicate it. Therefore, TPWD management of CWD seeks to contain the spread to areas of confirmed infections.

The plan has established five CWD zones with confirmed infections: Kimble County Zone, Trans-Pecos Zone, South Central Zone, Panhandle Zone, and Val Verde County Zone. The latest edition of the TPWD Outdoor Annual provides maps of each zone indicating official stations performing testing for CWD. All hunters harvesting animals in these zones must take them to one of these stations to have them tested for CWD within 48 hours of the harvest. In addition, hunters can transport carcasses out of the zones only after all brain and spinal cord tissue have been removed. TPWD will provide a receipt for the sample.

Because the spread of CWD is evolving, regulations can change quickly. Therefore, anyone involved in hunting activity should consult the most recent Outdoor Annual for the latest regulations. To reduce the chances of spreading the disease, TPWD regulations also restrict the movement of live deer from CWD zones.

Impact on Rural Landowners CWD poses a significant threat to the future of hunting in Texas. Deer population declines of 45 and 50 percent have been documented in Colorado and Wyoming. A broad infection of Texas deer populations resulting in similar population impacts would inflict severe economic damage to rural communities and could negatively impact land markets. Specifically, those landowners seeking to establish a thriving herd of deer could avoid buying in areas with confirmed CWD infections.

As they do with anthrax-susceptible properties, land brokers may find it advisable to inquire about the status of CWD infections on properties that they present for sale. Prospective buyers should also investigate the status of the wildlife on prospective properties. In addition, existing landowners should monitor developments as TPWD crafts management strategies to identify and contain this deadly disease. 

____________________

Dr. Gilliland (c-gilliland@tamu.edu) is a research economist with the Texas Real Estate Research Center at Texas A&M University.


Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years

Published: May 9, 2007

snip...

Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.

snip...


***> This is very likely to have parallels with control efforts for CWD in cervids. <***

Paper

Rapid recontamination of a farm building occurs after attempted prion removal

Kevin Christopher Gough BSc (Hons), PhD Claire Alison Baker BSc (Hons) Steve Hawkins MIBiol Hugh Simmons BVSc, MRCVS, MBA, MA Timm Konold DrMedVet, PhD, MRCVS … See all authors 

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

Abstract

The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. Post‐decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. Twenty‐four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie‐positive during the bioassay, samples of dust collected within the barn were positive by month 3. The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.


***>This is very likely to have parallels with control efforts for CWD in cervids.


***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3


Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

1Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK

2Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK

3Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK

4ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

5School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie-affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 

***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 

SOURCE REFERENCE 2018 PRION CONFERENCE ABSTRACT

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Horizontal transmission of chronic wasting disease in reindeer

Author

item MOORE, SARAH - ORISE FELLOW item KUNKLE, ROBERT item WEST GREENLEE, MARY - IOWA STATE UNIVERSITY item Nicholson, Eric item RICHT, JUERGEN item HAMIR, AMIRALI item WATERS, WADE item Greenlee, Justin

Submitted to: Emerging Infectious Diseases

Publication Type: Peer Reviewed Journal

Publication Acceptance Date: 8/29/2016

Publication Date: 12/1/2016

Citation: Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.

Interpretive Summary: Chronic wasting disease (CWD) is a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America and was recently diagnosed in a single free-ranging reindeer (Rangifer tarandus tarandus) in Norway. CWD is a transmissible spongiform encephalopathy (TSE) that is caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Little is known about the susceptibility of or potential for transmission amongst reindeer. In this experiment, we tested the susceptibility of reindeer to CWD from various sources (elk, mule deer, or white-tailed deer) after intracranial inoculation and tested the potential for infected reindeer to transmit to non-inoculated animals by co-housing or housing in adjacent pens. Reindeer were susceptible to CWD from elk, mule deer, or white-tailed deer sources after experimental inoculation. Most importantly, non-inoculated reindeer that were co-housed with infected reindeer or housed in pens adjacent to infected reindeer but without the potential for nose-to-nose contact also developed evidence of CWD infection. This is a major new finding that may have a great impact on the recently diagnosed case of CWD in the only remaining free-ranging reindeer population in Europe as our findings imply that horizontal transmission to other reindeer within that herd has already occurred. Further, this information will help regulatory and wildlife officials developing plans to reduce or eliminate CWD and cervid farmers that want to ensure that their herd remains CWD-free, but were previously unsure of the potential for reindeer to transmit CWD.

Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal prion disease of cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, and CWD was recently reported in a free-ranging reindeer of Norway. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWDwtd), mule deer (Odocoileus hemionus; CWDmd), or elk (Cervus elaphus nelsoni; CWDelk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWDwtd, CWDmd, or CWDelk. Two years after challenge of inoculated reindeer, non-inoculated negative control reindeer were introduced into the same pen as the CWDwtd inoculated reindeer (direct contact; n=4) or into a pen adjacent to the CWDmd inoculated reindeer (indirect contact; n=2). Experimentally inoculated reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrPcwd). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (months PI). PrPcwd was detected in 5 out of 6 sentinel reindeer although only 2 out of 6 developed clinical disease during the study period (< 57 months PI). We have shown that reindeer are susceptible to CWD from various cervid sources and can transmit CWD to naïve reindeer both directly and indirectly.


***> Scrapie vs Chronic Wasting Disease CWD TSE Prion ???

172. Establishment of PrPCWD extraction and detection methods in the farm soil

Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn

Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea

Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. ***These circumstances represent a potential threat to blood, blood products, and plasma supplies.


8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.


Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.


3.2.1.2 Non‐cervid domestic species

The remarkably high rate of natural CWD transmission in the ongoing NA epidemics raises the question of the risk to livestock grazing on CWD‐contaminated shared rangeland and subsequently developing a novel CWD‐related prion disease. This issue has been investigated by transmitting CWD via experimental challenge to cattle, sheep and pigs and to tg mouse lines expressing the relevant species PrP.

For cattle challenged with CWD, PrPSc was detected in approximately 40% of intracerebrally inoculated animals (Hamir et al., 2005, 2006a, 2007). Tg mice expressing bovine PrP have also been challenged with CWD and while published studies have negative outcomes (Tamguney et al., 2009b), unpublished data provided for the purposes of this Opinion indicate that some transmission of individual isolates to bovinised mice is possible (Table 1).

In small ruminant recipients, a low rate of transmission was reported between 35 and 72 months post‐infection (mpi) in ARQ/ARQ and ARQ/VRQ sheep intracerebrally challenged with mule deer CWD (Hamir et al., 2006b), while two out of two ARQ/ARQ sheep intracerebrally inoculated with elk CWD developed clinical disease after 28 mpi (Madsen‐Bouterse et al., 2016). However, tg mice expressing ARQ sheep PrP were resistant (Tamguney et al., 2006) and tg mice expressing the VRQ PrP allele were poorly susceptible to clinical disease (Beringue et al., 2012; Madsen‐Bouterse et al., 2016). In contrast, tg mice expressing VRQ sheep PrP challenged with CWD have resulted in highly efficient, life‐long asymptomatic replication of these prions in the spleen tissue (Beringue et al., 2012).

A recent study investigated the potential for swine to serve as hosts of the CWD agent(s) by intracerebral or oral challenge of crossbred piglets (Moore et al., 2016b, 2017). Pigs sacrificed at 6 mpi, approximately the age at which pigs reach market weight, were clinically healthy and negative by diagnostic tests, although low‐level CWD agent replication could be detected in the CNS by bioassay in tg cervinised mice. Among pigs that were incubated for up to 73 mpi, some gave diagnostic evidence of CWD replication in the brain between 42 and 72 mpi. Importantly, this was observed also in one orally challenged pig at 64 mpi and the presence of low‐level CWD replication was confirmed by mouse bioassay. The authors of this study argued that pigs can support low‐level amplification of CWD prions, although the species barrier to CWD infection is relatively high and that the detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.


Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease

Nathaniel D. Denkers ,Clare E. Hoover ,Kristen A. Davenport,Davin M. Henderson,Erin E. McNulty,Amy V. Nalls,Candace K. Mathiason,Edward A. Hoover 

Published: August 20, 2020


We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

ARS RESEARCH Generation of human chronic wasting disease in transgenic mice 

Publication Acceptance Date: 9/8/2021

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Generation of human chronic wasting disease in transgenic mice

Author item WANG, ZERUI - Case Western Reserve University (CWRU) item QIN, KEFENG - University Of Chicago item CAMACHO, MANUEL - Case Western Reserve University (CWRU) item SHEN, PINGPING - Case Western Reserve University (CWRU) item YUAN, JUE - Case Western Reserve University (CWRU) item Greenlee, Justin item CUI, LI - Jilin University item KONG, QINGZHONG - Case Western Reserve University (CWRU) item MASTRIANNI, JAMES - University Of Chicago item ZOU, WEN-QUAN - Case Western Reserve University (CWRU)

Submitted to: Acta Neuropathologica Publication Type: Peer Reviewed Journal Publication Acceptance Date: 9/8/2021 Publication Date: N/A Citation: N/A

Interpretive Summary: Prion diseases are invariably fatal neurologic diseases for which there is no known prevention or cure. Chronic wasting disease (CWD) is the prion disease of deer and elk and is present in farmed and free ranging herds throughout North America. To date there is no clear evidence that the CWD agent could be transmitted to humans. This manuscript describes the use of an in vitro technique, cell-free serial protein misfolding cyclic amplification (sPMCA), to generate a CWD prion that is infectious to transgenic mice expressing the human prion protein. This study provides the first evidence that CWD prions may be able to cause misfolding in the human prion protein. This information will impact medical experts and those involved in making policy for farmed cervids and wildlife.

Technical Abstract: Chronic wasting disease (CWD) is a cervid spongiform encephalopathy or prion disease caused by the infectious prion or PrPSc, a misfolded conformer of cellular prion protein (PrPC). It has rapidly spread in North America and also has been found in Asia and Europe. In contrast to the zoonotic mad cow disease that is the first animal prion disease found transmissible to humans, the transmissibility of CWD to humans remains uncertain although most previous studies have suggested that humans may not be susceptible to CWD. Here we report the generation of an infectious human PrPSc by seeding CWD PrPSc in normal human brain PrPC through the in vitro cell-free serial protein misfolding cyclic amplification (sPMCA). Western blotting confirms that the sPMCA-induced proteinase K-resistant PrPSc is a human form, evidenced by a PrP-specific antibody that recognizes human but not cervid PrP. Remarkably, two lines of humanized transgenic (Tg) mice expressing human PrP-129Val/Val (VV) or -129Met/Met (MM) polymorphism develop prion disease at 233 ± 6 (mean ± SE) days post-inoculation (dpi) and 552 ± 27 dpi, respectively, upon intracerebral inoculation with the sPMCA-generated PrPSc. The brain of diseased Tg mice reveals the electrophoretic profile of PrPSc similar to sporadic Creutzfeldt-Jakob disease (sCJD) MM1 or VV2 subtype but different neuropathological patterns. We believe that our study provides the first evidence that CWD PrPSc is able to convert human PrPC into PrPSc in vitro and the CWD-derived human PrPSc mimics atypical sCJD subtypes in humanized Tg mice.


''The brain of diseased Tg mice reveals the electrophoretic profile of PrPSc similar to sporadic Creutzfeldt-Jakob disease (sCJD) MM1 or VV2 subtype but different neuropathological patterns.'' 

''We believe that our study provides the first evidence that CWD PrPSc is able to convert human PrPC into PrPSc in vitro and the CWD-derived human PrPSc mimics atypical sCJD subtypes in humanized Tg mice.''

Published: 26 September 2021

Generation of human chronic wasting disease in transgenic mice

Zerui Wang, Kefeng Qin, Manuel V. Camacho, Ignazio Cali, Jue Yuan, Pingping Shen, Justin Greenlee, Qingzhong Kong, James A. Mastrianni & Wen-Quan Zou

Acta Neuropathologica Communications volume 9, Article number: 158 (2021)

Abstract

Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.

Snip...

It is worth noting that the annual number of sporadic CJD (sCJD) cases in the USA has increased, with the total number of suspected and confirmed sCJD cases rising from 284 in 2003 to 511 in 2017 (https://www.cdc.gov/prions/cjd/occurrence-transmission.html). The greatly enhanced CJD surveillance and an aging population in the USA certainly contributed to the observed increase in annual sCJD case numbers in recent years, but the possibility cannot be excluded that some of the increased sCJD prevalence is linked to CWD exposure.

In the present study, using serial protein misfolding cyclic amplification (sPMCA) assay we generate PrPSc by seeding CWD prions in normal human brain homogenates. Importantly, we reveal that two lines of humanized Tg mice expressing human PrP-129VV and 129MM develop prion diseases upon intracerebral inoculation of the abnormal PrP generated by sPMCA. We believe that our study provides the first opportunity to dissect the clinical, pathological and biochemical features of the CWD-derived human prion disease in two lines of humanized Tg mice expressing two major human PrP genotypes, respectively.


***> ''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results regarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasized by the finding that some strains of scrapie produce lesions identical to the once which characterize the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the scrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

reference...

RB3.20

TRANSMISSION TO CHIMPANZEES

1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.

2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :

3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.

4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.

5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.

R. Bradley

23 September 1990

CVO (+Mr Wells' comments)

Dr T W A Little

Dr B J Shreeve

90/9.23/1.1.


IN CONFIDENCE CHIMPANZEES

CODE 18-77 Reference RB3.46

Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.

She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.

Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.

We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists or ­media. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.

The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.

I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.

Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.

CVO cc Dr T Dr B W A Little Dr B J Shreeve

R Bradley

26 September 1990

90/9.26/3.2


this is tse prion political theater here, i.e. what i call TSE PRION POKER...tss



3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.

snip...

PAGE 26

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province! ...page 26. 

snip...see;

IN CONFIDENCE

PERCEPTIONS OF UNCONVENTIONAL SLOW VIRUS DISEASE OF ANIMALS IN THE USA

GAH WELLS

REPORT OF A VISIT TO THE USA

APRIL-MAY 1989


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...


1985

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. 

snip... 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home