Saturday, February 02, 2019

Ohio Chronic Wasting Disease CWD TSE PRION FEBRUARY 2019 Newsletter Update

Ohio Department of Agriculture - FEBRUARY 2019 Newsletter CWD

Chronic Wasting Disease (CWD) Testing at the ADDL

Dr. Jeff Hayes, MS, DVM, ADDL Pathology Section Head 

Testing for the molecular marker of chronic wasting disease (CWD) by immunohistochemistry is a major aspect of work provided by the Pathology Section of the ADDL. 

Since the latter half of 2014 through January, 2019 - a time period just over 4.5 years - the ADDL has tested more than 42,000 tissues from more than 18,000 deer for evidence of CWD infection. 

In this time, only 4 deer of the 18,282 deer examined were found to contain the PrP-res protein in lymph node or brain tissue, all of which were confirmed by the National Veterinary Services Laboratories (NVSL) of the USDA. 

More than 10,000 cervids, mainly white-tailed-deer, tested during this time have been primarily captive deer associated with the Ohio Captive White-tailed-deer Program, but more than 7700 deer have been wild deer submitted by the Ohio Department of Natural Resources Division of Wildlife. 

Notably, no wild deer in Ohio has ever been found to test positive for CWD during not only this time frame, but also since the ADDL began such testing in wild deer in 2002. 

If you have any questions about testing deer for CWD or would like information about the Ohio Captive White-tailed-deer Program, please call the ADDL at 614-728-6220.



A captive white-tailed deer breeding facility in Holmes County was confirmed CWD-positive in January 2018 and depopulated in February 2018. Two of the 93 deer euthanized were CWD-positive as well. A disease surveillance area (DSA) has been established around the facility and will remain in effect for at least three years.



***> Ohio is considered free of CWD and has robust surveillance programs in captive and free-ranging deer


LOL! simply put, if you don't test enough, you will not find cwd, until it finds you, then it's too late...tss


there were 19 CONFIRMED CASES OF CWD BACK IN 2015 IN OHIO, so how in the world can a state claim to be CWD TSE Prion?

 
Ohio Changes in CWD Sample Submission for IHC Testing, Ohio is considered free of CWD?

Ohio Department of Agriculture - December 2018

Changes in CWD Sample Submission for IHC Testing

Dr. Jeff Hayes, DVM, MS, ADDL Pathology Section Head 

The United States Department of Agriculture (USDA) has recently made changes in the procedures required for sample collection from cervids for chronic wasting disease (CWD) testing by immunohistochemistry. Ohio is considered free of CWD and has robust surveillance programs in captive and free-ranging deer. The Ohio ADD has tested over 8000 samples per year, for the last several years. The following changes are now required for veterinarians submitting samples to an approved laboratory for CWD testing, including submission of both fresh and formalin-fixed samples.

Formalin-fixed tissue (10:1 ratio of formalin to tissue sample): 1- OBEX: After removing the brainstem from the foramen magnum, ensure the proper obex sample (bifurcation or “V”) is preserved. Further trim the brainstem section by making a transverse cut ¾ inch in front of the “V” shape bifurcation and an equal distance behind the bifurcation. Place the trimmed obex into the formalin jar. 2- MEDIAL RETROPHARYNGEAL LYMPH NODES (MRPLNs): Remove each left and right MRPLN as done previously, now, longitudinally incise each lymph node. Place half of the left and half of the right node into the formalin jar, and the other halves into a whirl-pak bag (see below).

Fresh tissue (collect samples in one labeled whirl-pak bag): 1- BRAINSTEM: Place the rostral and distal pieces of brainstem in the labeled bag. 2- RETROPHARYNGEAL LYMPH NODES: Place the other halves of each node into the same bag. 3- ID TAGS AND SKIN: Remove the official ID with a 1”X1” piece of ear attached for each animal sampled, place it in the labeled bag and submit with other fresh tissues. DO NOT PLACE IN FORMALIN.

NOTE: If the animal is a trophy animal, submit the official ID and attach a new official ID to another piece of skin. If no official ID is present, the collector must affix one and record the information. Microchips must be in tissue.

Call the ADDL with any questions or concerns at 614-728-6220.

=====

ODNR Takes New Action to Monitor Chronic Wasting Disease in Ohio's Deer Herd 11/28/2018 Division of Wildlife COLUMBUS, OH – As of Aug. 1, portions of Holmes and Tuscarawas counties have been declared a Disease Surveillance Area (DSA) as part of the state’s ongoing efforts to monitor Chronic Wasting Disease (CWD), according to the Ohio Department of Natural Resources (ODNR). This designation was made after a deer at a captive white-tailed deer facility in Holmes County tested positive for CWD. In addition, the state has established new carcass rules for hunters who hunt wild deer, elk, caribou and moose in other states.

The new carcass rules will apply to Ohio hunters who plan to travel out of state to hunt any CWD-susceptible species (white-tailed deer, mule deer, elk, caribou or moose). No person is permitted to bring or transport high-risk carcass parts of CWD-susceptible species into Ohio from any state or Canadian province, regardless of the CWD status of the exporting jurisdiction. Additional information on carcass regulations can be found at wildohio.gov.

The newly-established DSA includes the areas within a 6-mile radius from the CWD positive samples in Holmes County and includes: Wayne and Sugar Creek townships in Tuscarawas County, and Salt Creek, Paint, Berlin, Walnut Creek and Clark townships in Holmes County. This DSA designation will remain in effect for a minimum of three years. The area will be mapped and posted on the division’s website: Diseases in Wildlife: CWD

The following regulations will apply within the DSA:

• Requires hunters to bring deer carcasses harvested within the DSA boundaries to an ODNR Division of Wildlife inspection station for sampling during the deer-gun and deer muzzleloader seasons;

• Prohibits the placement of or use of salt, mineral supplement, grain, fruit, vegetables or other feed to attract or feed deer within the DSA boundaries. Prohibits hunting of deer by the aid of salt, mineral supplement, grain, fruit, vegetables or other feed within the DSA boundaries; and

• Prohibits the removal of a deer carcass killed by a motor vehicle within the DSA boundaries unless the carcass complies with deer carcass regulations.

Normal agricultural activities including feeding of domestic animals as well as hunting deer over food plots, naturally occurring or cultivated plants and agriculture crops are not prohibited.

Hunters harvesting deer within the DSA are required to deliver their deer to a carcass inspection station. Two locations have been designated as Carcass Inspection Stations for the deer-gun seasons and the deer muzzleloader season. Both locations will be open and staffed from 10 a.m. to 8 p.m. during the deer-gun and deer muzzleloader seasons. The dates for these seasons are: Nov. 26-Dec. 2, Dec. 15-16 and Jan. 5-8, 2019.

• Sugarcreek Village Hall, 410 S Broadway St., Sugarcreek 44681.

• Walnut Creek Township Garage, 2490 Township Road 414, Dundee 44624.

Hunters will be asked to provide their confirmation number from the game check process as well as the location where the deer was killed (the address of the farm or nearest road intersection are acceptable). Tissue samples will be taken and tested for CWD. The process should take no more than 10 minutes; however, delays are likely at peak times of the day. Hunters are strongly encouraged to complete the game check process before proceeding to the inspection. Hunters that harvest a deer and wish to have it mounted will still need to bring their deer to a carcass inspection station. Samples will not be taken at the time, but staff will collect additional information so that samples can be collected later.

If hunters have questions about the carcass inspection stations or need directions to the locations, they may call 800-WILDLIFE or the Wildlife District Three office at 330-644-2293. The ODNR Division of Wildlife is responsible for protecting and managing Ohio’s fish and wildlife resources for the benefit of all Ohioans. We greatly appreciate the cooperation of hunters in helping us monitor Ohio’s deer herd. For more information about CWD, visit wildohio.gov.

The state’s first DSA, DSA 2015-01, which was established in 2015, has expired after being in place for three years with no evidence of CWD found in wild deer. The original DSA was established after CWD was first detected at a shooting preserve and breeding facility in Holmes County, and included portions of Holmes and Wayne counties.

ODNR ensures a balance between wise use and protection of our natural resources for the benefit of all. Visit the ODNR website at ohiodnr.gov.

– 30 –


***> Ohio is considered free of CWD and has robust surveillance programs in captive and free-ranging deer

LOL!

hell, there were 19 CONFIRMED CASES OF CWD BACK IN 2015 IN OHIO, so how in the world can a state claim to be CWD TSE Prion?

WEDNESDAY, AUGUST 05, 2015

Ohio confirms to me Chronic Wasting Disease 

CWD Spreads 19 confirmed cases to date Just got off the phone with Christy Clevenger of Ohio

Ohio Department of Agriculture March 2012 – Present (3 years 6 months) Reynoldsburg, Ohio CWD program

Ms. Clevenger confirmed, to date, from the Yoder debacle, 1 confirmed case of CWD from the Hunting Preserve, 2 confirmed cases from the Breeding Farm, and 16 confirmed cases of CWD from the Breeder Depopulation, with a total to date of 19 cases of CWD in Ohio...with sad regards, Terry





A captive white-tailed deer breeding facility in Holmes County was confirmed CWD-positive in January 2018 and depopulated in February 2018. Two of the 93 deer euthanized were CWD-positive as well. A disease surveillance area (DSA) has been established around the facility and will remain in effect for at least three years.


    Disease Surveillance Area (DSA) Changes
    In 2015, the ODNR Division of Wildlife declared a 10-township area in Holmes (all or portions of Ripley, Prairie, Salt Creek, Monroe, Hardy, Berlin, Killbuck, Mechanic, and Richland townships) and Wayne (Franklin and Clinton townships) counties a Disease Surveillance Area (DSA.) The area was formally declared DSA 2015-01 and was to exist for a minimum of three years. Effective July 31, 2018, that designation and all rules associated with it have expired. CWD was not detected in any of the approximately 2,000 wild deer tested that were harvested in the area over a 4-year period. 

    In response to a captive cervid facility testing positive for CWD in January 2018 in eastern Holmes County, a new DSA 2018-01 has been established. All rules associated with DSA 2018-01 are effective beginning August 1st, 2018. These rules include the following: 

    • Requires hunters to bring deer carcasses harvested within the DSA 2018-01 boundaries to an ODNR Division of Wildlife inspection station for sampling during the deer-gun and deer muzzleloader seasons;
    • Prohibits the placement of or use of salt, mineral supplement, grain, fruit, vegetables, or other feed to attract or feed deer within the DSA boundaries;
    • Prohibits hunting of deer by the aid of salt, mineral supplement, grain, fruit, vegetables, or other feed within the DSA boundaries; and
    • Prohibits the removal of a deer carcass killed by a motor vehicle within the DSA 2018-01 boundaries unless the carcass complies with deer carcass restrictions.


    Disease Surveillance Area 2018
     
    Click to enlarge


    Normal agricultural activities including feeding of domestic animals as well as hunting deer over food plots, naturally occurring or cultivated plants and agriculture crops are not prohibited. 

    Hunters harvesting deer during Ohio’s gun seasons (7-day traditional, 2-day bonus, and 4-day muzzleloader) within the DSA are required to deliver their deer to a carcass inspection station. Hunters are NOT required to present their deer for testing during the 2-day youth gun season. Two locations have been designated as Carcass Inspection Stations for the deer-gun seasons and the deer muzzleloader season. Both locations will be open and staffed from 10 a.m. to 8 p.m. during the deer-gun and deer muzzleloader seasons. 

    • Sugarcreek Village Hall (Tuscarawas County), 410 South Broadway Street, Sugarcreek, OH 44681
    • Walnut Creek Township Garage (Holmes County), 2490 Township Road 414, Dundee, OH 44624

    Hunters will be asked to provide their 18-digit confirmation number from the game check process as well as the location where the deer was killed. Tissue samples will be taken and tested for CWD. Samples can be taken from either just the head or complete carcass. Hunters that harvest a deer and wish to have it mounted must still bring their deer to an inspection station. Samples will not be taken at the time, but staff will collect additional information, so samples can be collected later. 

    Although CWD has not been detected in the wild deer herd, hunters who plan to hunt in DSA 2018-01 are encouraged to consider having their deer processed commercially to ensure high-risk carcass parts are disposed of properly. Hunters who plan to process their deer are strongly encouraged to double-bag all high-risk carcass parts and set them with household trash for pickup. There is no strong evidence that CWD affects humans; however, hunters can take some common-sense precautions, such as not harvesting deer that appear sick or otherwise abnormal and wearing rubber gloves while field dressing and processing deer. 

    White-tailed Deer Harvested in Ohio
    Irresponsible dumping of carcasses can spread disease. Hunters who process their white-tailed deer at home should properly dispose of the hide, brain and spinal cord, eyes, spleen, tonsils, bones, and head by double-bagging these parts and set them with the trash for disposal at a municipal landfill. It is unlikely that hunters would increase CWD transmission by field dressing and leaving the entrails and internal organs in the field. 

    Anyone who sees deer that appear to be sick or are displaying abnormal behavior should immediately report the occurrence to the ODNR Division of Wildlife. The person reporting the animal should describe the location of the animal, its symptoms, and behavior. Hunters should not kill or handle a deer that they believe is sick. 



    a pitiful way to report to the public, OR, how NOT to report to the public, exactly how many cases of CWD TSE Prion there are in your state.

    out of sight, out of mind, surveillance of CWD TSE Prion...tss

    TUESDAY, DECEMBER 04, 2018 

    Ohio Changes in CWD Sample Submission for IHC Testing, Ohio is considered free of CWD?


    THURSDAY, JANUARY 25, 2018 

    Ohio Chronic Wasting Disease CWD TSE Prion aka mad deer update 2016-2017 SEASON SUMMARY


    January 14, 2018

    Ohio ODA confirms CWD TSE Prion in more captive deer




    Chronic Wasting Disease Update

    Dr. Jeff Hayes, MS, DVM, ADDL Pathology Section Head

    Through November 2017, the ADDL has performed immunohistochemistry (IHC) to detect the prion agent associated with Chronic Wasting Disease (CWD) in tissues from 1,585 captive deer and from 411 wild deer this year. The majority of the wild deer were submitted by the Ohio Division of Wildlife. To date this has included the examination of 7,100 tissues. No suspect or positive animals have been detected among all deer tested in 2017, and none have been detected in Ohio since two premises were identified as having CWD-infected captive white-tailed deer in late 2014 and early 2015.


    2018 updates for trace in's and out's from this Ohio positive cwd captive? any positives there from? just wondering....terry

    SUNDAY, DECEMBER 03, 2017 

    Ohio Chronic Wasting Disease Update Through November 2017


    WEDNESDAY, NOVEMBER 15, 2017 

    Ohio ODNR Continues Plan to Monitor Ohio’s Deer Herd for Chronic Wasting Disease or do they?


    WEDNESDAY, AUGUST 16, 2017

    OHIO Chronic Wasting Disease CWD TSE Prion UPDATE?


    Ohio Deer Hunting Season 2017-2018 Today, the deer population in Ohio exceeds 750,000.


    see map;


    IT would be great if such a detailed assessment of Chronic Wasting Disease CWD TSE Prion in CAPTIVE FARMS in Ohio were available...terry

    WEDNESDAY, AUGUST 05, 2015

    Ohio confirms to me Chronic Wasting Disease 

    CWD Spreads 19 confirmed cases to date Just got off the phone with Christy Clevenger of Ohio

    Ohio Department of Agriculture March 2012 – Present (3 years 6 months) Reynoldsburg, Ohio CWD program

    Ms. Clevenger confirmed, to date, from the Yoder debacle, 1 confirmed case of CWD from the Hunting Preserve, 2 confirmed cases from the Breeding Farm, and 16 confirmed cases of CWD from the Breeder Depopulation, with a total to date of 19 cases of CWD in Ohio...with sad regards, Terry


    FRIDAY, OCTOBER 23, 2015

    Ohio Wildlife Council Passes Rule to Help Monitor CWD From: Terry S. Singeltary Sr.

    Sent: Friday, October 23, 2015 4:39 PM



    Subject: Ohio Wildlife Council Passes Rule to Help Monitor CWD


    MONDAY, AUGUST 24, 2015 

    Ohio wildlife officials ramp up fight against fatal deer brain disease after 17 more positive tests CWD


    WEDNESDAY, AUGUST 05, 2015

    Ohio confirms to me Chronic Wasting Disease 

    CWD Spreads 19 confirmed cases to date Just got off the phone with Christy Clevenger of Ohio

    Ohio Department of Agriculture March 2012 – Present (3 years 6 months) Reynoldsburg, Ohio CWD program

    Ms. Clevenger confirmed, to date, from the Yoder debacle, 1 confirmed case of CWD from the Hunting Preserve, 2 confirmed cases from the Breeding Farm, and 16 confirmed cases of CWD from the Breeder Depopulation, with a total to date of 19 cases of CWD in Ohio...with sad regards, Terry


    Thursday, April 02, 2015

    OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's properties near Millersburg


    Wednesday, February 11, 2015

    World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with two counts of tampering with evidence


    Thursday, October 23, 2014 

    *** FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE PRESERVE 


    Monday, June 11, 2012

    *** OHIO Captive deer escapees and non-reporting ***



    Texas CWD Symposium: Transmission by Saliva, Feces, Urine & Blood

    the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.

    https://www.youtube.com/watch?v=bItnEElzuKo&index=6&list=PL7ZG8MkruQh3wI96XQ8_EymytO828rGxj

    ''On January 21, 2017 a tornado took down thousands of feet of fence for a 420-acre illegal deer enclosure in Lamar County that had been subject to federal and state investigation for illegally importing white-tailed deer into Mississippi from Texas (a CWD positive state). Native deer were free to move on and off the property before all of the deer were able to be tested for CWD. Testing will be made available for a period of three years for CWD on the property and will be available for deer killed within a 5-mile radius of the property on a voluntary basis. ''

    Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS

    See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...


    WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO


    cwd update on Wisconsin from Tammy Ryan...


    Wyoming CWD Dr. Mary Wood

    ''first step is admitting you have a problem''

    ''Wyoming was behind the curve''

    wyoming has a problem...


    SATURDAY, JANUARY 19, 2019 

    Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS


    TUESDAY, JANUARY 29, 2019 

    TEXAS REPORTS 2 MORE CWD TSE PRION ALL WILD CERVID TOTAL TO DATE 141



    ***> This is very likely to have parallels with control efforts for CWD in cervids.

    Rapid recontamination of a farm building occurs after attempted prion removal


    Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2

    Abstract

    The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. 

    Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. 

    Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. 

    Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). 

    A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. 

    Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3. 

    The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

    snip...

    As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.

    This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

    Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.

    Funding This study was funded by DEFRA within project SE1865. 

    Competing interests None declared. 


    Saturday, January 5, 2019 

    Rapid recontamination of a farm building occurs after attempted prion removal 


    ***> NORWAY CWD UPDATE December 2018

    Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2018: 16

    Factors that can contribute to spread of CWD – an update on the situation in Nordfjella, Norway

    Opinion of Panel on biological hazards of the Norwegian Scientific Committee for Food and Environment

    13.12.2018

    ISBN: 978-82-8259-316-8

    ISSN: 2535-4019

    Norwegian Scientific Committee for Food and Environment (VKM)

    Po 222 Skøyen

    0213 Oslo

    Norway

    FRIDAY, DECEMBER 14, 2018 

    Norway, Nordfjella VKM 2018 16 Factors that can contribute to spread of CWD TSE Prion UPDATE December 14, 2018



    THURSDAY, OCTOBER 25, 2018 

    ***> Norway New additional requirements for imports of hay and straw for animal feed from countries outside the EEA due to CWD TSE Prion



    THURSDAY, JANUARY 31, 2019 

    Mississippi Chronic Wasting Disease Cases Almost Doubles to 11 Cases Confirmed To Date


    SATURDAY, JANUARY 19, 2019 

    Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS


    MONDAY, JANUARY 14, 2019 

    Evaluation of iatrogenic risk of CJD transmission associated with Chronic Wasting Disease TSE Prion in Texas TAHC TPWD

    It is a dimension as vast as space and as timeless as infinity. It is the middle ground between light and shadow, between science and superstition, and it lies between the pit of man's fears and the summit of his knowledge. This is the dimension of imagination. It is NOT, an area which we call the Twilight Zone, but an area that believes junk science, and the very industries and lobbyist some Texas Hunters, the cervid industry, that insist on shoving the fake news down their throats, we call this ted nugent junk science, and in TEXAS, sometimes you just can't fix stupid, this is where the rubber meets the road, here's your sign!

    chronic wasting disease cwd tse prion aka mad deer elk disease, if you consume a cwd tse prion positive cervid, then months, years, decades later, go on to have surgery, dental, ophthalmology, endoscopy, donate tissue, blood, organs, you then expose those medical theaters and tissue, blood, organs, that are incubating the infectious cwd tse prion disease, to everyone that comes in contact.

    these are not memes, these are actual statements from hunters/industry in Texas about CWD tse prion.

    God help them, and us...terry

    ''Got a call today from TPWD, I’ve got a mule deer that tested early positive for CWD. I’m soon to turn into a zombie because I have already been eating it. They advised not to consume any of the meat...too late! They want to come confiscate what meat is left once they get more results back from another lab.''

    snip...


    SUNDAY, MAY 14, 2017 

    85th Legislative Session 2017 AND THE TEXAS TWO STEP Chronic Wasting Disease CWD TSE Prion, and paying to play


    Wednesday, May 04, 2016 

    TPWD proposes the repeal of §§65.90 -65.94 and new §§65.90 -65.99 Concerning Chronic Wasting Disease - Movement of Deer Singeltary Comment Submission 


    TUESDAY, DECEMBER 16, 2014

    Texas 84th Legislature 2015 H.R. No. 2597 Kuempel Deer Breeding Industry TAHC TPWD CWD TSE PRION 


    SUNDAY, DECEMBER 14, 2014

    TEXAS 84th Legislature commencing this January, deer breeders are expected to advocate for bills that will seek to further deregulate their industry


    ***> TEXAS HISTORY OF CHRONIC WASTING DISEASE CWD TSE PRION

    ***> Singeltary on Texas Chronic Wasting Disease CWD TSE Prion History



    TUESDAY, JANUARY 29, 2019 

    TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show? 



    NEWS RELEASE Texas Animal Health Commission “Serving Texas Animal Agriculture Since 1893” Andy Schwartz, DVM ● Interim Executive Director P.O. Box 12966 ● Austin, Texas 78711 ● (800) 550-8242 http://www.tahc.texas.gov For more information contact the Communications Dept. at 512-719-0750 or at callie.ward@tahc.texas.gov

    ________________________________________________________________________________________________________

    April 22, 2016

     Scrapie Confirmed in a Hartley County Sheep AUSTIN – Texas Animal Health Commission (TAHC) officials have confirmed scrapie in a Hartley County ewe. The ewe was tested by TAHC after the owner reported signs of weight loss and lack of coordination to their local veterinarian. The premises was quarantined and a flock plan for monitoring is being developed by the TAHC and USDA. “The TAHC is working closely with the flock owner, sharing all of the options for disease eradication,” said Dr. David Finch, TAHC Region 1 Director. “We are thankful the producer was proactive in identifying a problem and seeking veterinary help immediately.” 

    Texas leads the nation in sheep and goat production. Since 2008, there have been no confirmed cases of scrapie in Texas. The last big spike in Texas scrapie cases was in 2006 when nine infected herds were identified and the last herd was released from restrictions in 2013. 

    According to USDA regulations, Texas must conduct adequate scrapie surveillance by collecting a minimum of 598 sheep samples annually. Since USDA slaughter surveillance started in FY 2003, the percent of cull sheep found positive for scrapie at slaughter (once adjusted for face color) has decreased 90 percent. 

    Scrapie is the oldest known transmissible spongiform encephalopathies, and under natural conditions only sheep and goats are known to be affected by scrapie. It is a fatal disease that affects the central nervous system of sheep and goats. It is not completely understood how scrapie is passed from one animal to the next and apparently healthy sheep infected with scrapie can spread the disease. Sheep and goats are typically infected as young lambs or kids, though adult sheep and goats can become infected. 

    The most effective method of scrapie prevention is to maintain a closed flock. Raising replacement ewes, purchasing genetically resistant rams and ewes, or buying from a certified-free scrapie flock are other options to reduce the risk of scrapie. At this time the resistant genetic markers in goats have not been identified, therefore it is important to maintain your sheep and goat herds separately. The incubation period for Scrapie is typically two to five years. Producers should record individual identification numbers and the seller’s premise identification number on purchase and sales records. These records must be maintained for a minimum of five years. Producers should notify the Texas Animal Health Commission (800-550-8242) or the USDA-Austin Office (512-383-2400) if they have an adult sheep or goat with neurologic signs such as incoordination, behavioral changes, or intense itching with wool loss. Producers may order scrapie identification tags by calling 866-873-2824. 

    For more information, please visit our website at: http://www.tahc.texas.gov/animal_health/scrapie/scrapie.html. 

    ###


    PRION 2018 CONFERENCE
     
    O3 Experimental studies on prion transmission barrier and TSE pathogenesis in large animals 

    Rosa Bolea(1), Acín C(1)Marín B(1), Hedman C(1), Raksa H(1), Barrio T(1), Otero A(1), LópezPérez O(1), Monleón E(1),Martín-Burriel(1), Monzón M(1), Garza MC(1), Filali H(1),Pitarch JL(1), Garcés M(1), Betancor M(1), GuijarroIM(1), GarcíaM(1), Moreno B(1),Vargas A(1), Vidal E(2), Pumarola M(2), Castilla J(3), Andréoletti O(4), Espinosa JC(5), Torres JM(5), Badiola JJ(1). 

    1Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, VeterinaryFaculty, Universidad de Zaragoza; Zaragoza,Spain.2 RTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB) 3 4 INRA, ÉcoleVétérinaire, Toulouse, France.5CIC bioGUNE, Prion researchlab, Derio, Spain CISA- INIA, Valdeolmos, Madrid 28130, Spain. 

    Experimental transmission of Transmissible Spongiform Encephalopathies (TSE) has been understood and related with several factors that could modify the natural development of these diseases. In fact, the behaviour of the natural disease does not match exactly in each animal, being modified by parameters such as the age at infection, the genotype, the breed or the causative strain. Moreover, different TSE strains can target different animal species or tissues, what complicate the prediction of its transmissibility when is tested in a different species of the origin source. The aim of the experimental studies in large animals is to homogenize all those factors, trying to minimize as much as possible variations between individuals. These effects can be flattened by experimental transmission in mice, in which a specific strain can be selected after several passages. With this objective, several experimental studies in large animals have been developed by the presenter research team. 

    Classical scrapie agent has been inoculated in cow, with the aim of demonstrate the resistance or susceptibility of this species to the first well known TSE; Atypical scrapie has been inoculated in sheep (using several routes of infection), cow and pig, with the objective of evaluating the potential pathogenicity of this strain; Classical Bovine Spongiform Encephalopathy (BSE) has been inoculated in goats aiming to demonstrate if the genetic background of this species could protect against this strain; goat BSE and sheep BSE have been inoculated in goats and pigs respectively to evaluate the effect of species barrier; and finally atypical BSE has been inoculated in cattle to assess the transmissibility properties of this newly introduced strain. 

    Once the experiments have been carried out on large animal species, a collection of samples from animals studied were inoculated in different types of tg mice overexpressing PrPcin order to study the infectivity of the tissues, and also were studied using PMCA. 

    In summary, the parameters that have been controlled are the species, the strain, the route of inoculation, the time at infection, the genotype, the age, and the environmental conditions. 

    To date, 

    ***> eleven of the atypical scrapie intracerebrally inoculated sheep have succumbed to atypical scrapie disease; 

    ***> six pigs to sheep BSE; 

    ***> one cow to classical scrapie; 

    ***> nine goats to goat BSE and 

    ***> five goats to classical BSE. 

    ***> PrPSC has been demonstrated in all cases by immunohistochemistry and western blot. 

    =====> PRION CONFERENCE 2018 


    MONDAY, OCTOBER 1, 2018 

    Review: Update on Classical and Atypical Scrapie in Sheep and Goats



    ***> Our findings suggest that cattle exposure to atypical scrapie could be responsible of the occurrence of classical BSE in this species. 

    ***> These results also raise some concerns about the current and future changes in the protection measures that were implemented to mitigate animal and human exposure to TSE agents. 



    cwd scrapie pigs oral routes

    ***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

     >*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

    ***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

    ***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. 

    This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. 

    Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 





     ***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

    >*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***


    Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban?

    Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

    2017 Annual Report

    1a. Objectives (from AD-416):

    Objective 1: Investigate the mechanisms of protein misfolding in prion disease, including the genetic determinants of misfolding of the prion protein and the environmental influences on protein misfolding as it relates to prion diseases. Subobjective 1.A: Investigate the differences in the unfolded state of wild-type and disease associated prion proteins to better understand the mechanism of misfolding in genetic prion disease. Subobjective 1.B: Investigate the influence of metal ions on the misfolding of the prion protein in vitro to determine if environmental exposure to metal ions may alter disease progression. Objective 2: Investigate the pathobiology of prion strains in natural hosts, including the influence of prion source genotype on interspecies transmission and the pathobiology of atypical transmissible spongiform encephalopathies (TSEs). Subobjective 2.A: Investigate the pathobiology of atypical TSEs. Subobjective 2.B: Investigate the influence of prion source genotype on interspecies transmission. Objective 3: Investigate sampling methodologies for antemortem detection of prion disease, including the utility of blood sampling as a means to assess prion disease status of affected animals and the utility of environmental sampling for monitoring herd prion disease status. Subobjective 3.A: Investigate the utility of blood sampling as a means to assess prion disease status of affected animals. Subobjective 3.B: Investigate the utility of environmental sampling for monitoring herd prion disease status.

    1b. Approach (from AD-416):

    The studies will focus on three animal transmissible spongiform encephalopathy (TSE) agents found in the United States: bovine spongiform encephalopathy (BSE); scrapie of sheep and goats; and chronic wasting disease (CWD) of deer, elk, and moose. The research will address sites of protein folding and misfolding as it relates to prion disease, accumulation of misfolded protein in the host, routes of infection, and ante mortem diagnostics with an emphasis on controlled conditions and natural routes of infection. Techniques used will include spectroscopic monitoring of protein folding/misfolding, clinical exams, histopathology, immunohistochemistry, and biochemical analysis of proteins. The enhanced knowledge gained from this work will help understand the underlying mechanisms of prion disease and mitigate the potential for unrecognized epidemic expansions of these diseases in populations of animals that could either directly or indirectly affect food animals.

    3. Progress Report:

    All 8 project plan milestones for FY17 were fully met. Research efforts directed toward meeting objective 1 of our project plan center around the production of recombinant prion protein from either bacteria or mammalian tissue culture systems and collection of thermodynamic data on the folding of the recombinant prion protein produced. Both bacterial and mammalian expression systems have been established. Thermodynamic data addressing the denatured state of wild-type and a disease associated variant of bovine prion protein has been collected and a manuscript is in preparation. In research pertaining to objective 2, all studies have been initiated and animals are under observation for the development of clinical signs. The animal studies for this objective are long term and will continue until onset of clinical signs. In vitro studies planned in parallel to the animals studies have similarly been initiated and are ongoing. Objective 3 of the project plan focuses on the detection of disease associated prion protein in body fluids and feces collected from a time course study of chronic wasting disease inoculated animals. At this time samples are being collected as planned and methods for analysis are under development.

    4. Accomplishments

    1. Showed that swine are potential hosts for the scrapie agent. A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested. ARS researchers at Ames, Iowa conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Necropsies were done on a subset of animals at approximately 6 months post inoculation (PI): the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of transmissible spongiform encephalopathies (TSE) until study termination at 80 months PI or when removed due to intercurrent disease. Brain samples were examined by multiple diagnostic approaches, and for a subset of pigs in each inoculation group, bioassay in mice expressing porcine prion protein. At 6 months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.

    2. Determined that pigs naturally exposed to chronic wasting disease (CWD) may act as a reservoir of CWD infectivity. Chronic wasting disease is a naturally occurring, fatal, neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of CWD disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Pigs were assigned to 1 of 3 groups: intracranially inoculated; orally inoculated; or non-inoculated. At market weight age, half of the pigs in each group were tested ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by multiple diagnostic methods. Brain samples from selected pigs were bioassayed in mice expressing porcine prion protein. Some pigs from each inoculated group were positive by one or more tests. Bioassay was positive in 4 out of 5 pigs assayed. Although only small amounts of PrPSc were detected using sensitive methods, this study demonstrates that pigs can serve as hosts for CWD. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. The current feed ban in the U.S. is based exclusively on keeping tissues from TSE infected cattle from entering animal feeds. These results indicating the susceptibility of pigs to CWD, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.

    3. Developed a method for amplification and discrimination of the 3 forms of BSE in cattle. The prion protein (PrP) is a protein that is the causative agent of transmissible spongiform encephalopathies (TSEs). The disease process involves conversion of the normal cellular PrP to a pathogenic misfolded conformation. This conversion process can be recreated in the lab using a misfolding amplification process known as real-time quaking induced conversion (RT-QuIC). RT-QuIC allows the detection of minute amounts of the abnormal infectious form of the prion protein by inducing misfolding in a supplied substrate. Although RT-QuIC has been successfully used to detect pathogenic PrP with substrates from a variety of host species, prior to this work bovine prion protein had not been proven for its practical uses for RT-QuIC. We demonstrated that prions from transmissible mink encephalopathy (TME) and BSE-infected cattle can be detected with using bovine prion proteins with RT-QuIC, and developed an RT-QuIC based approach to discriminate different forms of BSE. This rapid and robust method, both to detect and discriminate BSE types, is of importance as the economic implications for different types of BSE vary greatly.

    Review Publications

    Hwang, S., Greenlee, J.J., Nicholson, E.M. 2017. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy. PLoS One. 12(2):e0172391.

    Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.

    Moore, S.J., West Greenlee, M.H., Smith, J.D., Vrentas, C.E., Nicholson, E.M., Greenlee, J.J. 2016. A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation. Frontiers in Veterinary Science. 3:78.

    Greenlee, J.J., Kunkle, R.A., Smith, J.D., West Greenlee, M.H. 2016. Scrapie in swine: a diagnostic challenge. Food Safety. 4(4):110-114. Kondru, N., Manne, S., Greenlee, J., West Greenlee, H., Anantharam, V., Halbur, P., Kanthasamy, A., Kanthasamy, A. 2017. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases. Scientific Reports. 7:43155. doi:10.1038/srep43155.

    Mammadova, N., Ghaisas, S., Zenitsky, G., Sakaguchi, D.S., Kanthasamy, A.G., Greenlee, J.J., West Greenlee, M.H. 2017. Lasting retinal injury in a mouse model of blast-induced trauma. American Journal of Pathology. 187(7):1459-1472. doi:10.1016/j.ajpath.2017.03.005. 


    FRIDAY, APRIL 20, 2018 

    *** Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban? 

    Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies



    why do we not want to do TSE transmission studies on chimpanzees $

    5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

    ***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

    ***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

    snip...


    TUESDAY, MAY 31, 2011 

    Chronic Wasting Disease DOI: 10.1007/128_2011_159 # Springer-Verlag Berlin Heidelberg 2011 


    Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) A TOTAL FAILURE $$$

    Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

    Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

    In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


    Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

    Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


    Friday, December 14, 2012

    DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

    snip.....

    In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

    Animals considered at high risk for CWD include:

    1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

    2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

    Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

    The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

    Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

    There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

    snip.....

    36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

    The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

    Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

    snip.....

    The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

    snip.....

    In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

    snip.....

    In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

    snip.....

    Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

    snip.....


    TUESDAY, APRIL 18, 2017 

    *** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***


    ***> Wednesday, January 23, 2019 

    ***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***


    SUNDAY, DECEMBER 02, 2018 

    CWD TSE PRION, REGULATORY LEGISLATION, PAY TO PLAY, and The SPREAD of Chronic Wasting Disease


    Prion Conference 2018

    O5 Prion Disease in Dromedary Camels 

    Babelhadj B (1), Di Bari MA (2), Pirisinu L (2), Chiappini B (2), Gaouar SB (3), Riccardi G (2), Marcon S (2), Agrimi U (2), Nonno R (2), Vaccari G (2) (1) École Normale Supérieure Ouargla. Laboratoire de protection des écosystèmes en zones arides et semi arides University Kasdi Merbah Ouargla, Ouargla, Algeria; (2) Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy (3) University Abou Bekr Bélkaid, Tlemcen, Algeria. 

    Prions are responsible for fatal and transmissible neurodegenerative diseases including CreutzfeldtJakob disease in humans, scrapie in small ruminants and bovine spongiform encephalopathy (BSE). Following the BSE epidemic and the demonstration of its zoonotic potential, general concerns have been raised on animal prions. 

    Here we report the identification of a prion disease in dromedary camels (Camelus dromedarius) in Algeria and designate it as Camel Prion Disease (CPD). In the last years, neurological symptoms have been observed in adult male and female dromedaries presented for slaughter at the Ouargla abattoir. The symptoms include weight loss, behavioral abnormalities and neurological symptoms such as tremors, aggressiveness, hyper-reactivity, typical down and upwards movements of the head, hesitant and uncertain gait, ataxia of the hind limbs, occasional falls and difficult getting up. During 2015 and 2016, symptoms suggestive of prion disease were observed in 3.1% of 2259 dromedaries presented at ante-mortem examination. Laboratory diagnosis was obtained in three symptomatic dromedaries, sampled in 2016 and 2017, by the detection of typical neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues. 

    Histopathological examination revealed spongiform change, gliosis and neuronal loss preferentially in grey matter of subcortical brain areas. Abundant PrPSc deposition was detected in the same brain areas by immunohistochemistry and PET-blot. Western blot analysis confirmed the presence of PK-resistant PrPSc, whose N-terminal cleaved PK-resistant core was characterized by a mono-glycosylated dominant form and by a distinctive N-terminal cleavage, different from that observed in BSE and scrapie. 

    PrPSc was also detected, by immunohistochemistry, in all sampled lymph nodes (cervical, prescapular and lumbar aortic) of the only animal from which they were collected. 

    The PRNP sequence of the two animals for which frozen material was available, showed 100% nucleotide identity with the PRNP sequence already reported for dromedary camel. 

    Overall, these data demonstrate the presence of a prion disease in dromedary camelswhose nature, origin and spread need further investigations. However, our preliminary observations on the rather high prevalence of symptomatic dromedaries and the involvement of lymphoid tissues, are consistent with CPD being an infectious disease. In conclusion, the emergence of a new prion disease in a livestock species of crucial importance for millions of people around the world, makes urgent to assess the risk for humans and to develop policies able to control the spread of the disease in animals and to minimize human exposure. 


    CDC

    New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES

    Mad Camel Disease

    Volume 24, Number 6—June 2018 Research 

    Prion Disease in Dromedary Camels, Algeria
    Abstract

    Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.

    SNIP...

    The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
    Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
    Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
    On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
    Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep.
    In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
    The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.

    ***> IMPORTS AND EXPORTS <***

    ***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***


    ZOONOSIS OF SCRAPIE TSE PRION

    O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

    Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

    Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

    Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

    *** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

    ***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

    ***is the third potentially zoonotic PD (with BSE and L-type BSE), 

    ***thus questioning the origin of human sporadic cases. 

    We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

    =============== 

    ***thus questioning the origin of human sporadic cases*** 

    =============== 

    ***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

    ============== 


    ***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

    ***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

    ***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

     
    PRION 2016 TOKYO

    Saturday, April 23, 2016

    SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

    Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

    Taylor & Francis

    Prion 2016 Animal Prion Disease Workshop Abstracts

    WS-01: Prion diseases in animals and zoonotic potential

    Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

    Natalia Fernandez-Borges a. and Alba Marin-Moreno a

    "Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

    Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

    To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

    These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

    Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

    Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

    These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

     
    ***> why do we not want to do TSE transmission studies on chimpanzees $

    5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

    ***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

    ***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

    snip...

    R. BRADLEY



    Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

    *** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

    *** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

    *** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


    ***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

    Transmission of scrapie prions to primate after an extended silent incubation period 

    Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

    Abstract 

    Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

    SNIP...

    Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

    The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

    We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

    Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

    The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

    Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

    Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

    Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

    Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

    In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


    ***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

    P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

    Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

    (1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

    Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

    Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

    Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 




    ***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years


    ***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 


    Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3

    Correspondence

    Gudmundur Georgsson ggeorgs@hi.is

    1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland

    2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland

    3 Bethesda, Maryland, USA

    Received 7 March 2006 Accepted 6 August 2006

    In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.

     
     
    TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 

     

     *** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 

     

    SEE;

    Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;

    Some unofficial information from a source on the inside looking out -

    Confidential!!!!

    As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

    ---end personal email---end...tss



    Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).



    Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document



    Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

    Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

    Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

    =========================

    ***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

    ========================

    Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 



    New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 



    Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 



    Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 



    A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 



    Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 



    PPo4-4: 

    Survival and Limited Spread of TSE Infectivity after Burial 




    Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

    Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

    Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

    Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

    Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

    Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

    The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

    When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

    This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

    Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

    It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

    Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

    Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

    Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

    PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

    In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

    In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

    As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

    False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

    This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

    This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

    In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

    Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

    The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

    In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

    A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

    This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

    Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

    In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

    These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

    Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 



    Wednesday, December 16, 2015 

    *** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission *** 



    ***> 2018 URGENT DATA <***


    ***2018***

    Cervid to human prion transmission 

    Kong, Qingzhong 

    Case Western Reserve University, Cleveland, OH, United States

    Abstract 

    Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. 

    We hypothesize that: 

    (1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

    (2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

    (3) Reliable essays can be established to detect CWD infection in humans; and 

    (4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 

    Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of humanized Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental human CWD samples will also be generated for Aim 3. 

    Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

    Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental human CWD samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

    Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.

    Public Health Relevance

    There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.

     Funding Agency

    Agency

    National Institute of Health (NIH)

    Institute

    National Institute of Neurological Disorders and Stroke (NINDS)

    Type

    Research Project (R01)

    Project #

    5R01NS088604-04

    Application #

    9517118

    Study Section

    Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)

    Program Officer Wong, May

    Project Start 2015-09-30 Project End 2019-07-31 Budget Start 2018-08-01 Budget End 2019-07-31 Support Year 4 Fiscal Year 2018 Total Cost Indirect Cost Institution Name Case Western Reserve University Department Pathology Type Schools of Medicine DUNS # 077758407 City Cleveland State OH Country United States Zip Code 44106

     Related projects

    NIH 2018 R01 NS Cervid to human prion transmission Kong, Qingzhong / Case Western Reserve University 

    NIH 2017 R01 NS Cervid to human prion transmission Kong, Qingzhong / Case Western Reserve University 

    NIH 2016 R01 NS Cervid to human prion transmission Kong, Qingzhong / Case Western Reserve University 

    NIH 2015 R01 NS Cervid to human prion transmission Kong, Qingzhong / Case Western Reserve University $337,507


    ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

    here is the latest;

    PRION 2018 CONFERENCE 

    Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 

    Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. 

    After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 

    Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. 

    The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. 

    Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. 

    The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.. 

    ***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <*** 


    READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ; 

    P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 

    Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.. 

    SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states. 

    AND ANOTHER STUDY; 

    P172 Peripheral Neuropathy in Patients with Prion Disease 

    Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.. 

    IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, 

    AND 

    included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), 

    AND 

    THAT The Majority of cases were male (60%), AND half of them had exposure to wild game. 

    snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry 



    just out CDC...see;

    Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions 

    Marcelo A. Barria

    Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell) M. A. Barria et al. 

    ABSTRACT 

    Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. 

    We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted. 


    Molecular Barriers to Zoonotic Transmission of Prions 

    Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author 

    snip... 

    The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine. 

    ***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 

    snip... 

    However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring. 

    ***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain. 


    Prion 2017 Conference Abstracts 

    CWD 2017 PRION CONFERENCE 

    First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress

    Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 

    This is a progress report of a project which started in 2009. 

    21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. 

    Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. 

    Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). 

    Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. 

    We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 

    Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. 

    Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. 

    All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. 

    Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 

    At present, a total of 10 animals are sacrificed and read-outs are ongoing. 

    Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. 

    Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 

    PRION 2017 

    DECIPHERING NEURODEGENERATIVE DISORDERS 

    Subject: PRION 2017 CONFERENCE 

    DECIPHERING NEURODEGENERATIVE DISORDERS 

    VIDEO PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 

    *** PRION 2017 CONFERENCE VIDEO 



    ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION 

    10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question... 

    ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)

    EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 

    First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ; 

    also, see; 

    8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 

    snip... 

    The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 


    zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm 

    ***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE..116*** 


     To date there is no direct evidence that CWD has been or can be transmitted from animals to humans. 

    However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure. 

    Both infected brain and muscle tissues were found to transmit disease. 

    Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods. 

    Summary and Recommendation: 

    snip...

    Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle. 

    These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle. 


    *** WDA 2016 NEW YORK *** 

    We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. 

    In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

    ***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

    Student Presentations Session 2 

    The species barriers and public health threat of CWD and BSE prions 

    Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 

    Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. 

    These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. 

    The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. 

    We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. 

    We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

    ***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders 



    TUESDAY, SEPTEMBER 12, 2017 

    CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 


    SATURDAY, JANUARY 27, 2018 

    CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018


    Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018

    CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE. 

    THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$

    BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.

    SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.

    SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.

    SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.

    ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.*** 


    CDC CWD TSE PRION UPDATE USA JANUARY 2018

    As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids... 

    Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018 

    snip.... 


    *** 2017-2018 CWD TSE Prion UPDATE


    *** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 


    you can see more evidence here ;


    Wednesday, May 24, 2017 

    PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1


    WEDNESDAY, SEPTEMBER 08, 2010

    CWD PRION CONGRESS SEPTEMBER 8-11 2010

    PRION 2010

    International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria


    Transmission Studies

    Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

    resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

    snip.... 


    Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

    Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

    In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


    Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

    Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


    *** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

    see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

    From: TSS (216-119-163-189.ipset45.wt.net)

    Subject: CWD aka MAD DEER/ELK TO HUMANS ???

    Date: September 30, 2002 at 7:06 am PST

    From: "Belay, Ermias"

    To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

    Sent: Monday, September 30, 2002 9:22 AM

    Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

    Dear Sir/Madam,

    In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

    Ermias Belay, M.D. Centers for Disease Control and Prevention

    -----Original Message-----

    From: Sent: Sunday, September 29, 2002 10:15 AM


    Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

    Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

    Thursday, April 03, 2008

    A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

    snip...

    *** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

    snip... full text ; 


    > However, to date, no CWD infections have been reported in people. 

    key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

    *** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

    *** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




    SEE; Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

    Monday, May 23, 2011

    CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning

    Public release date: 23-May-2011

    Contact: Francesca Costanzo adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences

    CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association

    Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.

    “While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”

    Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak.

    CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.

    Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.

    The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country.. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.

    The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.

    According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”

    ###

    The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.

    In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at http://adajournal.org/content/podcast. ;


    Thursday, May 26, 2011

    Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

    Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.

    Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

    Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD

    Accepted 15 November 2010. Abstract Full Text PDF References .

    Abstract

    The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission. 


     PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ; 

    Thursday, May 26, 2011

    Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

    Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011. 


    NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;

    Wednesday, March 18, 2009

    Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II 


    Transmissible Spongiform Encephalopathies

    Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY 


     BSE INQUIRY

    CJD9/10022

    October 1994

    Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

    BerksWell Coventry CV7 7BZ

    Dear Mr Elmhirst,

    CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

    Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

    The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

    The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

    The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

    I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


    *** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

    *** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

    *** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

    There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02)..

    The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

    snip...

    It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

    snip...

    In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

    snip...

    In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

    snip...see full report ; 



    Saturday, December 15, 2018 

    ***> ADRD Summit RFI Singeltary COMMENT SUBMISSION BSE, SCRAPIE, CWD, AND HUMAN TSE PRION DISEASE December 14, 2018


    MONDAY, JANUARY 21, 2019 

    Bovine Spongiform Encephalopathy BSE TSE Prion Surveillance FDA USDA APHIS FSIS UPDATE 2019


    Wednesday, January 23, 2019 

    CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019



    Terry S. Singeltary Sr.



    0 Comments:

    Post a Comment

    Subscribe to Post Comments [Atom]

    << Home