Tuesday, August 11, 2015
 August 7, 2015 
Why Has the Federal Government Cut Funding for Chronic Wasting Disease 
Research? 
by Craig Dougherty 13 
 Photograph by USFWS
Ask any deer biologist to list the top threats to the future of deer and 
deer hunting and you can be almost certain that Chronic Wasting Disease (CWD) 
will be somewhere near the top. CWD is the always-fatal deer disease that has 
been steadily spreading across the country. Twenty-two states and two provinces 
are now reporting outbreaks of chronic wasting disease. In some states, like New 
York, it is but a blip on the radar. In other states, like Wisconsin, it is 
leaving an ever-growing and very large footprint. Small blip or large footprint, 
the threat of CWD sends chills down the spine of professional deer managers. So 
why has the federal government cut funding to fight this disease? 
 *2012 and 2013 numbers are estimates as no amount was specifically 
identified for CWD. 2015 total is aslo an estimate. Data is from Bryan Richards, 
USGS.
Bryan Richards, Emerging Disease Coordinator at the USGS National Wildlife 
Center, offered this perspective on CWD research: “With the outbreak of CWD in 
Wisconsin, the USDA declared CWD a national emergency. In 2002 Congress began to 
appropriate large amounts of monies to states for research. At first we were 
worried that CWD would spread to humans, so we spent money on humans, and then 
we shifted our attention to cattle. The US government was appropriating over $18 
million per year in the early 2000s for research. Now we are seeing 
appropriations in the range of $1 million to $3 million per year for CWD. With 
humans and cattle no longer a concern, the funding has all but disappeared.” 
The other experts and researchers I spoke to did not know of any other 
major federal funding sources for CWD research. They said it was now mostly up 
to the state budgets to fund CWD prevention and research.
Yet chronic wasting disease continues to spread, and little by little 
consume the backbone of the hunting industry (i.e. whitetail deer). “It’s as 
though we have CWD fatigue,” said Richards. But the problem persists, and if 
anything, it’s getting worse. 
Dr. David Clausen, a veterinarian, former Chair of the Wisconsin Department 
of Natural Resources Board and well-respected CWD expert recently gave a 
presentation that pointed out that the number of deer tested for CWD in 
Wisconsin has declined drastically even though CWD has increased exponentially. 
He cites budgetary reasons for the decline. But even more alarming was his 
contention that the worst may lie just ahead. He cited recent research from 
Colorado State University, which indicates that plants will take up prions from 
infected earth, (where prions can live almost indefinitely) and now CWD prions 
are found to bind on grains and other plants. As far as research goes, according 
to Clausen, some excellent institutions are still doing research but, “as the 
science of CWD continues to evolve. It raises more questions than it answers and 
points to the need for more research.”
The Great Unknown
I recently did some research on how states are attempting to control the 
spread of CWD. For the most part, they are trying to isolate and eliminate known 
carriers of CWD. They have instituted all kinds of restrictions, which appear 
primarily preventative in nature. And who can blame them? Who among them wants 
to be the one known to ignore the threat of CWD? The deeper I dug into the 
issue, the more I learned about what we know and more to the point, what we 
think we know about the disease. Now I’m the one with chills running down my 
spine. State agencies are making all kinds of decisions on best guesses and and 
leaps of faith. Even the Chronic Wasting Alliance is forced to admit how little 
we actually know: “It is not completely understood how CWD is spread.” 
This has lead to a standoff of sorts between the various factions of the 
deer community. I made a list of what the best research scientists in the 
country believe we actually know about CWD and compared it to a list of what we 
sort of know about CWD. The sort-of-know list was a whole lot longer. That’s 
right, all things considered we don’t know all that much about CWD. 
The more I dug, the madder I got. Not because we don’t know all that much 
about CWD, but it almost looks like we have given up figuring this thing out. 
Or, at least the federal government has given up on it. If we are going to have 
deer to hunt 50 years from now, we need some answers and we need them fast. 
Answers come from good research and research takes both time and money. 
Science moves slowly and by all accounts this is tough science. But, it is 
also science that is critical to our deer hunting future. Take a look at the 
graph above. Congress channeled CWD funds through the USDA. Experts are calling 
for increased CWD research but policy makers and politicians continue to ignore 
their calls. Funds for CWD research averaged a little over $18.5 million from 
2004-2006 then started to steadily drop. They are now hovering around $2.0 
million (2012 – 2014).
Where has our federal government gone? Has it pulled the plug on the 
disease that many believe has the potential to all but wipe out our deer herds? 
As someone who loves whitetail deer, I think that federal funding for CWD 
research is not something that we can afford to cut. Maybe it’s time that 
hunters start demanding that our government takes up the battle against CWD once 
again. 
>>> Why Has the Federal Government Cut Funding for Chronic Wasting 
Disease Research? <<< 
same reason with all the other TSE prion disease in all the other species 
and humans in the USA, they have lost control of this slow and long incubating 
disease, which once clinical, is 100 % fatal, and will not admit it due to the 
many industries and lies there from it will curtail, from the dead and dying. 
for something they say is not here, why fund it then. don’t believe me, just 
think back to asbestos and tobacco. just saying.
>>> Bryan Richards, emerging disease coordinator at the USGS 
National Wildlife Center, suggested that "with humans and cattle no longer a 
concern, the funding has all but disappeared." <<<
LOL...with sad tears in my eyes, if they only knew.
who gives a damn about the truth right $$$
what is the truth anyway, or does anyone care anymore.
mom dod 12/14/97 confirmed hvCJD...just made a promise to mom, never 
forget, and never let them forget. ...carry on///
20097 Section Contents Menu Recalls, Market Withdrawals, & Safety 
Alerts8
Archive for Recalls, Market Withdrawals & Safety Alerts9 200910 Recall 
-- Firm Press Release . 
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin 
Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic 
Wasting Disease 
Contact: Exotic Meats USA 1-800-680-4375 
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San 
Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may 
contain meat derived from an elk confirmed to have Chronic Wasting Disease 
(CWD). The meat with production dates of December 29, 30 and 31, 2008 was 
purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk 
Farm LLC in Pine Island, MN and was among animals slaughtered and processed at 
USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease 
found in elk and deer. The disease is caused by an abnormally shaped protein 
called a prion, which can damage the brain and nerves of animals in the deer 
family. Currently, it is believed that the prion responsible for causing CWD in 
deer and elk is not capable of infecting humans who eat deer or elk contaminated 
with the prion, but the observation of animal-to-human transmission of other 
prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has 
raised a theoretical concern regarding the transmission of CWD from deer or elk 
to humans. At the present time, FDA believes the risk of becoming ill from 
eating CWD-positive elk or deer meat is remote. However, FDA strongly advises 
consumers to return the product to the place of purchase, rather than disposing 
of it themselves, due to environmental concerns.
Thursday, May 26, 2011 
Travel History, Hunting, and Venison Consumption Related to Prion Disease 
Exposure, 2006-2007 FoodNet Population Survey Journal of the American Dietetic 
Association Volume 111, Issue 6 , Pages 858-863, June 2011. 
now, let’s see what the authors said about this casual link, personal 
communications years ago. see where it is stated NO STRONG evidence. so, does 
this mean there IS casual evidence ???? “Our conclusion stating that we found no 
strong evidence of CWD transmission to humans” 
From: TSS (216-119-163-189.ipset45.wt.net) Subject: CWD aka MAD DEER/ELK TO 
HUMANS ??? 
Date: September 30, 2002 at 7:06 am PST 
From: "Belay, Ermias" 
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias" 
Sent: Monday, September 30, 2002 9:22 AM 
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 
Dear Sir/Madam, 
In the Archives of Neurology you quoted (the abstract of which was attached 
to your email), we did not say CWD in humans will present like variant CJD. That 
assumption would be wrong. I encourage you to read the whole article and call me 
if you have questions or need more clarification (phone: 404-639-3091). Also, we 
do not claim that "no-one has ever been infected with prion disease from eating 
venison." Our conclusion stating that we found no strong evidence of CWD 
transmission to humans in the article you quoted or in any other forum is 
limited to the patients we investigated. 
Ermias Belay, M.D. Centers for Disease Control and Prevention 
-----Original Message----- 
From: Sent: Sunday, September 29, 2002 10:15 AM 
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV 
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS 
Thursday, April 03, 2008 
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 
Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ. 
snip... 
*** twenty-seven CJD patients who regularly consumed venison were reported 
to the Surveillance Center***, 
snip... full text ; 
============================== 
*** These results would seem to suggest that CWD does indeed have zoonotic 
potential, at least as judged by the compatibility of CWD prions and their human 
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests 
that if zoonotic CWD occurred, it would most likely effect those of the PRNP 
codon 129-MM genotype and that the PrPres type would be similar to that found in 
the most common subtype of sCJD (MM1).*** 
============================== 
*** The potential impact of prion diseases on human health was greatly 
magnified by the recognition that interspecies transfer of BSE to humans by beef 
ingestion resulted in vCJD. While changes in animal feed constituents and 
slaughter practices appear to have curtailed vCJD, there is concern that CWD of 
free-ranging deer and elk in the U.S. might also cross the species barrier. 
Thus, consuming venison could be a source of human prion disease. Whether BSE 
and CWD represent interspecies scrapie transfer or are newly arisen prion 
diseases is unknown. Therefore, the possibility of transmission of prion disease 
through other food animals cannot be ruled out. There is evidence that vCJD can 
be transmitted through blood transfusion. There is likely a pool of unknown size 
of asymptomatic individuals infected with vCJD, and there may be asymptomatic 
individuals infected with the CWD equivalent. These circumstances represent a 
potential threat to blood, blood products, and plasma supplies. 
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS 
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, 
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve 
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 
3Encore Health Resources, Houston, Texas, USA
Chronic wasting disease (CWD) is a widespread and expanding prion disease 
in free-ranging and captive cervid species in North America. The zoonotic 
potential of CWD prions is a serious public health concern. Current literature 
generated with in vitro methods and in vivo animal models (transgenic mice, 
macaques and squirrel monkeys) reports conflicting results. The susceptibility 
of human CNS and peripheral organs to CWD prions remains largely unresolved. In 
our earlier bioassay experiments using several humanized transgenic mouse lines, 
we detected protease-resistant PrPSc in the spleen of two out of 140 mice that 
were intracerebrally inoculated with natural CWD isolates, but PrPSc was not 
detected in the brain of the same mice. Secondary passages with such 
PrPSc-positive CWD-inoculated humanized mouse spleen tissues led to efficient 
prion transmission with clear clinical and pathological signs in both humanized 
and cervidized transgenic mice. Furthermore, a recent bioassay with natural CWD 
isolates in a new humanized transgenic mouse line led to clinical prion 
infection in 2 out of 20 mice. 
*** These results indicate that the CWD prion has the potential to infect 
human CNS and peripheral lymphoid tissues and that there might be asymptomatic 
human carriers of CWD infection. 
================== 
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover 
Prion Research Center; Colorado State University; Fort Collins, CO USA
***This insinuates that, at the level of protein: protein interactions, the 
barrier preventing transmission of CWD to humans is less robust than previously 
estimated.
================
P.157: Uptake of prions into plants
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole 
Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife 
Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI 
USA
 ***Our results suggest that prions can be taken up by plants and that 
contaminated plants may represent a previously unrecognized risk of human, 
domestic species and wildlife exposure to prions.
===========
CWD TO BOVINE 
*** P.126: Successful transmission of chronic wasting disease (CWD) into 
mice over-expressing bovine prion protein (TgSB3985) 
Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana 
Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1 
1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of 
California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA 
Keywords: chronic wasting disease, transmission, transgenic mouse, bovine 
prion protein 
Background. CWD is a disease affecting wild and farmraised cervids in North 
America. Epidemiological studies provide no evidence of CWD transmission to 
humans. Multiple attempts have failed to infect transgenic mice expressing human 
PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal 
human PrPC in vitro provides additional evidence that transmission of CWD to 
humans cannot be easily achieved. However, a concern about the risk of CWD 
transmission to humans still exists. This study aimed to establish and 
characterize an experimental model of CWD in TgSB3985 mice with the following 
attempt of transmission to TgHu mice. 
Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were 
intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse 
(CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly 
injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD) 
or elk (CWD/Elk). Animals were observed for clinical signs of neurological 
disease and were euthanized when moribund. Brains and spleens were removed from 
all mice for PrPCWD detection by Western blotting (WB). A histological analysis 
of brains from selected animals was performed: brains were scored for the 
severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain 
regions. 
Results. Clinical presentation was consistent with TSE. More than 90% of 
TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres 
in the brain but only mice in the latter group carried PrPCWD in their spleens. 
We found evidence for co-existence or divergence of two CWD/ Tga20 strains based 
on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk 
or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen 
by WB. However, on neuropathological examination we found presence of amyloid 
plaques that stained positive for PrPCWD in three CWD/WTD- and two 
CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and 
CWD/Elkinfected mice were similar but unique as compared to profiles of BSE, 
BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM 
mice tested positive for PrPCWD by WB or by immunohistochemical detection. 
Conclusions. To our knowledge, this is the first established experimental 
model of CWD in TgSB3985. We found evidence for co-existence or divergence of 
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. 
Finally, we observed phenotypic differences between cervid-derived CWD and 
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway 
to characterize these strains. 
TSS 
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET 
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF 
THE STUDIES ON CWD TRANSMISSION TO CATTLE ; 
CWD to cattle figures CORRECTION 
Greetings, 
I believe the statement and quote below is incorrect ; 
"CWD has been transmitted to cattle after intracerebral inoculation, 
although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This 
finding raised concerns that CWD prions might be transmitted to cattle grazing 
in contaminated pastures." 
Please see ; 
Within 26 months post inoculation, 12 inoculated animals had lost weight, 
revealed abnormal clinical signs, and were euthanatized. Laboratory tests 
revealed the presence of a unique pattern of the disease agent in tissues of 
these animals. These findings demonstrate that when CWD is directly inoculated 
into the brain of cattle, 86% of inoculated cattle develop clinical signs of the 
disease. 
" although the infection rate was low (4 of 13 animals [Hamir et al. 
2001]). " 
shouldn't this be corrected, 86% is NOT a low rate. ... 
kindest regards, 
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518 
Thank you!
Thanks so much for your updates/comments. We intend to publish as rapidly 
as possible all updates/comments that contribute substantially to the topic 
under discussion. 
re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author 
Affiliations 
1Institute for Neurodegenerative Diseases, University of California, San 
Francisco, San Francisco, California 94143 2Department of Neurology, University 
of California, San Francisco, San Francisco, California 94143 Correspondence: 
stanley@ind.ucsf.edu 
Mule deer, white-tailed deer, and elk have been reported to develop CWD. As 
the only prion disease identified in free-ranging animals, CWD appears to be far 
more communicable than other forms of prion disease. CWD was first described in 
1967 and was reported to be a spongiform encephalopathy in 1978 on the basis of 
histopathology of the brain. Originally detected in the American West, CWD has 
spread across much of North America and has been reported also in South Korea. 
In captive populations, up to 90% of mule deer have been reported to be positive 
for prions (Williams and Young 1980). The incidence of CWD in cervids living in 
the wild has been estimated to be as high as 15% (Miller et al. 2000). The 
development of transgenic (Tg) mice expressing cervid PrP, and thus susceptible 
to CWD, has enhanced detection of CWD and the estimation of prion titers 
(Browning et al. 2004; Tamgüney et al. 2006). Shedding of prions in the feces, 
even in presymptomatic deer, has been identified as a likely source of infection 
for these grazing animals (Williams and Miller 2002; Tamgüney et al. 2009b). CWD 
has been transmitted to cattle after intracerebral inoculation, although the 
infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding 
raised concerns that CWD prions might be transmitted to cattle grazing in 
contaminated pastures. 
snip... 
----- Original Message ----- 
From: David Colby To: flounder9@verizon.net 
Cc: stanley@XXXXXXXX 
Sent: Tuesday, March 01, 2011 8:25 AM 
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + 
Author Affiliations 
Dear Terry Singeltary, 
Thank you for your correspondence regarding the review article Stanley 
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner 
asked that I reply to your message due to his busy schedule. We agree that the 
transmission of CWD prions to beef livestock would be a troubling development 
and assessing that risk is important. In our article, we cite a peer-reviewed 
publication reporting confirmed cases of laboratory transmission based on 
stringent criteria. The less stringent criteria for transmission described in 
the abstract you refer to lead to the discrepancy between your numbers and ours 
and thus the interpretation of the transmission rate. We stand by our assessment 
of the literature--namely that the transmission rate of CWD to bovines appears 
relatively low, but we recognize that even a low transmission rate could have 
important implications for public health and we thank you for bringing attention 
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor 
Department of Chemical Engineering University of Delaware 
===========END...TSS============== 
SNIP...SEE FULL TEXT ; 
UPDATED DATA ON 2ND CWD STRAIN Wednesday, September 08, 2010 CWD PRION 
CONGRESS SEPTEMBER 8-11 2010 
Sunday, August 19, 2012 
Susceptibility of cattle to the agent of chronic wasting disease from elk 
after intracranial inoculation 2012 
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF 
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research 
Unit 
Thursday, November 21, 2013 
*** Assessing the susceptibility of transgenic mice over-expressing deer 
prion protein to bovine spongiform encephalopathy 
The present study was designed to assess the susceptibility of the 
prototypic mouse line, Tg(CerPrP)1536+/- to bovine spongiform encephalopathy 
(BSE) prions, which have the ability to overcome species barriers. 
Tg(CerPrP)1536+/- mice challenged with red deer-adapted BSE resulted in a 
90-100% attack rates, BSE from cattle failed to transmit, indicating agent 
adaptation in the deer. 
Thus far, among domestic animals, CWDmd has been transmitted by the 
intracerebral route to a goat18 and cattle.5–7 The present findings demonstrate 
that it is also possible to transmit CWDmd agent to sheep via the intracerebral 
route.
Preliminary studies (Hamir et al., unpublished data, 2006) of intracerebral 
inoculation of CWD from white-tailed deer into cattle suggests that this source 
is much more efficient at causing disease (as indicated by the attack rate) than 
CWDmd.
these cattle ranchers supporting these shooting pens, if there are any, 
could be in terrible shape if a strain of cwd was to jump to cattle...just 
saying.
Title: Transmission of Chronic Wasting Disease of Mule Deer to Suffolk 
Sheep Following Intracerebral Inoculation 
Authors 
item Hamir, Amirali item Kunkle, Robert item Cutlip, Randall - ARS RETIRED 
item Miller, Janice - ARS RETIRED item Williams, Elizabeth - UNIVERSITY OF 
WYOMING item Richt, Juergen 
Submitted to: Conference Research Workers Disease Meeting Publication Type: 
Abstract Only Publication Acceptance Date: December 3, 2006 Publication Date: 
December 3, 2006 Citation: Hamir, A.N., Kunkle, R.A., Cutlip, R.C., Miller, 
J.M., Williams, E.S., Richt, J.A. 2006. Transmission of chronic wasting disease 
of mule deer to Suffolk sheep following intracerebral inoculation [abstract]. 
Conference of Research Workers in Animal Diseases 87th Annual Meeting. Paper No. 
P34. p. 108. 
Technical Abstract: To determine the transmissibility of chronic wasting 
disease (CWD) to sheep, 8 Suffolk lambs of various prion protein (PRNP) genotype 
(4 ARQ/ARR, 3 ARQ/ARQ, 1 ARQ/VRQ at codons 136, 154 and 171, respectively) were 
inoculated intracerebrally with brain suspension from mule deer with CWD 
(CWD**md). Two other lambs were kept as non inoculated controls. Within 36 
months post inoculation (MPI), 2 inoculated animals became sick and were 
euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were 
consistent with those described for scrapie. Microscopic lesions of spongiform 
encephalopathy (SE) were only seen in this sheep and its tissues were positive 
for the abnormal prion protein (PrP**res) by immunohistochemistry and Western 
blot. Three other inoculated sheep were euthanized (36 to 60 MPI) because of 
conditions unrelated to TSE. The 3 remaining inoculated sheep and the 2 control 
sheep were non clinical at the termination of the study (72 MPI) and were 
euthanized. One of the 3 remaining inoculated sheep revealed SE and its tissues 
were positive for PrP**res. The sheep with clinical prion disease (euthanized at 
35 MPI) was of the heterozygous genotype (ARQ/VRQ) and the sheep with the sub 
clinical disease (euthanized at 72 MPI) was of the homozygous ARQ/ARQ genotype. 
These findings demonstrate that transmission of the CWD**md agent to sheep via 
the intracerebral route is possible. Interestingly, the host genotype may play a 
significant part in successful transmission and incubation period of CWD**md. 
Last Modified: 11/6/2014
I strenuously once again urge the FDA and its industry constituents, to 
make it MANDATORY that all ruminant feed be banned to all ruminants, and this 
should include all cervids as soon as possible for the following 
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from 
deer and elk is prohibited for use in feed for ruminant animals. With regards to 
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used 
for any animal feed or feed ingredients. For elk and deer considered at high 
risk for CWD, the FDA recommends that these animals do not enter the animal feed 
system. 
***However, this recommendation is guidance and not a requirement by law. 
======
31 Jan 2015 at 20:14 GMT 
*** Ruminant feed ban for cervids in the United States? ***
Singeltary et al
31 Jan 2015 at 20:14 GMT 
*** The association between venison eating and risk of CJD shows similar 
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK 
OF CJD (p = 0.04). 
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL 
REPORT AUGUST 1994 
Consumption of venison and veal was much less widespread among both cases 
and controls. For both of these meats there was evidence of a trend with 
increasing frequency of consumption being associated with increasing risk of 
CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely 
unchanged when attention was restricted to pairs with data obtained from 
relatives. ... 
Table 9 presents the results of an analysis of these data. 
There is STRONG evidence of an association between ‘’regular’’ veal eating 
and risk of CJD (p = .0.01). 
Individuals reported to eat veal on average at least once a year appear to 
be at 13 TIMES THE RISK of individuals who have never eaten veal. 
There is, however, a very wide confidence interval around this estimate. 
There is no strong evidence that eating veal less than once per year is 
associated with increased risk of CJD (p = 0.51). 
*** The association between venison eating and risk of CJD shows similar 
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK 
OF CJD (p = 0.04). 
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY 
OF LAMB EATING (p = 0.02). 
The evidence for such an association between beef eating and CJD is weaker 
(p = 0.14). When only controls for whom a relative was interviewed are included, 
this evidence becomes a little STRONGER (p = 0.08). 
snip... 
It was found that when veal was included in the model with another 
exposure, the association between veal and CJD remained statistically 
significant (p = < 0.05 for all exposures), while the other exposures ceased 
to be statistically significant (p = > 0.05). 
snip... 
In conclusion, an analysis of dietary histories revealed statistical 
associations between various meats/animal products and INCREASED RISK OF CJD. 
When some account was taken of possible confounding, the association between 
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS 
STATISTICALLY. ... 
snip... 
In the study in the USA, a range of foodstuffs were associated with an 
increased risk of CJD, including liver consumption which was associated with an 
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 
studies in relation to this particular dietary factor, the risk of liver 
consumption became non-significant with an odds ratio of 1.2 (PERSONAL 
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS) 
snip...see full report ; 
Saturday, May 30, 2015 
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS 
***Recently, we have been using PMCA to study the role of environmental 
prion contamination on the horizontal spreading of TSEs. These experiments have 
focused on the study of the interaction of prions with plants and 
environmentally relevant surfaces. Our results show that plants (both leaves and 
roots) bind tightly to prions present in brain extracts and excreta (urine and 
feces) and retain even small quantities of PrPSc for long periods of time. 
Strikingly, ingestion of prioncontaminated leaves and roots produced disease 
with a 100% attack rate and an incubation period not substantially longer than 
feeding animals directly with scrapie brain homogenate. Furthermore, plants can 
uptake prions from contaminated soil and transport them to different parts of 
the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety 
of environmentally relevant surfaces, including stones, wood, metals, plastic, 
glass, cement, etc. Prion contaminated surfaces efficiently transmit prion 
disease when these materials were directly injected into the brain of animals 
and strikingly when the contaminated surfaces were just placed in the animal 
cage. These findings demonstrate that environmental materials can efficiently 
bind infectious prions and act as carriers of infectivity, suggesting that they 
may play an important role in the horizontal transmission of the disease.
Since its invention 13 years ago, PMCA has helped to answer fundamental 
questions of prion propagation and has broad applications in research areas 
including the food industry, blood bank safety and human and veterinary disease 
diagnosis.
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES 
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm 
Update DECEMBER 2011 
The CWD infection rate was nearly 80%, the highest ever in a North American 
captive herd. 
RECOMMENDATION: That the Board approve the purchase of 80 acres of land for 
$465,000 for the Statewide Wildlife Habitat Program in Portage County and 
approve the restrictions on public use of the site.
SUMMARY:
For Immediate Release Thursday, October 2, 2014 
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or 
Dustin.VandeHoef@IowaAgriculture.gov
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE 
RELEASED 79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today 
announced that the test results from the depopulation of a quarantined captive 
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the 
herd, tested positive for Chronic Wasting Disease (CWD). 
*** see history of this CWD blunder here ; 
On June 5, 2013, DNR conducted a fence inspection, after gaining approval 
from surrounding landowners, and confirmed that the fenced had been cut or 
removed in at least four separate locations; that the fence had degraded and was 
failing to maintain the enclosure around the Quarantined Premises in at least 
one area; that at least three gates had been opened;and that deer tracks were 
visible in and around one of the open areas in the sand on both sides of the 
fence, evidencing movement of deer into the Quarantined Premises.
The overall incidence of clinical CWD in white-tailed deer was 82%
Species (cohort) CWD (cases/total) Incidence (%) Age at CWD death 
(mo)
*** Spraker suggested an interesting explanation for the occurrence of CWD. 
The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. 
Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at 
this site. When deer were introduced to the pens they occupied ground that had 
previously been occupied by sheep. 
the cwd tse prion aka mad cow type disease is not your normal pathogen. 
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 
1112 degrees farenheit. 
you cannot cook the TSE prion disease out of meat. 
you can take the ash and mix it with saline and inject that ash into a 
mouse, and the mouse will go down with TSE. 
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel 
Production as well. 
the TSE prion agent also survives Simulated Wastewater Treatment Processes. 
IN fact, you should also know that the TSE Prion agent will survive in the 
environment for years, if not decades. 
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of 
protease-resistant cervid prion protein in water from a CWD-endemic area. 
it’s not your ordinary pathogen you can just cook it out and be done with. 
that’s what’s so worrisome about Iatrogenic mode of transmission, a simple 
autoclave will not kill this TSE prion agent. 
New studies on the heat resistance of hamster-adapted scrapie agent: 
Threshold survival after ashing at 600°C suggests an inorganic template of 
replication 
NOW, here is the most frightening aspect of all this, is the proven 
secondhand transmission, i.e. pass if forward mode, via iatrogenic (medical, 
surgical, dental, blood, tissue). you may never eat meat, but go to a hospital 
near you, it’s a proven risk factor, our hospitals have been exposed. I have 
countless articles on hospitals DEAR JOHN mad cow letters i.e. you have been 
exposed via surgery). 
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes 
contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of 
Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 
20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a 
middle aged woman with progressive dementia were previously implicated in the 
accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger 
patients. The diagnoses of CJD have been confirmed for all three cases. More 
than two years after their last use in humans, after three cleanings and 
repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were 
implanted in the cortex of a chimpanzee. Eighteen months later the animal became 
ill with CJD. This finding serves to re-emphasise the potential danger posed by 
reuse of instruments contaminated with the agents of spongiform 
encephalopathies, even after scrupulous attempts to clean them.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8006664&dopt=Abstract 
SOURCE REFERENCES
The infectious agents responsible for transmissible spongiform 
encephalopathy (TSE) are notoriously resistant to most physical and chemical 
methods used for inactivating pathogens, including heat. It has long been 
recognized, for example, that boiling is ineffective and that higher 
temperatures are most efficient when combined with steam under pressure (i.e., 
autoclaving). As a means of decontamination, dry heat is used only at the 
extremely high temperatures achieved during incineration, usually in excess of 
600°C. It has been assumed, without proof, that incineration totally inactivates 
the agents of TSE, whether of human or animal origin. 
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel 
Production 
Histochemical analysis of hamster brains inoculated with the solid residue 
showed typical spongiform degeneration and vacuolation. Re-inoculation of these 
brains into a new cohort of hamsters led to onset of clinical scrapie symptoms 
within 75 days, suggesting that the specific infectivity of the prion protein 
was not changed during the biodiesel process. The biodiesel reaction cannot be 
considered a viable prion decontamination method for MBM, although we observed 
increased survival time of hamsters and reduced infectivity greater than 6 log 
orders in the solid MBM residue. Furthermore, results from our study compare for 
the first time prion detection by Western Blot versus an infectivity bioassay 
for analysis of biodiesel reaction products. We could show that biochemical 
analysis alone is insufficient for detection of prion infectivity after a 
biodiesel process.
Detection of protease-resistant cervid prion protein in water from a 
CWD-endemic area 
The data presented here demonstrate that sPMCA can detect low levels of 
PrPCWD in the environment, corroborate previous biological and experimental data 
suggesting long term persistence of prions in the environment2,3 and imply that 
PrPCWD accumulation over time may contribute to transmission of CWD in areas 
where it has been endemic for decades. This work demonstrates the utility of 
sPMCA to evaluate other environmental water sources for PrPCWD, including 
smaller bodies of water such as vernal pools and wallows, where large numbers of 
cervids congregate and into which prions from infected animals may be shed and 
concentrated to infectious levels. 
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 
Materials and Wastewater During Processing 
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
In this article the development and parameterization of a quantitative 
assessment is described that estimates the amount of TSE infectivity that is 
present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for 
cattle and classical/atypical scrapie for sheep and lambs) and the amounts that 
subsequently fall to the floor during processing at facilities that handle 
specified risk material (SRM). BSE in cattle was found to contain the most oral 
doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to 
a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep 
infected with classical and atypical scrapie, respectively. Lambs contained the 
least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie 
and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity 
falling to the floor and entering the drains from slaughtering a whole carcass 
at SRM facilities were found to be from cattle infected with BSE at rendering 
and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate 
plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and 
collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains 
are from lambs infected with classical and atypical scrapie at intermediate 
plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO 
ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key 
inputs for the model in the companion paper published here. 
============================================================================
*** Infectious agent of sheep scrapie may persist in the environment for at 
least 16 years *** 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3 
Longitudinal Detection of Prion Shedding in Saliva and Urine by 
CWD-Infected Deer by RT-QuIC 
Davin M. Henderson1, Nathaniel D. Denkers1, Clare E. Hoover1, Nina 
Garbino1, Candace K. Mathiason1 and Edward A. Hoover1# + Author 
Affiliations
1Prion Research Center, Department of Microbiology, Immunology, and 
Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado 
State University, Fort Collins, CO 80523 ABSTRACT Chronic Wasting Disease (CWD) 
is an emergent, rapidly spreading prion disease of cervids. Shedding of 
infectious prions in saliva and urine is thought to be an important factor in 
CWD transmission. To help elucidate this issue, we applied an in vitro 
amplification assay to determine the onset, duration, and magnitude of prion 
shedding in longitudinally collected saliva and urine samples from CWD-exposed 
white-tailed deer. We detected prion shedding as early as 3 months after CWD 
exposure and sustained shedding throughout the disease course. We estimated that 
a 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 
ml of infected deer saliva or 10 ml or urine. Given the average course of 
infection and daily production of these body fluids, an infected deer would shed 
thousands of prion infectious dosesover the course of CWD infection. The direct 
and indirect environmental impact of this magnitude of prion shedding for cervid 
and non-cervid species is surely significant. 
Importance: Chronic wasting disease (CWD) is an emerging and uniformly 
fatal prion disease affecting free ranging deer and elk and now recognized in 22 
United States and 2 C anadian Provinces. It is unique among prion diseases in 
that it is transmitted naturally though wild populations. A major hypothesis for 
CWD's florid spread is that prions are shed in excreta and transmitted via 
direct or indirect environmental contact. Here we use a rapid in vitro assay to 
show that infectious doses of CWD prions are in fact shed throughout the 
multi-year disease course in deer. This finding is an important advance in 
assessing the risks posed by shed CWD prions to animals as well as humans. 
FOOTNOTES
↵#To whom correspondence should be addressed: Edward A. Hoover, Prion 
Research Center, Department of Microbiology, Immunology and Pathology, Colorado 
State University, Fort Collins, Colorado, US Email: edward.hoover@colostate.edu 
98 | Veterinary Record | January 24, 2015
EDITORIAL
Scrapie: a particularly persistent pathogen
Cristina Acín
Resistant prions in the environment have been the sword of Damocles for 
scrapie control and eradication. Attempts to establish which physical and 
chemical agents could be applied to inactivate or moderate scrapie infectivity 
were initiated in the 1960s and 1970s,with the first study of this type focusing 
on the effect of heat treatment in reducing prion infectivity (Hunter and 
Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate 
the prion protein are based on the method developed by Kimberlin and 
collaborators (1983). This procedure consists of treatment with 20,000 parts per 
million free chlorine solution, for a minimum of one hour, of all surfaces that 
need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so 
on). Despite this, veterinarians and farmers may still ask a range of questions, 
such as ‘Is there an official procedure published somewhere?’ and ‘Is there an 
international organisation which recommends and defines the exact method of 
scrapie decontamination that must be applied?’
From a European perspective, it is difficult to find a treatment that could 
be applied, especially in relation to the disinfection of surfaces in lambing 
pens of affected flocks. A 999/2001 EU regulation on controlling spongiform 
encephalopathies (European Parliament and Council 2001) did not specify a 
particular decontamination measure to be used when an outbreak of scrapie is 
diagnosed. There is only a brief recommendation in Annex VII concerning the 
control and eradication of transmissible spongiform encephalopathies (TSE 
s).
Chapter B of the regulation explains the measures that must be applied if 
new caprine animals are to be introduced to a holding where a scrapie outbreak 
has previously been diagnosed. In that case, the statement indicates that 
caprine animals can be introduced ‘provided that a cleaning and disinfection of 
all animal housing on the premises has been carried out following 
destocking’.
Issues around cleaning and disinfection are common in prion prevention 
recommendations, but relevant authorities, veterinarians and farmers may have 
difficulties in finding the specific protocol which applies. The European Food 
and Safety Authority (EFSA ) published a detailed report about the efficacy of 
certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and 
even a formulation of copper or iron metal ions in combination with hydrogen 
peroxide, against prions (EFSA 2009). The report was based on scientific 
evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, 
Solassol and others 2006) but unfortunately the decontamination measures were 
not assessed under outbreak conditions.
The EFSA Panel on Biological Hazards recently published its conclusions on 
the scrapie situation in the EU after 10 years of monitoring and control of the 
disease in sheep and goats (EFSA 2014), and one of the most interesting findings 
was the Icelandic experience regarding the effect of disinfection in scrapie 
control. The Icelandic plan consisted of: culling scrapie-affected sheep or the 
whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of 
stables, sheds, barns and equipment with high pressure washing followed by 
cleaning with 500 parts per million of hypochlorite; drying and treatment with 
300 ppm of iodophor; and restocking was not permitted for at least two years. 
Even when all of these measures were implemented, scrapie recurred on several 
farms, indicating that the infectious agent survived for years in the 
environment, even as many as 16 years after restocking (Georgsson and others 
2006).
In the rest of the countries considered in the EFSA (2014) report, 
recommendations for disinfection measures were not specifically defined at the 
government level. In the report, the only recommendation that is made for sheep 
is repopulation with sheep with scrapie-resistant genotypes. This reduces the 
risk of scrapie recurrence but it is difficult to know its effect on the 
infection.
Until the EFSA was established (in May 2003), scientific opinions about TSE 
s were provided by the Scientific Steering Committee (SSC) of the EC, whose 
advice regarding inactivation procedures focused on treating animal waste at 
high temperatures (150°C for three hours) and high pressure alkaline hydrolysis 
(SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory 
Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe 
working and the prevention of TSE infection. Annex C of the ACDP report 
established that sodium hypochlorite was considered to be effective, but only if 
20,000 ppm of available chlorine was present for at least one hour, which has 
practical limitations such as the release of chlorine gas, corrosion, 
incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its 
active chemicals and the stability of dilutions (ACDP 2009).
In an international context, the World Organisation for Animal Health (OIE) 
does not recommend a specific disinfection protocol for prion agents in its 
Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General 
recommendations on disinfection and disinsection (OIE 2014), focuses on 
foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on 
prion disinfection. Nevertheless, the last update published by the OIE on bovine 
spongiform encephalopathy (OIE 2012) indicates that few effective 
decontamination techniques are available to inactivate the agent on surfaces, 
and recommends the removal of all organic material and the use of sodium 
hydroxide, or a sodium hypochlorite solution containing 2 per cent available 
chlorine, for more than one hour at 20ºC.
The World Health Organization outlines guidelines for the control of TSE s, 
and also emphasises the importance of mechanically cleaning surfaces before 
disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 
1999).
Finally, the relevant agencies in both Canada and the USA suggest that the 
best treatments for surfaces potentially contaminated with prions are sodium 
hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, 
while most commercial household bleaches contain 5.25 per cent sodium 
hypochlorite. It is therefore recommended to dilute one part 5.25 per cent 
bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 
2013).
So what should we do about disinfection against prions? First, it is 
suggested that a single protocol be created by international authorities to 
homogenise inactivation procedures and enable their application in all 
scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available 
chlorine seems to be the procedure used in most countries, as noted in a paper 
summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). 
But are we totally sure of its effectiveness as a preventive measure in a 
scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease 
be needed?
What we can conclude is that, if we want to fight prion diseases, and 
specifically classical scrapie, we must focus on the accuracy of diagnosis, 
monitoring and surveillance; appropriate animal identification and control of 
movements; and, in the end, have homogeneous and suitable protocols to 
decontaminate and disinfect lambing barns, sheds and equipment available to 
veterinarians and farmers. Finally, further investigations into the resistance 
of prion proteins in the diversity of environmental surfaces are required.
References
snip...
98 | Veterinary Record | January 24, 2015
Persistence of ovine scrapie infectivity in a farm environment following 
cleaning and decontamination 
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc 
MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. 
Maddison, BSc, PhD3 + Author Affiliations
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey 
KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of 
Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS 
UK, School of Veterinary Medicine and Science, The University of Nottingham, 
Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for 
correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and 
chronic wasting disease of deer/elk are contagious prion diseases where 
environmental reservoirs are directly implicated in the transmission of disease. 
In this study, the effectiveness of recommended scrapie farm decontamination 
regimens was evaluated by a sheep bioassay using buildings naturally 
contaminated with scrapie. Pens within a farm building were treated with either 
20,000 parts per million free chorine solution for one hour or were treated with 
the same but were followed by painting and full re-galvanisation or replacement 
of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype 
VRQ/VRQ were reared within these pens and their scrapie status was monitored by 
recto-anal mucosa-associated lymphoid tissue. All animals became infected over 
an 18-month period, even in the pen that had been subject to the most stringent 
decontamination process. These data suggest that recommended current guidelines 
for the decontamination of farm buildings following outbreaks of scrapie do 
little to reduce the titre of infectious scrapie material and that environmental 
recontamination could also be an issue associated with these premises. 
SNIP...
Discussion
Thorough pressure washing of a pen had no effect on the amount of 
bioavailable scrapie infectivity (pen B). The routine removal of prions from 
surfaces within a laboratory setting is treatment for a minimum of one hour with 
20,000 ppm free chlorine, a method originally based on the use of brain 
macerates from infected rodents to evaluate the effectiveness of decontamination 
(Kimberlin and others 1983). Further studies have also investigated the 
effectiveness of hypochlorite disinfection of metal surfaces to simulate the 
decontamination of surgical devices within a hospital setting. Such treatments 
with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower 
than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous 
treatment of the pen surfaces did not effectively remove the levels of scrapie 
infectivity over that of the control pens, indicating that this method of 
decontamination is not effective within a farm setting. This may be due to the 
high level of biological matrix that is present upon surfaces within the farm 
environment, which may reduce the amount of free chlorine available to 
inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had 
also became scrapie positive within nine months, with all animals in this pen 
being RAMALT positive by 18 months of age. Pen D was no further away from the 
control pen (pen A) than any of the other pens within this barn. Localised hot 
spots of infectivity may be present within scrapie-contaminated environments, 
but it is unlikely that pen D area had an amount of scrapie contamination that 
was significantly different than the other areas within this building. 
Similarly, there were no differences in how the biosecurity of pen D was 
maintained, or how this pen was ventilated compared with the other pens. This 
observation, perhaps, indicates the slower kinetics of disease uptake within 
this pen and is consistent with a more thorough prion removal and 
recontamination. These observations may also account for the presence of 
inadvertent scrapie cases within other studies, where despite stringent 
biosecurity, control animals have become scrapie positive during challenge 
studies using barns that also housed scrapie-affected animals (Ryder and others 
2009). The bioassay data indicate that the exposure of the sheep to a farm 
environment after decontamination efforts thought to be effective in removing 
scrapie is sufficient for the animals to become infected with scrapie. The main 
exposure routes within this scenario are likely to be via the oral route, during 
feeding and drinking, and respiratory and conjunctival routes. It has been 
demonstrated that scrapie infectivity can be efficiently transmitted via the 
nasal route in sheep (Hamir and others 2008), as is the case for CWD in both 
murine models and in white-tailed deer (Denkers and others 2010, 2013). 
Recently, it has also been demonstrated that CWD prions presented as dust when 
bound to the soil mineral montmorillonite can be infectious via the nasal route 
(Nichols and others 2013). When considering pens C and D, the actual source of 
the infectious agent in the pens is not known, it is possible that biologically 
relevant levels of prion survive on surfaces during the decontamination regimen 
(pen C). With the use of galvanising and painting (pen D) covering and sealing 
the surface of the pen, it is possible that scrapie material recontaminated the 
pens by the movement of infectious prions contained within dusts originating 
from other parts of the barn that were not decontaminated or from other areas of 
the farm.
Given that scrapie prions are widespread on the surfaces of affected farms 
(Maddison and others 2010a), irrespective of the source of the infectious prions 
in the pens, this study clearly highlights the difficulties that are faced with 
the effective removal of environmentally associated scrapie infectivity. This is 
likely to be paralleled in CWD which shows strong similarities to scrapie in 
terms of both the dissemination of prions into the environment and the facile 
mode of disease transmission. These data further contribute to the understanding 
that prion diseases can be highly transmissible between susceptible individuals 
not just by direct contact but through highly stable environmental reservoirs 
that are refractory to decontamination.
The presence of these environmentally associated prions in farm buildings 
make the control of these diseases a considerable challenge, especially in 
animal species such as goats where there is lack of genetic resistance to 
scrapie and, therefore, no scope to re-stock farms with animals that are 
resistant to scrapie.
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) 
Accepted October 12, 2014. Published Online First 31 October 2014 
Monday, November 3, 2014 
Persistence of ovine scrapie infectivity in a farm environment following 
cleaning and decontamination
PPo3-22:
Detection of Environmentally Associated PrPSc on a Farm with Endemic 
Scrapie
Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh 
Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of 
Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories 
Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University 
of Nottingham; Sutton Bonington, Loughborough UK
Key words: scrapie, evironmental persistence, sPMCA
Ovine scrapie shows considerable horizontal transmission, yet the routes of 
transmission and specifically the role of fomites in transmission remain poorly 
defined. Here we present biochemical data demonstrating that on a 
scrapie-affected sheep farm, scrapie prion contamination is widespread. It was 
anticipated at the outset that if prions contaminate the environment that they 
would be there at extremely low levels, as such the most sensitive method 
available for the detection of PrPSc, serial Protein Misfolding Cyclic 
Amplification (sPMCA), was used in this study. We investigated the distribution 
of environmental scrapie prions by applying ovine sPMCA to samples taken from a 
range of surfaces that were accessible to animals and could be collected by use 
of a wetted foam swab. Prion was amplified by sPMCA from a number of these 
environmental swab samples including those taken from metal, plastic and wooden 
surfaces, both in the indoor and outdoor environment. At the time of sampling 
there had been no sheep contact with these areas for at least 20 days prior to 
sampling indicating that prions persist for at least this duration in the 
environment. These data implicate inanimate objects as environmental reservoirs 
of prion infectivity which are likely to contribute to disease transmission. 
Friday, December 14, 2012 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
snip... 
In the USA, under the Food and Drug Administration’s BSE Feed Regulation 
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) 
from deer and elk is prohibited for use in feed for ruminant animals. With 
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may 
not be used for any animal feed or feed ingredients. For elk and deer considered 
at high risk for CWD, the FDA recommends that these animals do not enter the 
animal feed system. However, this recommendation is guidance and not a 
requirement by law. 
Animals considered at high risk for CWD include: 
1) animals from areas declared to be endemic for CWD and/or to be CWD 
eradication zones and 
2) deer and elk that at some time during the 60-month period prior to 
slaughter were in a captive herd that contained a CWD-positive animal. 
Therefore, in the USA, materials from cervids other than CWD positive 
animals may be used in animal feed and feed ingredients for non-ruminants. 
The amount of animal PAP that is of deer and/or elk origin imported from 
the USA to GB can not be determined, however, as it is not specified in TRACES. 
It may constitute a small percentage of the 8412 kilos of non-fish origin 
processed animal proteins that were imported from US into GB in 2011. 
Overall, therefore, it is considered there is a __greater than negligible 
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk 
protein is imported into GB. 
There is uncertainty associated with this estimate given the lack of data 
on the amount of deer and/or elk protein possibly being imported in these 
products. 
snip... 
36% in 2007 (Almberg et al., 2011). In such areas, population declines of 
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of 
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs 
of CWD in affected adults are weight loss and behavioural changes that can span 
weeks or months (Williams, 2005). In addition, signs might include excessive 
salivation, behavioural alterations including a fixed stare and changes in 
interaction with other animals in the herd, and an altered stance (Williams, 
2005). These signs are indistinguishable from cervids experimentally infected 
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be 
introduced into countries with BSE such as GB, for example, infected deer 
populations would need to be tested to differentiate if they were infected with 
CWD or BSE to minimise the risk of BSE entering the human food-chain via 
affected venison. 
snip... 
The rate of transmission of CWD has been reported to be as high as 30% and 
can approach 100% among captive animals in endemic areas (Safar et al., 2008). 
snip... 
In summary, in endemic areas, there is a medium probability that the soil 
and surrounding environment is contaminated with CWD prions and in a 
bioavailable form. In rural areas where CWD has not been reported and deer are 
present, there is a greater than negligible risk the soil is contaminated with 
CWD prion. 
snip... 
In summary, given the volume of tourists, hunters and servicemen moving 
between GB and North America, the probability of at least one person travelling 
to/from a CWD affected area and, in doing so, contaminating their clothing, 
footwear and/or equipment prior to arriving in GB is greater than negligible. 
For deer hunters, specifically, the risk is likely to be greater given the 
increased contact with deer and their environment. However, there is significant 
uncertainty associated with these estimates. 
snip... 
Therefore, it is considered that farmed and park deer may have a higher 
probability of exposure to CWD transferred to the environment than wild deer 
given the restricted habitat range and higher frequency of contact with tourists 
and returning GB residents. 
snip... 
Friday, December 14, 2012 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
I strenuously once again urge the FDA and its industry constituents, to 
make it MANDATORY that all ruminant feed be banned to all ruminants, and this 
should include all cervids as soon as possible for the following 
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from 
deer and elk is prohibited for use in feed for ruminant animals. With regards to 
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used 
for any animal feed or feed ingredients. For elk and deer considered at high 
risk for CWD, the FDA recommends that these animals do not enter the animal feed 
system. 
***However, this recommendation is guidance and not a requirement by law. 
======
31 Jan 2015 at 20:14 GMT 
*** Ruminant feed ban for cervids in the United States? ***
Singeltary et al
31 Jan 2015 at 20:14 GMT 
Article Citation: (2015) 
AGE AND REPEATED BIOPSY INFLUENCE ANTEMORTEM PRPCWD TESTING IN MULE DEER 
(ODOCOILEUS HEMIONUS) IN COLORADO, USA. 
Journal of Wildlife Diseases In-Press. doi: http://dx.doi.org/10.7589/2014-12-284 
Ahead of Print 
AGE AND REPEATED BIOPSY INFLUENCE ANTEMORTEM PRPCWD TESTING IN MULE DEER 
(ODOCOILEUS HEMIONUS) IN COLORADO, USA 
Chris Geremia1,6,7 Jennifer A. Hoeting2, Lisa L. Wolfe3, Nathan L. 
Galloway4, Michael F. Antolin4, Terry R. Spraker5, Michael W. Miller3, and N. 
Thompson Hobbs1 
1 Natural Resource Ecology Laboratory, Graduate Degree Program in Ecology, 
Colorado State University, Fort Collins, Colorado, 80523-1499, USA 
2 Department of Statistics, Colorado State University, Fort Collins, 
Colorado 80523, USA 
3 Colorado Division of Parks and Wildlife, Wildlife Health Program, 4330 
Laporte Avenue, Fort Collins, Colorado 80521, USA 
4 Department of Biology, Colorado State University, Fort Collins, Colorado 
80523-1878, USA 
5 Colorado State University Diagnostics Laboratory, Colorado State 
University, Fort Collins, Colorado 80523, USA 
Key words: Bayesian, capture–mark–recapture, chronic wasting disease, mule 
deer, prion, test sensitivity 
Abstract 
Biopsy of rectal-mucosa associated lymphoid tissue provides a useful, but 
imperfect, live-animal test for chronic wasting disease (CWD) in mule deer 
(Odocoileus hemionus). It is difficult and expensive to complete these tests on 
free-ranging animals, and wildlife health managers will benefit from methods 
that can accommodate test results of varying quality. To this end, we developed 
a hierarchical Bayesian model to estimate the probability that an individual is 
infected based on test results. Our model was estimated with the use of data on 
210 adult female mule deer repeatedly tested during 2010−2014. The ability to 
identify infected individuals correctly declined with age and may have been 
influenced by repeated biopsy. Fewer isolated lymphoid follicles (where PrPCWD 
accumulates) were obtained in biopsies of older deer and the proportion of 
follicles showing PrPCWD was reduced. A deer’s genotype in the prion gene (PRNP) 
also influenced detection. At least five follicles were needed in a biopsy to 
assure a 95% accurate test in PRNP genotype 225SS deer. 
Received: December 15, 2014; Accepted: April 23, 2015
6 Current address: Yellowstone Center for Resources, P.O. Box 168, 
Yellowstone National Park, Mammoth Hot Springs, Wyoming 82190, USA
7 Corresponding author (email: chris_geremia@nps.gov) 
Friday, January 30, 2015
*** Scrapie: a particularly persistent pathogen ***
Wednesday, August 05, 2015 
*** Ohio confirms to me Chronic Wasting Disease CWD Spreads 19 confirmed 
cases to date ***
Just got off the phone with Christy Clevenger of Ohio
Ohio Department of Agriculture March 2012 – Present (3 years 6 
months)Reynoldsburg, Ohio CWD program 
Ms. Clevenger confirmed, to date, from the Yoder debacle, 1 confirmed case 
of CWD from the Hunting Preserve, 2 confirmed cases from the Breeding Farm, and 
16 confirmed cases of CWD from the Breeder Depopulation, with a total to date of 
19 cases of CWD in Ohio... 
Terry 
Saturday, July 18, 2015 
CHARLES "SAM" JAMES, Columbia, Missouri, was charged in a one-count federal 
indictment for violations of the Lacey Act involved the sale of white-tailed 
deer transported in violation of Missouri and Florida law 
Tuesday, November 27, 2012 
Pennsylvania ‘Pink 23’ Adams County exposed CWD Escaped Deer shot, but 
where are the other escapees ? 
Saturday, June 29, 2013 
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN 
INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA 
Louisiana Deer Quarantine 
Tuesday, August 11, 2015 
Wisconsin doing what it does best, procrastinating about CWD yet again 
thanks to Governor Walker 
GRASSHOPPER TO MASTER Obi-Wan Kenobi CWD TEXAS CAPTIVE
‘’I see no evidence whatsoever here for a genetic link. The numbers are 
statistically insignificant and co-housing in contaminated facilities would 
strongly predispose to this outcome.’’ 
‘’if the father did have a bad amino acid variant allele, it would be 
diluted to heterozygozity with a normal gene in the half the four descendants 
since the father never would have survived to breeding age with two bad copies. 
sort of like met/val at position 129 in humans with greatly lengthened 
incubation times if prnp is propagating at all. Mutations such as repeat 
expansion leading to positive dominant infection have not been documented in 
cervids.’’ 
On 09 08 15, at 9:09 AM, Terry S. Singeltary Sr. 
 wrote: ‘’ 
cwd Texas and then there were 4? 
genetic link ? 
He said 42 deer have been killed and tested since July 28, and three 
additional positives were the result. 
***He added that all four deer confirmed to have the disease were males 
from the same father, which leads him to believe the problem is genetic. 
snip... 
*** HAVE YOU BEEN THUNDERSTRUCK ? 
on my mothers grave, when I wrote up the ‘have you been thunderstruck’ 
about super ovulation, and what if? I had no clue about all this. hell, I had it 
in draft for a month. then a week or so later, bam. 
it’s been like this all along Obi-Wan Kenobi. 
every shooting pen owner in Texas are praying this familial cwd is the 
going thing now. 
no link to sperm. 
no link to super ovulation. 
they sell those sperm straws like the meth heads and crack heads sell meth 
and crack. 
genetic link with four deer in the same herd, same father ? 
familial ? 
sperm ? 
super ovulation ? 
what say ye master ? 
grasshopper 
Friday, August 07, 2015 
Texas CWD Captive, and then there were 4 ? 
Thursday, August 06, 2015 
WE HAVE LOST TEXAS TO CWD TASK FORCE CATERING TO INDUSTRY 
Tuesday, July 21, 2015 
Texas CWD Medina County Herd Investigation Update July 16, 2015 
• 66 Texas sites, 2 Mexico sites
Monday, August 10, 2015
*** Scientific Opinion on a request for a review of a scientific 
publication concerning the zoonotic potential of ovine scrapie prions 
Thursday, July 24, 2014 
*** Protocol for further laboratory investigations into the distribution of 
infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA New protocol for Atypical 
BSE investigations 
Wednesday, July 15, 2015 
*** Additional BSE TSE prion testing detects pathologic lesion in unusual 
brain location and PrPsc by PMCA only, how many cases have we missed? 
Wednesday, July 29, 2015 
Further characterisation of transmissible spongiform encephalopathy 
phenotypes after inoculation of cattle with two temporally separated sources of 
sheep scrapie from Great Britain 
Wednesday, July 29, 2015 
Porcine Prion Protein Amyloid or mad pig disease PSE 
Monday, August 10, 2015 
Detection and Quantification of beta-Amyloid, Pyroglutamyl A beta, and Tau 
in Aged Canines 
http://caninespongiformencephalopathy.blogspot.com/2015/08/detection-and-quantification-of-beta.html
Friday, August 7, 2015 
Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a 
Variety of Prion Isolates 
Thursday, July 30, 2015
SCRAPIE USDA APHIS June 2015 Monthly Report
Tuesday, June 23, 2015 
Report on the monitoring and testing of ruminants for the presence of 
transmissible spongiform encephalopathies (TSEs) in the EU in 2013 Final version 
18 May 2015
Saturday, March 21, 2015 
*** Canada and United States Creutzfeldt Jakob TSE Prion Disease Incidence 
Rates Increasing 
*** HUMAN MAD COW DISEASE nvCJD TEXAS CASE NOT LINKED TO EUROPEAN TRAVEL 
CDC ***
Sunday, November 23, 2014 
*** Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas 
in June 2014 confirmed as USA case NOT European *** 
the patient had resided in Kuwait, Russia and Lebanon. The completed 
investigation did not support the patient's having had extended travel to 
European countries, including the United Kingdom, or travel to Saudi Arabia. The 
specific overseas country where this patient’s infection occurred is less clear 
largely because the investigation did not definitely link him to a country where 
other known vCJD cases likely had been infected. 
Sunday, December 14, 2014 
*** ALERT new variant Creutzfeldt Jakob Disease nvCJD or vCJD, sporadic CJD 
strains, TSE prion aka Mad Cow Disease United States of America Update December 
14, 2014 Report ***
Thursday, July 30, 2015 
Professor Lacey believes sporadic CJD itself originates from a cattle 
infection number of cattle farmers falling victim to Creutzfeld-Jakob Disease is 
much too high to be mere chance
Tuesday, August 4, 2015 
*** FDA U.S. Measures to Protect Against BSE aka MAD COW DISEASE ***
Thursday, July 30, 2015 
*** Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes 
Self-Propagative Replication of Ab Oligomers Suggests Potential 
Transmissibility in Alzheimer Disease
Received July 24, 2014; Accepted September 16, 2014; Published November 3, 
2014
*** Singeltary comment ;
Terry S. Singeltary Sr.
    


0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home