Montana First Moose Tests Positive for Chronic Wasting Disease Near Troy
he latest on CWD in Montana:
- Huntley deer tests positive for CWD; new management zone set (10/2/19)
- Additional White-tailed Deer Suspected Positive of CWD in Libby Area (10/1/19)
- Additional White-tailed Deer Suspected Positive for CWD in Libby Area (9/11/19)
- FWP to pay for CWD testing statewide (9/10/19)
- Seventh White-tailed Deer Suspected Positive for CWD in Libby Area (9/6/19)
- Special Regulations for Moffat Bridge Special CWD Hunt Area 1 MB
- 2018 CWD Surveillance Report 3 MB
- Montana's CWD Management Plan 2 MB
- 2017 CWD Surveillance and Special Hunt Report 1 MB
FRIDAY, NOVEMBER 08, 2019***> EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III8. Consumption of forage grown on contaminated soilI & II Prions can persist on the leaf apparatus directly soiled with contaminated materials; plants, grown on contaminated soils, can absorb the prions from topsoil and transfer them to the leaves. By PMCA prions have been shown to bind tightly to roots and leaves when exposed to either brain homogenate or excreta (Pritzkow et al., 2015)Pritzkow et al. (2015)other F N1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9% Walter et al. (2011) cross-s D NIn northern Europe, the collection and marketing of potentially contaminated lichens is also widespread for the feeding of farmed deer (VKM, 2017; VKM et al., 2018) VKM (VKM, 2017; VKM et al., 2018)review F YWEDNESDAY, OCTOBER 16, 2019***> Australia Assessment of bulk wheat from Canada Part B: Animal biosecurity risk advice, CWD TSE Prion concerns are mountingMONDAY, NOVEMBER 04, 2019Legislators legislating, or throwing away your money for battling cwd tse prion, State Rep. Steve Green, R-Fosston more money to deer farms for antibiotics?TUESDAY, NOVEMBER 12, 2019South Dakota Animal Industry Board AIB ANNUAL REPORT Fiscal Year 2019 Chronic Wasting Disease CWD TSE Prion UpdateTUESDAY, OCTOBER 29, 2019America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE PrionMONDAY, FEBRUARY 25, 2019***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019***> cattle, pigs, sheep, cwd, tse, prion, oh my!***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006).Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.cwd scrapie pigs oral routes***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <******> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 6>6>***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.Friday, December 14, 2012DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012snip.....In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include:1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES.It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.snip.....36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).snip.....In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.snip.....Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.snip.....***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are;BSE TESTING (failed terribly and proven to be a sham)BSE SURVEILLANCE (failed terribly and proven to be a sham)BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham)these are facts folks. trump et al just admitted it with the feed ban.see;FDA Reports on VFD ComplianceJohn MadayAugust 30, 2019 09:46 AM VFD-Form 007 (640x427)Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.SUNDAY, SEPTEMBER 1, 2019***> FDA Reports on VFD ComplianceTUESDAY, APRIL 18, 2017*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***FRIDAY, OCTOBER 25, 2019Experts testify United States is underprepared for bioterrorism threats Transmissible Spongiform Encephalopathy TSE Prion diseaseFRIDAY, OCTOBER 25, 2019Presidential Executive Order 13895 of October 22, 2019 President's Council of Advisors on Science and Technology Dumbing Down Sound Science BSE TSE Prion Stacking the deck$$$THURSDAY, SEPTEMBER 26, 2019USDA Scientific Integrity Policy Departmental Regulation 1074-001 BreachedMONDAY, OCTOBER 21, 2019Departmental Freedom of Information Act Regulations FOIA Dumbing Down of America Under the Trump RegimeMONDAY, MAY 20, 2019Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeysSUNDAY, APRIL 14, 2019Estimation of prion infectivity in tissues of cattle infected with atypical BSE by real time-quaking induced conversion assayWEDNESDAY, APRIL 24, 2019USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019WEDNESDAY, JULY 31, 2019The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-LTUESDAY, MARCH 26, 2019Joint Statement from President Donald J. Trump USA and President Jair Bolsonaro Brazil FOREIGN POLICY BSE TSE Prion aka mad cow diseaseSATURDAY, JUNE 01, 2019Brazil reports another cases of mad cow disease atypical BSE TSE PrionPLEASE BE ADVISED THERE IS NO SCIENTIFIC PROOF THAT ANY ATYPICAL BSE TSE PRION IS OF A SPONTANEOUS OLD AGE DISEASE, NOT CAUSED BY FEED, THIS IS FALSE AND UNPROVEN, IN FACT, ATYPICAL BSE OF THE L AND H TYPE ARE TRANSMISSIBLE BY ORAL ROUTE. THIS STATEMENT THAT ATYPICAL BSE IS A SPONTANEOUS EVENT CAUSED BY OLD AGE, CAUSED BY NOTHING, IS ABSOLUTELY A LIE, AND THE GOVERNMENT OF BRAZIL, AND OTHER GOVERNMENTS THAT PRODUCE SUCH STATEMENTS, KNOWS THIS IS AN UNPROVEN STATEMENT...TERRY SINGELTARY SR.TUESDAY, OCTOBER 29, 2019USDA Abruptly Halts Animal ID Plan As Experts Testify USA Underprepared For Bioterrorism Threats Such As BSE TSE Prion aka Mad Cow DiseaseFRIDAY, OCTOBER 11, 2019CattleTrace to Host First-Ever Industry SymposiumTUESDAY, MARCH 26, 2019USDA ARS 2018 USAHA RESOLUTIONS TWO PRONGED APPROACH NEEDED FOR ADVANCING CATTLE TRACEABILITYRESOLUTION NUMBER: 34 APPROVEDSOURCE: COMMITTEE ON CATTLE AND BISONTHURSDAY, AUGUST 08, 2019Raccoons accumulate PrPSc after intracranial inoculation with the agents of chronic wasting disease (CWD) or transmissible mink encephalopathy (TME) but not atypical scrapie*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***FRIDAY, JULY 26, 2019Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Speciesatypical and typical BSE and Scrapie ZoonosisO.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populationsEmmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, FrancePrion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),***is the third potentially zoonotic PD (with BSE and L-type BSE),***thus questioning the origin of human sporadic cases.We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.===============***thus questioning the origin of human sporadic cases***===============***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.==============***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.PRION 2016 TOKYOSaturday, April 23, 2016SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X onlineTaylor & FrancisPrion 2016 Animal Prion Disease Workshop AbstractsWS-01: Prion diseases in animals and zoonotic potentialJuan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,Natalia Fernandez-Borges a. and Alba Marin-Moreno a"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. FranceDietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.***> why do we not want to do TSE transmission studies on chimpanzees $5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man.***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough.***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.snip...R. BRADLEYTitle: Transmission of scrapie prions to primate after an extended silent incubation period)*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***Transmission of scrapie prions to primate after an extended silent incubation periodEmmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download CitationAbstractClassical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.SNIP...Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.ZOONOSIS OF CWD, BSE, SCRAPIE, TSE PRIONCWD TSE Prion Zoonosisi was very surprised that no mention of the study out of Canada with oral transmission of CWD to Macaque.i have spoken with Stefanie Czub and Professor Aguzzi, whom toured her lab afterwards, about these studies. the transmission studies were valid. plus, we know that cwd zoonosis would NOT look like nvCJD, but would look like sporadic CJD of some type. see;> However, to date, no CWD infections have been reported in people.key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ****** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosisWe hypothesize that:(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;(3) Reliable essays can be established to detect CWD infection in humans; and(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATEPrion 2017 ConferenceFirst evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/GoettingenThis is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERSPRION 2018 CONFERENCEOral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic miceHermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United StatesAbrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.AND ANOTHER STUDY;P172 Peripheral Neuropathy in Patients with Prion DiseaseWang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,ANDincluded 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),ANDTHAT The Majority of cases were male (60%), AND half of them had exposure to wild game.snip…see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terryPRION 2019 ABSTRACTS1. Interspecies transmission of the chronic wasting disease agentJustin GreenleeVirus and Prion Research Unit, National Animal Disease Center, USDA Agriculture Research ServiceABSTRACTThe presentation will summarize the results of various studies conducted at our research center that assess the transmissibility of the chronic wasting disease (CWD) agent to cattle, pigs, raccoons, goats, and sheep. This will include specifics of the relative attack rates, clinical signs, and microscopic lesions with emphasis on how to differentiate cross-species transmission of the CWD agent from the prion diseases that naturally occur in hosts such as cattle or sheep. Briefly, the relative difficulty of transmitting the CWD agent to sheep and goats will be contrasted with the relative ease of transmitting the scrapie agent to white-tailed deer.53. Evaluation of the inter-species transmission potential of different CWD isolatesRodrigo Moralesa, Carlos Kramma,b, Paulina Sotoa, Adam Lyona, Sandra Pritzkowa, Claudio SotoaaMitchell Center for Alzheimer’s disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, TX, USA; bFacultad de Medicina, Universidad de los Andes, Santiago, ChileABSTRACTChronic Wasting Disease (CWD) has reached epidemic proportions in North America and has been identified in South Korea and Northern Europe. CWD-susceptible cervid species are known to share habitats with humans and other animals entering the human food chain. At present, the potential of CWD to infect humans and other animal species is not completely clear. The exploration of this issue acquires further complexity considering the differences in the prion protein sequence due to species-specific variations and polymorphic changes within species. While several species of cervids are naturally affected by CWD, white-tailed deer (WTD) is perhaps the most relevant due to its extensive use in hunting and as a source of food. Evaluation of inter-species prion infections using animals or mouse models is costly and time consuming. We and others have shown that the Protein Misfolding Cyclic Amplification (PMCA) technology reproduces, in an accelerated and inexpensive manner, the inter-species transmission of prions while preserving the strain features of the input PrPSc. In this work, we tested the potential of different WTD-derived CWD isolates to transmit to humans and other animal species relevant for human consumption using PMCA. For these experiments, CWD isolates homozygous for the most common WTD-PrP polymorphic changes (G96S) were used (96SS variant obtained from a pre-symptomatic prion infected WTD). Briefly, 96GG and 96SS CWD prions were adapted in homologous or heterologous substrate by PMCA through several (15) rounds. End products, as well as intermediates across the process, were tested for their inter-species transmission potentials. A similar process was followed to assess seed-templated misfolding of ovine, porcine, and bovine PrPC. Our results show differences on the inter-species transmission potentials of the four adapted materials generated (PrPC/PrPSc polymorphic combinations), being the homologous combinations of seed/substrate the ones with the greater apparent zoonotic potential. Surprisingly, 96SS prions adapted in homologous substrate were the ones showing the easiest potential to template PrPC misfolding from other animal species. In summary, our results show that a plethora of different CWD isolates, each comprising different potentials for inter-species transmission, may exist in the environment. These experiments may help to clarify an uncertain and potentially worrisome public health issue. Additional research in this area may be useful to advise on the design of regulations intended to stop the spread of CWD and predict unwanted zoonotic events.56. Understanding chronic wasting disease spread potential for at-risk speciesCatherine I. Cullingham, Anh Dao, Debbie McKenzie and David W. ColtmanDepartment of Biological Sciences, University of Alberta, Edmonton AB, CanadaCONTACT Catherine I. Cullingham cathy.cullingham@ualberta.caABSTRACTGenetic variation can be linked to susceptibility or resistance to a disease, and this information can help to better understand spread-risk in a population. Wildlife disease incidence is increasing, and this is resulting in negative impacts on the economy, biodiversity, and in some instances, human health. If we can find genetic variation that helps to inform which individuals are susceptible, then we can use this information on at-risk populations to better manage negative consequences. Chronic wasting disease, a fatal, transmissible spongiform encephalopathy of cervids (both wild and captive), continues to spread geographically, which has resulted in an increasing host-range. The disease agent (PrPCWD) is a misfolded conformer of native cellular protein (PrPC). In Canada, the disease is endemic in Alberta and Saskatchewan, infecting primarily mule deer and white-tail deer, with a smaller impact on elk and moose populations. As the extent of the endemic area continues to expand, additional species will be exposed to this disease, including bison, bighorn sheep, mountain goat, and pronghorn antelope. To better understand the potential spread-risk among these species, we reviewed the current literature on species that have been orally exposed to CWD to identify susceptible and resistant species. We then compared the amino acid polymorphisms of PrPC among these species to determine whether any sites were linked to susceptibility or resistance to CWD infection. We sequenced the entire PrP coding region in 578 individuals across at-risk populations to evaluate their potential susceptibility. Three amino acid sites (97, 170, and 174; human numbering) were significantly associated with susceptibility, but these were not fully discriminating. All but one species among the resistant group shared the same haplotype, and the same for the susceptible species. For the at-risk species, bison had the resistant haplotype, while bighorn sheep and mountain goats were closely associated with the resistant type. Pronghorn antelope and a newly identified haplotype in moose differed from the susceptible haplotype, but were still closely associated with it. These data suggest pronghorn antelope will be susceptible to CWD while bison are likely to be resistant. Based on this data, recommendations can be made regarding species to be monitored for possible CWD infection.KEYWORDS: Chronic wasting disease; Prnp; wildlife disease; population genetics; ungulatesThursday, May 23, 2019Prion 2019 Emerging Concepts CWD, BSE, SCRAPIE, CJD, SCIENTIFIC PROGRAM Schedule and Abstractssee full Prion 2019 Conference AbstractsTHURSDAY, OCTOBER 04, 2018Cervid to human prion transmission 5R01NS088604-04 Updatesnip…full text;SATURDAY, FEBRUARY 09, 2019Experts: Yes, chronic wasting disease in deer is a public health issue — for peopleFRIDAY, JULY 26, 2019Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal SpeciesSubject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDYDate: Fri, 18 Oct 2002 23:12:22 +0100From: Steve DeallerReply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online memberTo: BSE-L@ References: <3daf5023 .4080804="" a="" class="yiv6418009426linkified" fg_scanned="1" href="http://wt.net/" rel="noopener noreferrer" shape="rect" style="color: blue; cursor: pointer;" target="_blank">WT.NET3daf5023>
FRIDAY, NOVEMBER 08, 2019Wyoming CWD found in a new deer hunt area 105 and Collaborative Process Interim Report OCTOBER 2019Chronic wasting disease (CWD) is a classic “wicked” situation: extremely contentious and extremely complex.WEDNESDAY, NOVEMBER 06, 2019Michigan Total CWD TSE Prion Positive, Suspect Positive, Deer 136 To DateTHURSDAY, OCTOBER 24, 2019Pennsylvania NEWLY DETECTED CWD-POSITIVE DEER CAPTIVE-RAISED WILL EXPAND DMA 4 IN 2020FRIDAY, NOVEMBER 01, 2019South Dakota Chronic Wasting Disease CWD TSE Prion confirmed in Bennett CountyMONDAY, OCTOBER 21, 2019North Dakota Two mule deer taken in September have tested positive for Chronic Wasting Disease CWD TSE Prion Detected in McKenzie CountyWEDNESDAY, OCTOBER 16, 2019Arkansas Chronic Wasting Disease CWD TSE Prion 619 Positive Cases As Of September 15, 2019FRIDAY, OCTOBER 11, 2019Minnesota Officials Burn, Bury, Worry As Chronic Wasting SpreadsMONDAY, NOVEMBER 04, 2019Minnesota Legislators legislating, or throwing away your money for battling cwd tse prion, State Rep. Steve Green, R-Fosston more money to deer farms for antibiotics?WEDNESDAY, OCTOBER 16, 2019Kansas Chronic Wasting Disease CWD TSE Prion Update With 216 cervids Positive To DateFRIDAY, OCTOBER 25, 2019Wyoming CWD TSE Prion found in a new deer hunt area in Bighorn MountainsTHURSDAY, OCTOBER 03, 2019Wyoming CWD TSE Prion found in deer west of Continental DivideTHURSDAY, OCTOBER 03, 2019Montana Huntley deer tests positive for CWD; new management zone setTHURSDAY, OCTOBER 03, 2019Tennessee Madison County deer sampled within 10 miles of Crockett and Gibson counties has tested positive for CWD, Declared High RiskTHURSDAY, SEPTEMBER 26, 2019Sweden The third case of CWD in moose in Arjeplog is now establishedFRIDAY, OCTOBER 04, 2019Indiana CWD TSE Prion Surveillance 2019 and before?THURSDAY, OCTOBER 03, 2019ALABAMA PREPARES FOR THE STORM Fall 2019 CWD TSE PRION Public Information Meeting ScheduleTHURSDAY, OCTOBER 17, 2019Europe's uneven laws threaten scavengers and Spread Transmissible Spongiform Encephalopathy TSE PrionMONDAY, OCTOBER 07, 2019Chronic Wasting Disease (CWD) and Government Response Congressional Research Service May 17, 2019WEDNESDAY, OCTOBER 02, 2019Chronic Wasting Disease In Cervids: Prevalence, Impact And Management StrategiesWEDNESDAY, JUNE 26, 2019Subcommittee Hearing: Chronic Wasting Disease: The Threats to Wildlife, Public Lands, Hunting, and HealthvideoCHRONIC WASTING DISEASE CONGRESS Serial No. 107-117 May 16, 2002CHRONIC WASTING DISEASEJOINT OVERSIGHT HEARING BEFORE THE SUBCOMMITTEE ON FORESTS AND FOREST HEALTH JOINT WITH THE SUBCOMMITTEE ON FISHERIES CONSERVATION, WILDLIFE AND OCEANS OF THE COMMITTEE ON RESOURCES U.S. HOUSE OF REPRESENTATIVES ONE HUNDRED SEVENTH CONGRESS SECOND SESSIONMay 16, 2002Serial No. 107-117snip...Mr. MCINNIS. Today, this joint Subcommittee hearing will explore an issue of immeasurable importance to the growing number of communities in wide-ranging parts of this country, the growing incidence of Chronic Wasting Disease in North America’s wild and captive deer and elk populations. In a matter of just a few months, this once parochial concern has grown into something much larger and much more insidious than anyone could have imagined or predicted.As each day passes, this problem grows in its size, scope, and consequence. One thing becomes clear. Chronic Wasting Disease is not a Colorado problem. It is a Wisconsin problem or a Nebraska or Wyoming problem. It is a national problem and anything short of a fully integrated, systematic national assault on this simply will not do, which is precisely why we brought our group together here today.snip...So this is a disease that is spreading throughout the continent and it is going to require a national response as well as the efforts that are currently taking place in States like Wisconsin, Colorado, Nebraska, Wyoming, the interest they now have down in Texas and some of the neighboring States that have large white-tailed deer population and also elk.This is a huge issue for us, Mr. Chairman, in the State of Wisconsin. I want to commend Governor McCallum and your staff and the various agencies for the rapid response that you have shown, given the early detection of CWD after the last deer hunting season. The problem that we have, though, is just a lack of information, good science in regards to what is the best response, how dangerous is this disease. We cannot close the door, quite frankly, with the paucity of scientific research that is out there right now in regards to how the disease spreads, the exposure of other livestock herds—given the importance of our dairy industry in the State, that is a big issue—and also the human health effects.FRIDAY, OCTOBER 04, 2019Inactivation of chronic wasting disease prions using sodium hypochlorite
i think some hunters that don't read this carefully are going to think this is a cure all for cwd tse contamination. IT'S NOT!
first off, it would take a strong bleach type sodium hypochlorite, that is NOT your moms bleach she uses in her clothes, and store bought stuff.
Concentrated bleach is an 8.25 percent solution of sodium hypochlorite, up from the “regular bleach” concentration of 5.25 percent.Nov 1, 2013 https://waterandhealth.org/disinfect/high-strength-bleach-2/
second off, the study states plainly;
''We found that a five-minute treatment with a 40% dilution of household bleach was effective at inactivating CWD seeding activity from stainless-steel wires and CWD-infected brain homogenates. However, bleach was not able to inactivate CWD seeding activity from solid tissues in our studies.''
''We initially tested brains from two CWD-infected mice and one uninfected mouse using 40% bleach for 5 minutes. The results from these experiments showed almost no elimination of prion seeding activity (Table 4). We then increased the treatment time to 30 minutes and tested 40% and 100% bleach treatments. Again, the results were disappointing and showed less than a 10-fold decrease in CWD-seeding activity (Table 4). Clearly, bleach is not able to inactivate prions effectively from small brain pieces under the conditions tested here.''
''We found that both the concentration of bleach and the time of treatment are critical for inactivation of CWD prions. A 40% bleach treatment for 5 minutes successfully eliminated detectable prion seeding activity from both CWD-positive brain homogenate and stainless-steel wires bound with CWD. However, even small solid pieces of CWD-infected brain were not successfully decontaminated with the use of bleach.''
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223659
https://chronic-wasting-disease.blogspot.com/2019/10/inactivation-of-chronic-wasting-disease.html
i think with all the fear from recent studies, and there are many, of potential, or likelihood of zoonosis, if it has not already happened as scjd, i think this study came out to help out on some of that fear, that maybe something will help, but the study plainly states it's for sure not a cure all for exposure and contamination of the cwd tse prion on surface materials. imo...terryHUNTERS, CWD TSE PRION, THIS SHOULD A WAKE UP CALL TO ALL OF YOU GUTTING AND BONING OUT YOUR KILL IN THE FIELD, AND YOUR TOOLS YOU USE...* 1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.Laboratory of Central Nervous System Studies, National Institute ofNeurological Disorders and Stroke, National Institutes of Health,Bethesda, MD 20892.Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.PMID: 8006664 [PubMed - indexed for MEDLINE]Wednesday, September 11, 2019Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion172. Establishment of PrPCWD extraction and detection methods in the farm soil
Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo SohnForeign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, KoreaABSTRACTIntroduction: Transmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Chronic wasting disease (CWD) is the prion disease that is known spread horizontally. CWD has confirmed last in Republic of Korea in 2016 since first outbreak of CWD in 2001. The environmental reservoirs mediate the transmission of this disease. The significant levels of infectivity have been detected in the saliva, urine, and faeces of TSE-infected animals. Soil can serve as a stable reservoir for infectious prion proteins. We found that PrPCWD can be extracted and detected in CWD contaminated soil which has kept at room temperature until 4 years after 0.001 ~ 1% CWD exposure and natural CWD-affected farm soil through PBS washing and sPMCAb.Materials and Methods: Procedure of serial PMCAb. CWD contaminated soil which has kept at room temperature (RT) for 1 ~ 4 year after 0.001%~1% CWD brain homogenates exposure for 4 months collected 0.14 g. The soil was collected by the same method once of year until 4 year after stop CWD exposure. We had conducted the two steps. There are two kinds of 10 times washing step and one amplification step. The washing step was detached PrPSc from contaminated soil by strong vortex with maximum rpm. We harvest supernatant every time by 10 times. As the other washing step, the Washed soil was made by washing 10 times soil using slow rotator and then harvest resuspended PBS for removing large impurity material. Last step was prion amplification step for detection of PrPCWD in soil supernatant and the washed soil by sPMCAb. Normal brain homogenate (NBH) was prepared by homogenization of brains with glass dounce in 9 volumes of cold PBS with TritonX-100, 5 mM EDTA, 150 mM NaCl and 0.05% Digitonin (sigma) plus Complete mini protease inhibitors (Roche) to a final concentration of 5%(w/v) NBHs were centrifuged at 2000 g for 1 min, and supernatant removed and frozen at −70 C for use. CWD consisted of brain from natural case in Korea and was prepared as 10%(w/v) homogenate. Positive sample was diluted to a final dilution 1:1000 in NBH, with serial 3:7 dilutions in NBH. Sonication was performed with a Misonix 4000 sonicator with amplitude set to level 70, generating an average output of 160W with two teflon beads during each cycle. One round consisted of 56 cycles of 30 s of sonication followed 9 min 30 s of 37°C incubation. Western Blotting (WB) for PrPSc detection. The samples (20 µL) after each round of amplification were mixed with proteinase K (2 mg/ml) and incubated 37°C for 1 h. Samples were separated by SDS-PAGE and transferred onto PVDF membrane. After blocking, the membrane was incubated for 1 h with 1st antibody S1 anti rabbit serum (APQA, 1:3000) and developed with enhanced chemiluminescence detection system.Results: We excluded from first to third supernatant in view of sample contamination. It was confirmed abnormal PrP amplification in all soil supernatants from fourth to tenth. From 0.01% to 1% contaminated washed soils were identified as abnormal prions. 0.001% contaminated washed soil did not show PrP specific band (Fig 1). The soil was collected by the same method once of year until 4 year after stop CWD exposure. After sPMCAb, there were no PrPCWD band in from second to fourth year 0.001% washed soil. but It was confirmed that the abnormal prion was amplified in the washing supernatant which was not amplified in the washed soil. we have decided to use soil supernatant for soil testing (Fig. 2). After third rounds of amplification, PrPSc signals observed in three out of four sites from CWD positive farm playground. No signals were observed in all soil samples from four CWD negative farm (Fig. 3).Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.===186. Serial detection of hematogenous prions in CWD-infected deer
Amy V. Nalls, Erin E. McNulty, Nathaniel D. Denkers, Edward A. Hoover and Candace K. MathiasonDepartment of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USACONTACT Amy V. Nalls amy.nalls@colostate.eduABSTRACTBlood contains the infectious agent associated with prion disease affecting several mammalian species, including humans, cervids, sheep, and cattle. It has been confirmed that sufficient prion agent is present in the blood of both symptomatic and asymptomatic carriers to initiate the amyloid templating and accumulation process that results in this fatal neurodegenerative disease. Yet, to date, the ability to detect blood-borne prions by in vitro methods remains difficult.We have capitalized on blood samples collected from longitudinal chronic wasting disease (CWD) studies in the native white-tailed deer host to examine hematogenous prion load in blood collected minutes, days, weeks and months post exposure. Our work has focused on refinement of the amplification methods RT-QuIC and PMCA. We demonstrate enhanced in vitro detection of amyloid seeding activity (prions) in blood cell fractions harvested from deer orally-exposed to 300 ng CWD positive brain or saliva.These findings permit assessment of the role hematogenous prions play in the pathogenesis of CWD and provide tools to assess the same for prion diseases of other mammalian species.Considering the oral secretion of prions, saliva from CWD-infected deer was shown to transmit disease to other susceptible naïve deer when harvested from the animals in both theand preclinical stages69of infection, albeit within relatively large volumes of saliva (50 ml). In sheep with preclinical, natural scrapie infections, sPMCA facilitated the detection of PrPSc within buccal swabs throughout most of the incubation period of the disease with an apparent peak in prion secretion around the mid-term of disease progression.70The amounts of prion present in saliva are likely to be low as indicated by CWD-infected saliva producing prolonged incubation periods and incomplete attack rates within the transgenic mouse bioassay.41snip...Indeed, it has also been shown that the scrapie and CWD prions are excreted in urine, feces and saliva and are likely to be excreted from skin. While levels of prion within these excreta/secreta are very low, they are produced throughout long periods of preclinical disease as well as clinical disease. Furthermore, the levels of prion in such materials are likely to be increased by concurrent inflammatory conditions affecting the relevant secretory organ or site. Such dissemination of prion into the environment is very likely to facilitate the repeat exposure of flockmates to low levels of the disease agent, possibly over years.snip...Given the results with scrapie-contaminated milk and CWD-contaminated saliva, it seems very likely that these low levels of prion in different secreta/excreta are capable of transmitting disease upon prolonged exposure, either through direct animal-to-animal contact or through environmental reservoirs of infectivity.the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.========================Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.HUNTERS, CWD TSE PRION, THIS SHOULD A WAKE UP CALL TO ALL OF YOU GUTTING AND BONING OUT YOUR KILL IN THE FIELD, AND YOUR TOOLS YOU USE...* 1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.Laboratory of Central Nervous System Studies, National Institute ofNeurological Disorders and Stroke, National Institutes of Health,Bethesda, MD 20892.Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.PMID: 8006664 [PubMed - indexed for MEDLINE]Wednesday, September 11, 2019Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE PrionSATURDAY, MARCH 16, 2019Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019 Singeltary SubmissionTHURSDAY, SEPTEMBER 27, 2018***> Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control modelTHE tse prion aka mad cow type disease is not your normal pathogen.The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.you cannot cook the TSE prion disease out of meat.you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.the TSE prion agent also survives Simulated Wastewater Treatment Processes.IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.you can bury it and it will not go away.The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.it’s not your ordinary pathogen you can just cook it out and be done with.***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.Laboratory of Central Nervous System Studies, National Institute ofNeurological Disorders and Stroke, National Institutes of Health,Bethesda, MD 20892.Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.PMID: 8006664 [PubMed - indexed for MEDLINE]2018 - 2019***> This is very likely to have parallels with control efforts for CWD in cervids.Rapid recontamination of a farm building occurs after attempted prion removalKevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2AbstractThe transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity.Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids.Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent.Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA).A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay.Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3.The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.snip...As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.Funding This study was funded by DEFRA within project SE1865.Competing interests None declared.Saturday, January 5, 2019Rapid recontamination of a farm building occurs after attempted prion removalTHURSDAY, FEBRUARY 28, 2019BSE infectivity survives burial for five years with only limited spread***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeerMitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1)(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada.Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer.Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection.Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD.***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3CorrespondenceGudmundur Georgsson ggeorgs@hi.is1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland3 Bethesda, Maryland, USAReceived 7 March 2006 Accepted 6 August 2006In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSIONSEE;Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;Some unofficial information from a source on the inside looking out -Confidential!!!!As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!---end personal email---end...tssInfectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).Dr. Paul Brown Scrapie Soil Test BSE Inquiry DocumentTHURSDAY, FEBRUARY 28, 2019BSE infectivity survives burial for five years with only limited spreadUsing in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.=========================***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.========================Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replicationPrion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel ProductionDetection of protease-resistant cervid prion protein in water from a CWD-endemic areaA Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During ProcessingRapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone mealsPPo4-4:Survival and Limited Spread of TSE Infectivity after BurialDiscussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplificationWednesday, December 16, 2015*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***WEDNESDAY, MARCH 13, 2019CWD, TSE, PRION, MATERNAL mother to offspring, testes, epididymis, seminal fluid, and bloodSubject: Prion 2019 ConferenceSee full Prion 2019 Conference Abstractssee scientific program and follow the cwd studies here;Thursday, May 23, 2019Prion 2019 Emerging Concepts CWD, BSE, SCRAPIE, CJD, SCIENTIFIC PROGRAM Schedule and AbstractsFRIDAY, MAY 24, 2019Assessing chronic wasting disease strain differences in free-ranging cervids across the United StatesMONDAY, MAY 20, 2019APHIS, USDA, Announces the Finalized Chronic Wasting Disease Herd Certification Program Standards Singeltary SubmissionsSUNDAY, JULY 14, 2019Korea Chronic Wasting Disease CWD TSE Prion additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016, beyond that, anyone's guessKorea Chronic Wasting Disease CWD TSE Prion additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016In Korea, CWD was only confirmed in elk in 2001, 2004, and 2005 [13]; however, additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016 [14]. Therefore, it is important to prevent CWD recurrence in the Republic of Korea, and farmers that have experienced a CWD outbreak are required to disinfect the farm before reintroducing the cervids. Thus, farmers require a disinfectant solution that is marketed and readily available to effectively inactivate prions.[14] Sohn HJ, Roh IS, Kim HJ, et al. Epidemiology of chronic wasting disease in Korea. Prion. 2106;10 (supp1):S16–S17WS-03: Epidemiology of chronic wasting disease in KoreaHyun Joo SohnIn Soon RohHyo Jin KimTae Young SuhKyung Je ParkHoo Chang ParkByounghan KimForeign Animal Disease Division (FADD), Animal and Plant Quarantine Agency (QIA), Gimcheon, KoreaTransmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Based on export information of Chronic wasting disease (CWD) suspected elk from Canada to Korea, CWD surveilance program was initiated by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) in 2001. CWD control measures included stamping out of all animals in the affected farm, and through cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervid and improved measures to ensure reporting of CWD suspect cases were implemented. Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002. Additional CWD cases– 12 elks and 2 elks – were diagnosed in 2004 and 2005. On 2010, 6 elks, 7 sika deer, one red deer and 5 cross-breeds were confirmed as positive. Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences. CWD is the prion disease that is known spread horizontally. The experimental studies have shown that PrPCWD is capable of transmitting CWD through saliva and blood. We conducted sPMCA and animal biosassy using contaminated soils in the playground of farm 2 which considered horizontal transmission between cervid and have been confirmed infectious PrPCWD. This result suggests PrPCWD shedding in the CWD contaminated soil is progressive through the disease course.Keywords: CWD, soil, sPMCAAdditional Cases of Chronic Wasting Disease in Imported Deer in KoreaTae-Yung KIM1,3), Hyun-Joo SHON2), Yi-Seok JOO2), Un-Kyong MUN2), Kyung-Sun KANG3) and Yong-Soon LEE3)* 1)Animal Health Division, Ministry of Agriculture & Forestry, Kwacheon 427–760, 2)National Veterinary Research & Quarantine Service, Anyang 430–016 and 3)Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul 151– 742, Korea (Received 21 January 2005/Accepted 27 May 2005)ABSTRACT.Chronic Wasting Disease (CWD), which had previously occurred only in the U.S.A. and Canada, broke out in a farm at Chungbuk, Korea from imported Canadian deer (Aug. 8, 2001). CWD distribution, through surveillance and epidemiologic investigations, was reported for 93 deer (43 from the CWD originating farm and 50 imported with the CWD originating farm’s deer) out of 144 deer (72 from the CWD originating farm and 72 imported with the CWD originating farm’s deer) that were breeding at 30 different farms. On Oct. 4 and Oct. 8, 2001, additional cases of CWD were investigated. As a result of slaughtering cohabitating deer, it was verified that other imported deer from Canada were also infected with CWD. Since it was thought that this might cause horizontal transmission, 93 deer imported from Canada in 1997 and 130 cohabitating Korean deer were slaughtered and examined. There were no infected Korean deer, but CWD re-occurred on Nov. 20, 2004 and is still under investigation. KEY WORDS: Chronic Wasting Disease (CWD), horizontal transmission. J. Vet. Med. Sci. 67(8): 753–759, 2005Strain Characterization of the Korean CWD Cases in 2001 and 2004Yoon-Hee LEE1), Hyun-Joo SOHN1)*, Min-Jeong KIM1), Hyo-Jin KIM1), Won-Yong LEE1), Eun-Im YUN1), Dong-Seob TARK1), In-Soo CHO1) and Aru BALACHANDRAN2) 1)Animal, Plant and Fisheries Quarantine and Inspection Agency, Ministry for Food, Agriculture, Forestry and Fisheries, Anyang 430–757, Republic of Korea 2)National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, Canadian Food Inspection Agency, Ottawa, Ontario K2H 8P9, Canada (Received 22 February 2012/Accepted 14 August 2012/Published online in J-STAGE 28 August 2012)ABSTRACT.Chronic wasting disease (CWD) has been recognized as a naturally occurring prion disease in North American deer (Odocoileus species), Rocky Mountain elk (Cervus elaphus nelsoni) and moose (Alces alces). The disease was confirmed only in elk in the Republic of Korea in 2001, 2004 and 2005. Epidemiological investigations showed that CWD was introduced via importation of infected elk from Canada between 1994 and 1997. In spite of the increasing geographic distribution and host range of CWD, little is known about the prion strain (s) responsible for distinct outbreaks of the disease. We carried out strain characterization, using transgenic mice overexpressing elk prion protein, including clinical assessment, pathological examination and biochemical analyses, in brain tissues derived following primary through tertiary transmissions. The final incubation period was shortened to approximately 130 dpi due to adaptation. Biochemical profiles remained identical between passages. Lesion profiling in recipient mice brains showed similar patterns of vacuolation scores and intensity. It is clear that there were no biochemical or histopathological differences in Korean CWD cases in 2001 and 2004, suggesting a single strain was responsible for the outbreaks.KEY WORDS: CWD, Republic of Korea, strain characterization. doi: 10.1292/jvms.12-0077; J. Vet. Med. Sci. 75(1): 95–98, 2013A Case of Chronic Wasting Disease in an Elk Imported to Korea from CanadaHyun-Joo SOHN1), Jae-Hoon KIM1)*, Kang-Seuk CHOI1), Jin-Ju NAH1), Yi-Seok JOO1), Young-Hwa JEAN1), Soo-Whan AHN1), Ok-Kyung KIM1), Dae-Yong KIM2) and Aru BALACHANDRAN3) 1)National Veterinary Research and Quarantine Service, Anyang 430–824, 2)Department of Pathology, College of Veterinary Medicine, Seoul National University, Suwon 441–744, Korea and 3)Animal Disease Research Institute, Canadian Food Inspection Agency, Nepean, Ontario, Canada (Received 13 March 2002/Accepted 8 May 2002)ABSTRACT.A seven-year-old male elk (Cervus elaphus nelsoni) was euthanized and necropsied after having a 3-week history of body weight loss, emaciation, excessive salivation, teeth grinding, fever, anorexia, and respiratory distress. The elk was imported into Korea from Canada on March 9, 1997. Gross pathologic findings were restricted to a diffuse fibrinous pneumonia. Microscopic lesions included mild neuronal vacuolation and spongiform change in the neuropil of selected brain stem nuclei and generalized astrocytosis. Immunohistochemistry for protease-resistant prion protein (PrPres) was positive in all brain sections but more pronounced in the section of the obex of the medulla. And the PrP res was also detected by western immunoblotting in the brain and spinal cord. All the remaining elk and deer that had been in contact with this elk were destroyed and negative for chronic wasting disease (CWD). To our knowl edge, this is the first case of CWD occurring outside of the U.S.A. and Canada.KEY WORDS: chronic wasting disease, elk, immunohistochemistry. J. Vet. Med. Sci. 64(9): 855–858, 2002KOREA CWD TSE PrionCWD outbreaks in farmed animals were reported in 2001, 2004, 2005, 2010, and *2016 in the Republic of Korea.Korean CWD was introduced by elk imported from Canada in 1997.CWD outbreaks in farmed animals were reported in 2001, 2004, 2005, 2010, and ***2016 in the Republic of Korea.The Korean water deer is the dominant species of wild deer in Korea, with approximately 620 thousand heads (8.0 heads/100 ha) [9].*2016 in the Republic of Korea.I LACK A REPORT ON THAT~!???i have asked about it to Korea officials and scientist, with no reply to date...so, total count on Chronic Wasting Disease CWD TSE Prion in Korea, your guess is good as mine, especially through 2019, ...terryBetween 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency's (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.KOREA CWD TSE PRIONChronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of KoreaHyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of KoreaChronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea.These consisted of 23 elk in 1994 originating from the so-called "source farm" in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the "source farm".Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify.CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises.In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.*Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.*Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.*Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program.Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).*In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive.*Consequently, all cervid - 54 elks, 41 Sika deer and 5 Albino deer - were culled and one elk was found to be positive.Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.*Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis.*Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.All cervids at Farm 3 and Farm 4 - 15 elks and 47 elks - were culled and confirmed as negative.Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.*In December 2010, one elk was confirmed as positive at Farm 5.*Consequently, all cervid - 3 elks, 11 Manchurian Sika deer and 20 Sika deer - were culled and one Manchurian Sika deer and seven Sika deer were found to be positive.This is the first report of CWD in these sub-species of deer.*Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.*In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo.All cervid - 19 elks, 15 crossbreed (species unknown) and 64 Sika deer - of Farm 6 were culled, but all confirmed as negative.: Corresponding author: Dr. Hyun-Joo Sohn (+82-31-467-1867, E-mail: shonhj@korea.kr) 2011 Pre-congress Workshop: TSEs in animals and their environment 5FULL PAPERAdditional Cases of Chronic Wasting Disease in Imported Deer in KoreaTae-Yung KIM, Hyun-Joo SHON, Yi-Seok JOO, Un-Kyong MUN, Kyung-Sun KANG, Yong-Soon LEE Author information Keywords: Chronic Wasting Disease (CWD), horizontal transmission JOURNALS FREE ACCESS 2005 Volume 67 Issue 8 Pages 753-759AbstractChronic Wasting Disease (CWD), which had previously occurred only in the U.S.A. and Canada, broke out in a farm at Chungbuk, Korea from imported Canadian deer (Aug. 8, 2001). CWD distribution, through surveillance and epidemiologic investigations, was reported for 93 deer (43 from the CWD originating farm and 50 imported with the CWD originating farm's deer) out of 144 deer (72 from the CWD originating farm and 72 imported with the CWD originating farm's deer) that were breeding at 30 different farms. On Oct. 4 and Oct. 8, 2001, additional cases of CWD were investigated. As a result of slaughtering cohabitating deer, it was verified that other imported deer from Canada were also infected with CWD. Since it was thought that this might cause horizontal transmission, 93 deer imported from Canada in 1997 and 130 cohabitating Korean deer were slaughtered and examined. There were no infected Korean deer, but CWD re-occurred on Nov. 20, 2004 and is still under investigation.snip...DISCUSSIONFig. 3. Present status of farms that sold or resold imported Canadian elk in 1997.A total of 129 deer (deer/year: 27/1994, 30/1995, and 72/ 1997) were imported from the CWD originating farm in Canada, None ofthe 57 deer imported in 1994 and 1995 fell dead during the advanced surmise period, 60 months, and were confirmed to have no clinical disorders by Canadian authorities and no clinical matters examined. Korean deer were raised for 3.5 years with 144 deer imported in 1997, during which time only 9 of the imported deer became infected, Five of them were imported from the CWD affected farm in Canada and the other 4 were gathered at the CWD affected farm (SK 3 farm) for quarantine and shipped to Korea on the same boat.It can be considered that horizontal CWD transmission took place, but it is still unclear whether only 4 of the cohabitating Canadian deer became infected. Therefore, Korean authorities should exchange further information on the number of quarantine certificates and coupons with the Canadian Communicable Disease Control Department in order to re— investigate whether only 5 deer were raised at the CWD affected farm, with the other 4 deer being raised at a CWD free farm, or whether the disease was transmitted during shipping. Furthermore, why cohabitating Korean deer were not infected by CWD is considered to be a subject for further research.The Korean Communicable Disease Control Department did its best to prevent the spread of CWD, but failed to trace back 43 out of 144 deer imported from Canada in 1997,CHRONIC WASTING DISEASE CASES IN KOREA 759Among these, 25 deer were from the CWD affected farm and 18 deer were imported with the deer from the CWD affected farm (Table 5). The department is currently investigating a new case of CWD found on Nov, 20, 2004 to determine whether it is a deer that was missing in 2001, or a vertically or horizontally transmitted deer.ACKNOWLEDGMENTS, This work was supported by the National Veterinary Research & Quarantine Service, Anyang 430-016, Korea.REFERENCESStrain Characterization of the Korean CWD Cases in 2001 and 2004Yoon-Hee LEE1), Hyun-Joo SOHN1)*, Min-Jeong KIM1), Hyo-Jin KIM1), Won-Yong LEE1), Eun-Im YUN1), Dong-Seob TARK1), In-Soo CHO1) and Aru BALACHANDRAN2)1)Animal, Plant and Fisheries Quarantine and Inspection Agency, Ministry for Food, Agriculture, Forestry and Fisheries, Anyang 430–757, Republic of Korea2)National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, Canadian Food Inspection Agency, Ottawa, Ontario K2H 8P9, Canada(Received 22 February 2012/Accepted 14 August 2012/Published online in J-STAGE 28 August 2012)ABSTRACT. Chronic wasting disease (CWD) has been recognized as a naturally occurring prion disease in North American deer (Odocoileus species), Rocky Mountain elk (Cervus elaphus nelsoni) and moose (Alces alces). The disease was confirmed only in elk in the Republic of Korea in 2001, 2004 and 2005. Epidemiological investigations showed that CWD was introduced via importation of infected elk from Canada between 1994 and 1997. In spite of the increasing geographic distribution and host range of CWD, little is known about the prion strain (s) responsible for distinct outbreaks of the disease. We carried out strain characterization, using transgenic mice overexpressing elk prion protein, including clinical assessment, pathological examination and biochemical analyses, in brain tissues derived following primary through tertiary transmissions. The final incubation period was shortened to approximately 130 dpi due to adaptation. Biochemical profiles remained identical between passages. Lesion profiling in recipient mice brains showed similar patterns of vacuolation scores and intensity. It is clear that there were no biochemical or histopathological differences in Korean CWD cases in 2001 and 2004, suggesting a single strain was responsible for the outbreaks.Chronic wasting disease (CWD) has been recognized as an important prion disease in North American deer and Rocky mountain elk [13]. This disease was confirmed only in elk in the Republic of Korea in 2001, 2004 and 2005 [7, 10]. Additional CWD cases were observed in red deer, sika deer, and crossbred sika and red deer in 2010 (unpublished data). However, these cases were not included in the present study, which focuses only on elk CWD. Recently, using a model of transgenic mice overexpressing mule deer prion, the possibility of at least two CWD strains existing in North American cervids was raised [1]. More evidence on the two distinct CWD strains that originated from the mule deer was suggested using the ferret model [9] and from Syrian hamster model studies, and the emergence of a new “wasting strain” (WST) would appear to have occurred in white-tailed deer [2]. Epidemiological investigations showed that CWD was introduced to the Korean peninsula via importation of infected elk from Canada in 1994, 1995 and 1997 [7]. It is possible that more than one strain might have been introduced from Canada, although a Canadian retrospective study underway shows no emergence of other phenotypes so far (Dr. Gordon Mitchell, personal comm.).snip...KEY WORDS: CWD, Republic of Korea, strain characterization.doi: 10.1292/jvms.12-0077; J. Vet. Med. Sci. 75(1): 95–98, 2013see full text;Friday, May 13, 2011Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of KoreaA Case of Chronic Wasting Disease in an Elk Imported to Korea from CanadaHyun-Joo SOHN, Jae-Hoon KIM, Kang-Seuk CHOI, Jin-Ju NAH, Yi-Seok JOO, Young-Hwa JEAN, Soo-Whan AHN, Ok-Kyung KIM, Dae-Yong KIM, Aru BALACHANDRAN Author information Keywords: chronic wasting disease, elk, immunohistochemistry JOURNALS FREE ACCESS 2002 Volume 64 Issue 9 Pages 855-858Abstract A seven-year-old male elk (Cervus elaphus nelsoni) was euthanized and necropsied after having a 3-week history of body weight loss, emaciation, excessive salivation, teeth grinding, fever, anorexia, and respiratory distress. The elk was imported into Korea from Canada on March 9, 1997. Gross pathologic findings were restricted to a diffuse fibrinous pneumonia. Microscopic lesions included mild neuronal vacuolation and spongiform change in the neuropil of selected brain stem nuclei and generalized astrocytosis. Immunohistochemistry for protease-resistant prion protein (PrPres) was positive in all brain sections but more pronounced in the section of the obex of the medulla. And the PrPres was also detected by western immunoblotting in the brain and spinal cord. All the remaining elk and deer that had been in contact with this elk were destroyed and negative for chronic wasting disease (CWD). To our knowledge, this is the first case of CWD occurring outside of the U.S.A. and Canada.References (11)see full textP-147 Infection and detection of PrPCWD in soil from CWD infected farm in KoreaHyun Joo Sohn, Kyung Je Park, In Soon Roh, Hyo Jin Kim, Hoo Chang Park, Byounghan KimAnimal and Plant Quarantine Agency (QIA), KoreaTransmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Chronic wasting disease (CWD) is the prion disease that is known spread horizontally. CWD has confirmed last in Republic of Korea in 2010 since first outbreak of CWD in 2001. The environmental reservoirs mediate the transmission of this disease. The significant levels of infectivity have been detected in the saliva, urine, and feces of TSE-infected animals. Using serial protein misfolding cyclic amplification (sPMCA), we developed a detection method for CWD PrPSc in soil from CWD affected farm in 2010. We found to detect PrPSc in soil from CWD infected farm, but not detect PrPSc in soil of wild cervid habitats and normal cervid farm in Korea. We also tried the bioassay on transgenic mice overexpressing elk prion protein (TgElk mice) to confirm infectivity of CWD-infected farm soil and washing solution of it. As the results, there was the presence of infectious prions in them. The attack rates were each 12.5% (1/8, soil) and 100% (6/6, soil washing solution). Our method appears to be a very useful technique for monitoring PrPSc levels in environmental conditions.P-153Experimental oral transmission of chronic wasting disease to sika deer (Cervus nippon)Gordon Mitchell1, Hyun-Joo Sohn2, Yoon-Hee Lee2, Antanas Staskevicius1, Nishandan Yogasingam1, Ines Walther1, In-Soo Cho2, Aru Balachandran11National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada; 2Animal, Plant and Fisheries Quarantine and Inspection Agency, Ministry for Food, Agriculture, Forestry and Fisheries, Anyang, Republic of KoreaChronic wasting disease (CWD) persists in North American cervids, and epidemiological evidence indicates CWD was introduced into the Republic of Korea approximately twenty years ago through the importation of an infected elk (Cervus elaphus) from Canada. Additional cases of CWD have since been detected in Korean elk, and recently for the first time in their farmed sika deer (Cervus nippon). Sika deer are also found in regions of North America and Europe, although natural transmission to these populations has not been detected. Understanding the pathogenesis of CWD in this species is therefore essential to developing diagnostic and disease control strategies.Six sika deer were orally inoculated with a brain homogenate prepared from a farmed Canadian elk with clinical CWD. Four deer developed clinical signs consistent with CWD and were euthanized between 21 and 24 months post-inoculation (mpi). Two deer were removed from the study due to intercurrent disease, at 4 and 11 mpi. At necropsy, an array of tissues and bodily fluids were sampled and preliminary testing of brainstem and lymphoid tissue by ELISA, immunohistochemistry and western blot confirmed CWD transmission. Aggregates of pathological prion protein (PrPCWD) were detected in the retropharyngeal lymph nodes, but not brainstem of the deer sampled at 4 mpi. All other deer, including the deer tested at 11 mpi, displayed marked PrPCWD accumulation in brainstem and lymphoid tissues. Further immunohistochemical analysis of tissues from sika deer with clinical disease revealed widespread PrPCWD deposition in Iymphoreticular tissues, central and peripheral nervous systems, the gastrointestinal tract and neuroendocrine tissues. Western blot molecular profiles in sika deer brainstem samples were similar to the original elk inoculum. Ante-mortem biopsy of recto-anal mucosal associated lymphoid tissue, tested using immunohistochemistry, detected infected sika deer prior to the onset of clinical disease. These findings corroborate studies in other cervids, identifying early and widespread PrPCWD accumulation in tissues following oral inoculation. Efficient transmission of CWD to sika deer dictates a precautionary approach when exposing this species to environments or other cervids potentially infected with CWD.- 280-Prion 2016 Conference Poster AbstractsPrion 2016 Oral AbstractsPrion 2016 Prion Diseases in AnimalsPrion 2016 Prion Diseases in HumansSUNDAY, JULY 14, 2019Korea Chronic Wasting Disease CWD TSE Prion additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016, beyond that, anyone's guess6 ConclusionThe department considers that animal biosecurity risks associated with bulk wheat sourced from the Canadian Prairies for processing can be effectively managed in accordance with the risk management measures outlined in this document. The department considers that the application of those measures will achieve Australia’s ALOP in a least trade-restrictive manner.THURSDAY, OCTOBER 25, 2018Norway New additional requirements for imports of hay and straw for animal feed from countries outside the EEA due to CWD TSE PrionNorway New additional requirements for imports of hay and straw for animal feed from countries outside the EEA due to CWD TSE Prion$$$$$***> NORWAY CWD UPDATE December 2018Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2018: 16Factors that can contribute to spread of CWD – an update on the situation in Nordfjella, NorwayOpinion of Panel on biological hazards of the Norwegian Scientific Committee for Food and Environment13.12.2018ISBN: 978-82-8259-316-8ISSN: 2535-4019Norwegian Scientific Committee for Food and Environment (VKM)Po 222 Skøyen0213 OsloNorwayFRIDAY, DECEMBER 14, 2018Norway, Nordfjella VKM 2018 16 Factors that can contribute to spread of CWD TSE Prion UPDATE December 14, 2018THURSDAY, OCTOBER 25, 2018***> Norway New additional requirements for imports of hay and straw for animal feed from countries outside the EEA due to CWD TSE Prionnew link;MONDAY, JUNE 12, 2017Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?FRIDAY, SEPTEMBER 05, 2014CFIA CWD and Grain Screenings due to potential risk factor of spreading via contamination of grain, oil seeds, etc.FRIDAY, SEPTEMBER 27, 2013Uptake of Prions into PlantsWEDNESDAY, OCTOBER 16, 2019Australia Assessment of bulk wheat from Canada Part B: Animal biosecurity risk advice, CWD TSE Prion concerns are mountingTHURSDAY, SEPTEMBER 26, 2019Sweden The third case of CWD in moose in Arjeplog is now establishedSATURDAY, JUNE 01, 2019Sweden Documents Another Case of Chronic Wasting Disease CWD TSE Prion NorrbottenFRIDAY, APRIL 12, 2019Sweden Wasting Disease (CWD) discovered on moose in Norrbotten CountyFRIDAY, MARCH 29, 2019First Detection of Chronic Wasting Disease in a Wild Red Deer (Cervus elaphus) in EuropeFINLAND MOOSE FOUND DEAD IN FOREST WITH CHRONIC WASTING DISEASE 8.3.2018 12:56
The chronic wasting disease (CWD) has been found in a moose or European elk (Alces alces) for the first time ever in Finland. The disease was diagnosed in Kuhmo in a 15-year old moose that had died naturally. The results of the analyses carried out by Finnish Food Safety Authority Evira have been verified by a EU reference laboratory. Species of the deer family, known as “cervids”, can suffer from the chronic wasting disease, and it is always fatal. The disease is not known to have been contracted by people. Norway was before this case the only European country where CWD has been diagnosed. The monitoring of the occurrence of the disease was intensified from the beginning of 2018 in Finland and five other EU Member States. In Finland, the occurrence of the disease has been studied already since 2003. None of the ca. 2 500 samples analysed so far had tested positive for the disease. The monitoring of the disease will now be further intensified in the Kuhmo and Kainuu region. Hunters are going to be provided with more instructions before the start of the next hunting season, if appropriate. The chronic wasting disease is not known to have been contracted by people. Moose meat is safe to eat and no restrictions are imposed on the sales and exportation of meat of animals of the deer family. As a precautionary measure the export of live animals of the deer family to other countries will be discontinued for now. CWD is a slowly progressing disease of deer, elk, reindeer, and moose which always leads to death. The chronic wasting disease is a prion disease and related to the BSE (bovine spongiform encephalopathy) and other TSE diseases (transmissible spongiform encephalopathy). The disease is common in North America. The moose found in Kuhmo did not suffer from the North American, highly contagious form of the chronic wasting disease. The disease seems to resemble most the form of cervid TSE diagnosed in Norway, which appears to be found incidentally in individual animals of the deer family. For more information, please contact: Leena Räsänen, Director, tel. +358 50 388 6518 (Food Safety) Terhi Laaksonen, Head of Unit, tel. +358 40 159 5812 (Control of Animal Diseases) Sirkka-Liisa Korpenfelt, Senior Resarcher, tel. + 358 50 351 0308 (Laboratory Analyses) Antti Oksanen, Research Professor, tel. +358 44 561 6491 (Wild Animal Diseases) Kajsa Hakulin, Ministerial Advisor, Ministry of Agriculture and Forestry, tel. +358 295 162361 (National and EU Legislation) https://www.evira.fi/en/animals/current_issues/2018/moose-found-dead-in-forest-with-chronic-wasting-disease/SATURDAY, MARCH 10, 2018FINLAND REPORTS FIRST CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN A moose or European elk (Alces alces)WEDNESDAY, MARCH 06, 2019Norway The Madness Continues in Nordfjella Chronic Wasting Disease CWD TSE PrionFRIDAY, OCTOBER 25, 201927th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE IN THE UKDiagnosis and Reporting of Creutzfeldt-Jakob DiseaseSingeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob DiseaseTo the Editor:In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally..Terry S. Singeltary, Sr Bacliff, Tex1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. NewsdeskTracking spongiform encephalopathies in North AmericaXavier BoschAvailable online 29 July 2003.Volume 3, Issue 8, August 2003, Page 463“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem..” ...January 28, 2003; 60 (2) VIEWS & REVIEWSMonitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United StatesErmias D. Belay, Ryan A. Maddox, Pierluigi Gambetti, Lawrence B. SchonbergerFirst published January 28, 2003, DOI: https://doi.org/10.1212/01.WNL.0000036913.87823.D6AbstractTransmissible spongiform encephalopathies (TSEs) attracted increased attention in the mid-1980s because of the emergence among UK cattle of bovine spongiform encephalopathy (BSE), which has been shown to be transmitted to humans, causing a variant form of Creutzfeldt-Jakob disease (vCJD). The BSE outbreak has been reported in 19 European countries, Israel, and Japan, and human cases have so far been identified in four European countries, and more recently in a Canadian resident and a US resident who each lived in Britain during the BSE outbreak. To monitor the occurrence of emerging forms of CJD, such as vCJD, in the United States, the Centers for Disease Control and Prevention has been conducting surveillance for human TSEs through several mechanisms, including the establishment of the National Prion Disease Pathology Surveillance Center. Physicians are encouraged to maintain a high index of suspicion for vCJD and use the free services of the pathology center to assess the neuropathology of clinically diagnosed and suspected cases of CJD or other TSEs.Received May 7, 2002. Accepted August 28, 2002.RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United StatesTerry S. Singeltary, retired (medically)Published March 26, 200326 March 2003Terry S. Singeltary, retired (medically) CJD WATCHI lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?Reply to Singletary Ryan A. Maddox, MPH Other Contributors: Published March 26, 2003Mr. Singletary raises several issues related to current Creutzfeldt- Jakob disease (CJD) surveillance activities. Although CJD is not a notifiable disease in most states, its unique characteristics, particularly its invariably fatal outcome within usually a year of onset, make routine mortality surveillance a useful surrogate for ongoing CJD surveillance.[1] In addition, because CJD is least accurately diagnosed early in the course of illness, notifiable-disease surveillance could be less accurate than, if not duplicative of, current mortality surveillance.[1] However, in states where making CJD officially notifiable would meaningfully facilitate the collection of data to monitor for variant CJD (vCJD) or other emerging prion diseases, CDC encourages the designation of CJD as a notifiable disease.[1] Moreover, CDC encourages physicians to report any diagnosed or suspected CJD cases that may be of special public health importance (e.g...., vCJD, iatrogenic CJD, unusual CJD clusters).As noted in our article, strong evidence is lacking for a causal link between chronic wasting disease (CWD) of deer and elk and human disease,[2] but only limited data seeking such evidence exist. Overall, the previously published case-control studies that have evaluated environmental sources of infection for sporadic CJD have not consistently identified strong evidence for a common risk factor.[3] However, the power of a case-control study to detect a rare cause of CJD is limited, particularly given the relatively small number of subjects generally involved and its long incubation period, which may last for decades. Because only a very small proportion of the US population has been exposed to CWD, a targeted surveillance and investigation of unusual cases or case clusters of prion diseases among persons at increased risk of exposure to CWD is a more efficient approach to detecting the possible transmission of CWD to humans. In collaboration with appropriate local and state health departments and the National Prion Disease Pathology Surveillance Center, CDC is facilitating or conducting such surveillance and case- investigations, including related laboratory studies to characterize CJD and CWD prions.Mr. Singletary also expresses concern over a recent publication by Asante and colleagues indicating the possibility that some sporadic CJD cases may be attributable to bovine spongiform encephalopathy (BSE).[4] The authors reported that transgenic mice expressing human prion protein homozygous for methionine at codon 129, when inoculated with BSE prions, developed a molecular phenotype consistent with a subtype of sporadic CJD. Although the authors implied that BSE might cause a sporadic CJD-like illness among persons homozygous for methionine, the results of their research with mice do not necessarily directly apply to the transmission of BSE to humans. If BSE causes a sporadic CJD-like illness in humans, an increase in sporadic CJD cases would be expected to first occur in the United Kingdom, where the vast majority of vCJD cases have been reported. In the United Kingdom during 1997 through 2002, however, the overall average annual mortality rate for sporadic CJD was not elevated; it was about 1 case per million population per year. In addition, during this most recent 6-year period following the first published description of vCJD in 1996, there was no increasing trend in the reported annual number of UK sporadic CJD deaths.[3, 5] Furthermore, surveillance in the UK has shown no increase in the proportion of sporadic CJD cases that are homozygous for methionine (Will RG, National CJD Surveillance Unit, United Kingdom, 2003; personal communication)..References1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Diagnosis and reporting of Creutzfeldt-Jakob disease. JAMA 2001;285:733-734.2. Belay ED, Maddox RA, Gambetti P, Schonberger LB. Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States.. Neurology 2003;60:176-181.3. Belay ED. Transmissible spongiform encephalopathies in humans. Annu Rev Microbiol 1999;53:283-314.4. Asante EA, Linehan JM, Desbruslais M, et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 2002;21:6358-6366.5. The UK Creutzfeldt-Jakob Disease Surveillance Unit. CJD statistics. Available at: http://www.cjd.ed.ac.uk/figures.htm. Accessed February 18, 2003.Competing Interests: None declared.Volume 2: Science4. The link between BSE and vCJDSummary 4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD.***>It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people...endBSE INQUIRYSATURDAY, JUNE 23, 2018CDC***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic AmplificationVolume 24, Number 7—July 2018 DispatchDiagnosis and Reporting of Creutzfeldt-Jakob Disease2 January 2000 British Medical Journal U.S.Scientist should be concerned with a CJD epidemic in the U.S., as well15 November 1999 British Medical Journal hvCJD in the USA * BSE in U.S..FRIDAY, NOVEMBER 08, 2019EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) IIITHURSDAY, SEPTEMBER 26, 2019Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologicsU.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001Date: Tue, 9 Jan 2001 16:49:00 -0800From: "Terry S. Singeltary Sr."Reply-To: Bovine Spongiform Encephalopathysnip...[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.][host Richard] could you repeat the question?[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?[not sure whom ask this] what group are you with?[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.[not sure who is speaking] could you please disconnect Mr. Singeltary[TSS] you are not going to answer my question?[not sure whom speaking] NOsnip...see full archive and more of this;FRIDAY, OCTOBER 25, 201927th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCETerry S. Singeltary Sr.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home