Friday, September 01, 2023

Wisconsin Washburn County Deer Farm Confirmed with CWD

Wisconsin Washburn County Deer Farm Confirmed with CWD

​FOR IMMEDIATE RELEASE: August 31, 2023

Contact: Neal Patten, Public Information Officer, 608-440-0294 neal.patten@wisconsin.gov

MADISON, Wis. – The Wisconsin Department of Agriculture,​​​​ Trade and Consumer Protection (DATCP) confirms that a Washburn County deer farm has tested positive for chronic wasting disease (CWD). The samples were confirmed by the National Veterinary Services Laboratories in Ames, Iowa.

The positive result came from a 3-year-old doe. The 150-acre farm has been placed under quarantine, where it will remain while DATCP and the U.S. Department of Agriculture (USDA) veterinarians and staff conduct the epidemiological investigation.

CWD is a fatal, neurological disease of deer, elk, and moose caused by an infectious protein called a prion that affects the animal's brain. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements.


About DATCP's farm-raised deer program:


###​​

Wisconsin Washburn County Deer Farm Confirmed with CWD


Chronic Wasting Disease CWD Captive Herds updated April 2023


Chronic Wasting Disease CWD Captive Herds updated April 2023


TUESDAY, MAY 30, 2023 

Wisconsin Sauk County Deer Farm Confirmed with CWD


SATURDAY, MAY 27, 2023 

Wisconsin CWD number of deer that tested positive grew by roughly 12 percent last year from 2021 


Wisconsin DNR CONFIRMS CWD IN SECOND WILD DEER IN WOOD COUNTY

FOR IMMEDIATE RELEASE: 2023-05-15

Contact: Ryan Haffele, DNR Area Wildlife Supervisor

ryan.haffele@wisconsin.gov or 715-928-0470

DNR CONFIRMS CWD IN SECOND WILD DEER IN WOOD COUNTY

BAITING AND FEEDING BANS RENEWED

MADISON, Wis. – The Wisconsin Department of Natural Resources (DNR) confirms a wild deer tested positive for chronic wasting disease (CWD) in Wood County in the town of Rudolph. The deer was a 3-year-old doe, reported sick and dispatched by local department staff.

This is the second confirmed CWD-positive wild deer detected in Wood County. This positive is also within 10 miles of the Portage County border.

As required by state law, the DNR enacts three-year baiting and feeding bans in counties where CWD has been detected and two-year bans in adjoining counties that lie within 10 miles of a CWD detection.

This recent detection of CWD in Wood County will renew a 3-year baiting and feeding ban in the county. Portage County is also within 10 miles of the harvest location but is already under a longer three-year baiting and feeding ban due to positive CWD detections within the county.

Baiting or feeding deer encourages them to congregate unnaturally around a shared food source where sick deer can spread CWD through direct contact with healthy deer or by leaving behind infectious prions in their saliva, blood, feces and urine.

More information regarding baiting and feeding regulations is available on the DNR’s Baiting and Feeding Regulations webpage.

CWD is a fatal, infectious nervous system disease of deer, moose, elk and reindeer/caribou. It belongs to the family of diseases known as transmissible spongiform encephalopathies (TSEs) or prion diseases. The Wisconsin DNR began monitoring the state's wild white-tailed deer population for CWD in 1999. The first positives were found in 2002.




Note that the DNR data reported here only includes wild deer. For information on test results for farm-raised deer and elk, please contact the DATCP Home Farm-Raised Deer Program (wi.gov) (phone 608-224-4872). 

DNR Zone # Sampled # Analyzed Positive for CWD

Central Farmland Zone 61662 61633 155

Central Forest Zone 7664 7662 69

Northern Forest Zone 32138 32133 9

Southern Farmland Zone 195271 195243 10753

Unknown Zone 2972 2964 4

Statewide Totals: 299707 299635 10990


Farm-Raised Deer Program

​The Farm-Raised Deer ​Program provides the requirements for keeping and moving farm-raised deer in Wisconsin, including registration, recordkeeping, disease testing, move​ment, and permit requirements. ​

​​The following data is updated annually during the license renewal process:​​​

Number of registered​​ deer premises in Wisconsin ​301

​Number of hunting ranches in Wisconsin​ ​68 of the 301

​Number of premises enrolled in the CWD Herd Status program ​118

​​The following data was last updated May 15​, 2023:​​​

​Number of farms with a CWD positive test since 2001 41

​Number of herds depopulated as a result of a CWD positive ​22


Chronic Wasting Disease Positives in Farm-raised Deer

Revised: 1/13/2023

County (Premises #) Sample Collection Date of First CWD Positive in Farm-raised Deer Sample Collection Date of Last CWD Positive in Farm-raised Deer Total CWD Positive in Farm raised Deer

Portage(1) 9/4/2002 1/18/2006 82

Walworth(1) 9/20/2002 12/13/2002 6

Manitowoc 3/5/2003 3/5/2003 1

Sauk(1) 10/3/2003 10/3/2003 1

Racine 5/1/2004 5/1/2004 1

Walworth(2) 7/28/2004 11/3/2004 3

Crawford 1/19/2005 1/25/2007 2

Portage(2) 9/22/2008 11/18/2008 2

Jefferson 12/1/2008 12/1/2008 1

Marathon 11/7/2013 11/3/2021 114

Richland(1) 9/13/2014 11/19/2014 8

Eau Claire(1) 6/8/2015 11/24/2015 34

Oneida 11/4/2015 11/8/2022 44

Iowa(1) 1/22/2016 5/4/2022 6

Oconto 9/4/2016 11/23/2022 605

Shawano 9/18/2017 11/17/2022 105

Waupaca 9/21/2017 12/7/2017 12

Washington 2/18/2018 11/15/2018 12

Richland(2) 5/11/2018 5/11/2018 1

Dane 5/16/2018 5/16/2018 1

Iowa(2) 5/18/2018 5/18/2018 21

Marinette 5/19/2018 11/7/2022 4

Sauk(2) 6/4/2018 6/11/2022 5

Portage(3) 10/23/2018 10/23/2018 1

Portage(4) 11/16/2018 5/1/2019 8

Forest 1/8/2019 10/31/2022 20

Burnett(1) 7/30/2019 7/30/2019 1

Trempealeau 11/7/2019 11/1/2022 6

Burnett(2) 9/3/2020 9/3/2020 1

Sauk(3) 7/19/2021 7/19/2021 1

Taylor 7/24/2021 7/28/2022 84

Outagamie 8/12/2021 9/3/2021 2

Langlade 8/13/2021 8/13/2021 1

Portage(5) 9/8/2021 11/17/2022 11

Vilas 9/9/2021 9/9/2021 1

Eau Claire(2) 10/13/2021 11/1/2021 3

Waukesha 12/3/2021 8/3/2022 11

Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health

2811 Agriculture Dr., P.O. Box 8911, Madison, WI 53708



CHRONIC WASTING DISEASE CASESCWD STATUS OF CAPTIVE HERDS

Date of Index Case Confirmation Index Case State County Species Herd Type HCP Enrolled HCP Certified Number of Animals Herd Status

Updated January 2023

11/16/2022 5 YR Male WI Lincoln WTD Shooter No No 65 Quarantine

10/3/2022 3 YR Female WI Vernon WTD Breeder Yes Yes 26 Quarantine

5/11/2022 10 YR Female WI Walworth WTD Exhibition No No 2 Quarantine

11/8/2021 3 Y Male WI Waukesha WTD/ Elk Breeder Yes Yes 22 Depopulated

10/18/2021 9 Y Female WI Portage WTD Shooter No No 370 Quarantine

9/27/2021 Y Male WI Vilas WTD Shooter No No Quarantine

9/2/2021 11 Y Female WI Outagamie WTD Breeder Yes Yes 31 Quarantine

8/31/2021 1 Y Female WI Langlade WTD Breeder Yes Yes 58 Depopulated

8/11/2021 6 Y Female WI Taylor WTD Breeder Yes Yes 220 Depopulated

8/9/2021 9 Y Male WI Sauk WTD Hobby No No 1 Quarantine

8/2019 6 Y Male WI Burnette Elk Breeder Yes Yes 5 Depopulated

2/2019 6.5 Y Male *Trace back to Marinette County CWD+ 6/2018 WI Forest WTD Shooter No NA 79 Quarantined

11/2018 *Trace back from shooter WI Portage WTD Breeder Yes Yes 32 Depopulated

11/2018 *3 Y Male, Purchased Addition WI Portage WTD, Fallow deer, red deer, elk Shooter No NA 151 Depopulated

6/2018 5 Y Female WI Sauk Elk Breeder No NA 15 Quarantined

6/2018 2 Y Female WI Marinette WTD Breeder No NA 320 Quarantined

5/2018 2.5 Y Female, Natural Addition WI Richland Elk Breeder No NA 11 Depopulated

5/2018 5 Y Female, Purchased Addition WI Dane WTD Breeder Yes Yes 6 Depopulated

3/2018 3 Y Male, Natural Addition WI Washington WTD & Elk Breeder Yes Yes 72 Depopulated

10/2017 3Y Male, harvested at Waupaca County WI Iowa WTD Breeder Yes Yes 107 Depopulated

10/2017 3Y Male WI Waupaca WTD Shooter No NA 84 Depopulated

10/2017 3Y Male WI Shawano WTD Shooter No NA 245 Quarantined 


WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO 


cwd update on Wisconsin from Tammy Ryan... 


SATURDAY, MAY 13, 2023 

Wisconsin CWD Confirmed in Dodge County 8-acre Deer Farm Has been Placed Under Quarantine 


THURSDAY, FEBRUARY 23, 2023 

Wisconsin Chronic Wasting Disease CWD TSE Prion Update for 2022 To Date 1480 Positive Cases 


Wisconsin Buckhorn Flats CWD

SUBJECT: Almond Deer Farm Update

The first case of Chronic Wasting Disease (CWD) among Wisconsin's farm-raised deer occurred in a white-tailed deer buck shot by a hunter at the property (formerly known as Buckhorn Flats) in September 2002. This situation prompted the eventual depopulation of the entire farm. 

The deer, a mix of does and yearlings, were destroyed on January 17, 2006- 4 years later- by U.S. Department of Agriculture shooters under a USDA agreement with the farm owner. 

Sixty of the 76 animals tested positive for CWD. The 76 deer constituted the breeding herd in the breeding facility on the farm. The property also had a hunting preserve until 2005. Four deer, two does and two fawns, the only deer remaining in the former preserve, were killed and tested as well. CWD was not detected in those animals. 

The total number of deer to test positive from this farm from the initial discovery to final depopulation is 82. The nearly 80% prevalence rate discovered on Buckhorn Flats is the highest prevalence recorded in any captive cervid operation in North America.

Tuesday, December 20, 2011

Chronic Wasting Disease CWD WISCONSIN Almond Deer

(Buckhorn Flats) Farm Update DECEMBER 2011 The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approves the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

Form 1100-001 (R 2/11) NATURAL RESOURCES BOARD AGENDA ITEM SUBJECT: Information Item: Almond Deer Farm Update FOR:

DECEMBER 2011 BOARD MEETING

TUESDAY TO BE PRESENTED BY TITLE: Tami Ryan, Wildlife Health Section Chief SUMMARY:


https://datcp.wi.gov/Pages/Programs_Services/FarmRaisedDeer.aspx



LISTEN TO THIS NICE LITTLE CWD BLUES DIDDY BY TAMI ABOUT WISCONSIN CWD TSE PRION. WOW, ANNUAL UPDATES NOW, FROM HERE ON OUT, ABOUT CWD...200,000 CWD TESTS, WITH OVER 3500 CWD POSITIVE CASES, SEEING INCREASING TRENDS IN PREVALENCE AND DISTRIBUTION...CARCASS DISPOSAL SIGNIFICANT CHALLENGE...CWD SAMPLING EFFORTS GONE DONE, WHILE CWD POSITIVES HAVE GONE UP...ALSO, 40 SELF SERVING KIOSKS ACROSS STATE AND FREE HUNTER SERVICE CWD TESTING AND SICK DEER POLICY REPORTING AND TESTING ACROSS STATE!

***> LISTEN TO THIS CWD BLUES DIDDY ABOUT WISCONSIN CWD TSE PRION...terry


***> PLEASE WATCH THIS VIDEO, AND BE SURE TO SEE AROUND THE 8 MINUTE MARK, VERY, VERY, DISTURBING...terry 

Unsustainable for population.


Chronic Wasting Disease in Texas

A Real Disease with Proven Impacts

Produced by a coalition of concerned hunters, landowners, & conservationists (last update 08/2023)

Snip…

Since 2012, CWD has been detected in wild deer in just 7 counties in Texas and is only established in the western panhandle and far west Texas.

In that same period of time, captive deer breeders have exposed almost half of Texas counties to CWD. 

Deer held in captive breeding facilities are confined to much tighter spaces, and have intimate contact with many more animals on a daily basis. By far the greatest factor in amplifying the spread of CWD is the artificial movement of these animals, shipped in livestock trailers hundreds of miles, far outside of their natural home range, and ultimately released to co-mingle with wild deer. 

Each year, Texas captive deer breeders liberate 20,000-30,000 deer from their pens to the wild. 

For every deer breeding facility where a CWD positive deer is discovered, an epidemiological investigation is conducted by the Texas Parks & Wildlife Department and the Texas Animal Health Commission to determine how many other deer may have been exposed to the disease and where they have been shipped. Because of the prolific artificial movement of captive deer, one deer with CWD can impact hundreds of other facilities and ranches across the state.

Unfortunately, released deer in Texas are not required to retain any kind of visible identification (an ear tag), and for this reason, the vast majority of released deer cannot be relocated for testing. 

As of August 2023, 116 Texas counties have received possibly infected breeder deer that cannot be located, putting more than 140,000 landowners at risk of the disease. 

Snip

The state of Texas has been testing for CWD since 2002. Since that time, more than 302,360 captive and free range deer have been tested. 

From 2015-2022, more than 127,000 samples were collected from hunter-harvested and roadkill deer. This sampling rate and risk-based distribution provides scientists confidence that they would have detected the disease if it existed at a very low prevalence (<1%) in any given region at the time sampling began.

Snip…

We have learned from other states where CWD has been present the longest, that a constant increase in the prevalence of the disease may lead to a significant decline in the deer population. When disease prevalence exceeds 20%, deer populations have declined by up to 50%. In some areas of Colorado, where CWD has been present since 1985, mule deer abundance has declined by 45% since that time, despite adequate habitat and no hunting ( Miller et al. 2008 ). Similarly, the South Converse Game Unit in Wyoming has documented CWD prevalence exceeding 50% and has seen an approximate 50% decline in mule deer populations.

Snip…

Rural Economies

Deer hunting is the lifeblood of rural Texas. White-tailed deer hunting is by far the most impactful segment of the hunting economy, representing $4.3 billion, according to a recent Texas A&M Study. And while deer breeders represent a very small segment of that economy (less than 5%), they represent one of the greatest risks. ( Full Texas A&M Report )

Real Estate

Rural land prices are largely driven by recreational buyers with hunting as a top land amenity. Without deer hunting, many of these properties will be worth much less.

Conservation Funding

Deer hunters are the largest funders of wildlife conservation in Texas through excise taxes on firearms, ammunition, and gear along with active membership supporting and funding conservation organizations. If deer hunting suffers due to CWD, all wildlife in Texas lose.

Culture & Health

Texas’ native deer herd has iconic value for all Texans. Deer hunting brings families together, creates camaraderie in communities, and serves to connect Texans to nature. There is no better protein than wild, locally harvested, non-GMO and totally organic venison. A healthy deer herd leads to healthy Texans and a healthy and prosperous Texas. 

Snip…

This isn't a disease for our lifetime. It's a disease for our grandchildren's lifetime. 

 - Dr. Bob Dittmar, Former Texas State Wildlife Veterinarian 

Snip…

See the full text with maps, graphs, much more, excellent data…


​FOR IMMEDIATE RELEASE: August 31, 2023

Contact: Neal Patten, Public Information Officer, 608-440-0294 neal.patten@wisconsin.gov

Download a PDF of t​his r​elease.​

MADISON, Wis. – The Wisconsin Department of Agriculture,​​​​ Trade and Consumer Protection (DATCP) confirms that a Washburn County deer farm has tested positive for chronic wasting disease (CWD). The samples were confirmed by the National Veterinary Services Laboratories in Ames, Iowa.

The positive result came from a 3-year-old doe. The 150-acre farm has been placed under quarantine, where it will remain while DATCP and the U.S. Department of Agriculture (USDA) veterinarians and staff conduct the epidemiological investigation.

CWD is a fatal, neurological disease of deer, elk, and moose caused by an infectious protein called a prion that affects the animal's brain. DATCP regulates deer farms for registration, recordkeeping, disease testing, movement, and permit requirements.


About DATCP's farm-raised deer program:


###​​

Wisconsin Washburn County Deer Farm Confirmed with CWD


Chronic Wasting Disease CWD Captive Herds updated April 2023


Chronic Wasting Disease CWD Captive Herds updated April 2023


TUESDAY, MAY 30, 2023 

Wisconsin Sauk County Deer Farm Confirmed with CWD


SATURDAY, MAY 27, 2023 

Wisconsin CWD number of deer that tested positive grew by roughly 12 percent last year from 2021 


Chronic Wasting Disease in Texas

A Real Disease with Proven Impacts

Produced by a coalition of concerned hunters, landowners, & conservationists (last update 08/2023)

Snip…

Since 2012, CWD has been detected in wild deer in just 7 counties in Texas and is only established in the western panhandle and far west Texas.

In that same period of time, captive deer breeders have exposed almost half of Texas counties to CWD. 

Deer held in captive breeding facilities are confined to much tighter spaces, and have intimate contact with many more animals on a daily basis. By far the greatest factor in amplifying the spread of CWD is the artificial movement of these animals, shipped in livestock trailers hundreds of miles, far outside of their natural home range, and ultimately released to co-mingle with wild deer. 

Each year, Texas captive deer breeders liberate 20,000-30,000 deer from their pens to the wild. 

For every deer breeding facility where a CWD positive deer is discovered, an epidemiological investigation is conducted by the Texas Parks & Wildlife Department and the Texas Animal Health Commission to determine how many other deer may have been exposed to the disease and where they have been shipped. Because of the prolific artificial movement of captive deer, one deer with CWD can impact hundreds of other facilities and ranches across the state.

Unfortunately, released deer in Texas are not required to retain any kind of visible identification (an ear tag), and for this reason, the vast majority of released deer cannot be relocated for testing. 

As of August 2023, 116 Texas counties have received possibly infected breeder deer that cannot be located, putting more than 140,000 landowners at risk of the disease. 

Snip

The state of Texas has been testing for CWD since 2002. Since that time, more than 302,360 captive and free range deer have been tested. 

From 2015-2022, more than 127,000 samples were collected from hunter-harvested and roadkill deer. This sampling rate and risk-based distribution provides scientists confidence that they would have detected the disease if it existed at a very low prevalence (<1%) in any given region at the time sampling began.

Snip…

We have learned from other states where CWD has been present the longest, that a constant increase in the prevalence of the disease may lead to a significant decline in the deer population. When disease prevalence exceeds 20%, deer populations have declined by up to 50%. In some areas of Colorado, where CWD has been present since 1985, mule deer abundance has declined by 45% since that time, despite adequate habitat and no hunting ( Miller et al. 2008 ). Similarly, the South Converse Game Unit in Wyoming has documented CWD prevalence exceeding 50% and has seen an approximate 50% decline in mule deer populations.

Snip…

Rural Economies

Deer hunting is the lifeblood of rural Texas. White-tailed deer hunting is by far the most impactful segment of the hunting economy, representing $4.3 billion, according to a recent Texas A&M Study. And while deer breeders represent a very small segment of that economy (less than 5%), they represent one of the greatest risks. ( Full Texas A&M Report )

Real Estate

Rural land prices are largely driven by recreational buyers with hunting as a top land amenity. Without deer hunting, many of these properties will be worth much less.

Conservation Funding

Deer hunters are the largest funders of wildlife conservation in Texas through excise taxes on firearms, ammunition, and gear along with active membership supporting and funding conservation organizations. If deer hunting suffers due to CWD, all wildlife in Texas lose.

Culture & Health

Texas’ native deer herd has iconic value for all Texans. Deer hunting brings families together, creates camaraderie in communities, and serves to connect Texans to nature. There is no better protein than wild, locally harvested, non-GMO and totally organic venison. A healthy deer herd leads to healthy Texans and a healthy and prosperous Texas. 

Snip…

This isn't a disease for our lifetime. It's a disease for our grandchildren's lifetime. 

 - Dr. Bob Dittmar, Former Texas State Wildlife Veterinarian 

Snip…

See the full text with maps, graphs, much more, excellent data…


PART 2. TPWD CHAPTER 65. DIVISION 1. CWD

31 TAC §§65.82, 65.85, 65.88

The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.

Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.


17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.

Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2

1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA

Abstract

The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. Our results show positive prion detection in all products. To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats.

***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates.

***> Our results show positive prion detection in all products.

***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.

***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

=====

9 Carrot plants as potential vectors for CWD transmission.

Paulina Soto1,2, Francisca Bravo-Risi1,2, Claudio Soto1, Rodrigo Morales1,2

1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile

***> We show that edible plant components can absorb prions from CWD-contaminated soils and transport them to their aerial parts.

***> Our results indicate that edible plants could participate as vectors of CWD transmission.

=====

Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.

Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany

***> Further passage to cervidized mice revealed transmission with a 100% attack rate.

***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.

****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.

***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease

=====


Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD 

Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha 

 aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bUniversité Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France; cDepartment of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada 

 Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases. 

 Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles. 

 Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions. 

 Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates. 

 Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management. 

 Funded by: We are grateful for financial support from the Natural Sciences and Engineering Research Council of Canada, the National Institutes of Health, Genome Canada, and the Alberta Prion Research Institute. SG is supported by the Canada Research Chairs program. 

 Acknowledgement: We thank Dr. Trent Bollinger, WCVM, University of Saskatchewan, Saskatoon, Canada, for providing brain tissue from the WTD-116AG isolate, Dr. Stéphane Haïk, ICM, Paris, France, for providing brain tissue from vCJD and sCJD cases, and Dr. Umberto Agrimi, Istituto Superiore di Sanità, Italy, for the bank vole model. We thank animal facility staff for animal care, Dr. Stephanie Anderson for veterinary oversight, and Yo-Ching Cheng for preparing recombinant PrP substrates. Thank you to Dr. Stephanie Booth and Jennifer Myskiw, Public Health Agency of Canada, Canada. 


 U of M expert warns of increasing likelihood of CWD transmission to humans

Cathy Wurzer and Gretchen BrownJune 5, 2023 1:30 PM 

 Minnesota scientists have watched chronic wasting disease (CWD) — a fatal, neurological illness — kill deer and elk.

Now, they’re studying its potential to jump to humans.

The University of Minnesota’s Center for Infectious Disease Research and Policy has received more than $1.5 million in state money to start prepping for the possibility of CWD spreading to cows, pigs and possibly humans. 

 He said transmission to humans has not yet been confirmed, but research suggests it is increasingly likely — especially as the disease continues to spread among deer and elk. 

 “None of us want to believe this could happen,” he told MPR News host Cathy Wurzer. “But you know, as much as you hope it isn't going to happen, hope is not a strategy.”

Current testing can be done only if animals die or are killed, and lymph nodes or brain matter is removed for testing to verify the disease. 

 That means captive deer often aren’t tested until they die or show symptoms of the disease, and that’s often too late to stop the spread of the disease.

And there aren’t yet adequate tests for humans, Osterholm said — let alone protocols in place if a human were to test positive for the disease. 

 Michael Osterholm, Ph.D. is a world-renowned epidemiologist who heads the center. 


The chronic wasting disease agent from white-tailed deer is infectious to humanized mice after passage through raccoons

Eric Cassmanna, Xu Qib, Qingzhong Kongb, and Justin Greenleea

aNational Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA bDepartments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA

Aims: Evaluate the zoonotic potential of the raccoon passaged chronic wasting disease (CWD) agent in humanized transgenic mice in comparison with the North American CWD agent from the original white-tailed deer host.

Material and Methods: Pooled brain material (GG96) from a CWD positive herd was used to oronasally inoculate two white-tailed deer with wild-type prion protein genotype and intracranially inoculate a raccoon. Brain homogenates (10% w/v) from the raccoon and the two white-tailed deer were used to intracranially inoculate separate groups of transgenic mice that express human prion protein with methionine (M) at codon 129 (Tg40h). Brains and spleens were collected from mice at experimental endpoints of clinical disease or approximately 700 days post-inoculation. Tissues were divided and homogenized or fixed in 10% buffered neutral formalin. Immunohistochemistry, enzyme immunoassay, and western blot were used to detect misfolded prion protein (PrPSc) in tissue.

Results: Humanized transgenic mice inoculated with the raccoon passaged CWD agent from white-tailed deer exhibited a 100% (12/12) attack rate with an average incubation period of 605 days. PrPScwas detected in brain tissue by enzyme immunoassay with an average optical density of 3.6/4.0 for positive brains. PrPScalso was detected in brain tissue by western blot and immunohistochemistry. No PrPScwas detected in the spleens of mice inoculated with the raccoon passaged CWD agent. Humanized mice inoculated with the CWD agent from white-tailed deer did not have detectable PrPScusing conventional immunoassay techniques.

Conclusions: The host range of the CWD agent from white-tailed deer was expanded in our experimental model after one passage through raccoons.

Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgement: We thank Quazetta Brown, Lexi Frese, Rylie Frese, Kevin Hassall, Leisa Mandell, and Trudy Tatum for providing excellent technical support to this project.


Stable and highly zoonotic cervid prion strain is possible

Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, and Qingzhong Kong Department of Pathology, Case Western Reserve University, Cleveland, USA

Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in some areas. Multiple in vitro conversion experiments and in vivo animal studies suggest that the CWD-to-human transmission barrier is not unbreakable. A major public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible.

Material and Methods: We inoculated a few sCJD brain samples into cervidized transgenic mice, which were intended as negative controls for bioassays of brain tissues from sCJD cases who had hunted or consumed vension from CWD-endemic states. Some of these mice became infected and their brain tissues were further examined by serial passages in humanized or cervidized mice.

Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a ‘cervidized’ CJD strain that we termed CJDElkPrP. We observed 100% transmission of CJDElkPrPin transgenic mice expressing human PrP (Tg40h). We passaged CJDElkPrPtwo more times in the Tg12 mice. We found that such second and third passage CJDElkPrPprions also led to 100% infection in the Tg40h mice. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice, despite that natural elk CWD isolates and CJDElkPrPshare the same elk PrP sequence.

Conclusions: Our data demonstrate that highly zoonotic cervid prion strains are not only possible but also can be stably maintained in cervids and that CWD zoonosis is prion strain-dependent.

Funded by: NIH

Grant number: R01NS052319, R01NS088604, R01NS109532

Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O’Rourke for providing the sCJD samples and the CWD samples, respectively.

Adaptation of chronic wasting disease (CWD) prion strains in hosts with different PRNP genotypes

Camilo Duque Velasqueza,c, Elizabeth Triscotta,c, Chiye Kima,c, Diana Morenoa,c, Judd Aikenb,c, and Debbie McKenziea,c

aDepartment of Biological Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; bDepartment of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; cCentre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada

Aims: The contagious nature of CWD epizootics and the PrPCamino acid variation of cervids (and susceptible sympatric species) guarantee the expansion of prion conformational diversity and selective landscapes where new strains can arise. CWD strains can have novel transmission properties including altered host range that may increase zoonotic risk as circulating strains diversify and evolve. We are characterizing the host adaptability of characterized CWD strains as well as CWD isolates from different cervid species in various enzootic regions.

Material and Methods: Characterized CWD strains as well as a number of isolates from hunter-harvested deer were bioassayed in our rodent panel (transgenic mice expressing cervid alleles G96, S96 and H95-PrPC, elk PrPC, bovine PrPC, and both hamsters and non-transgenic laboratory mice). Strain characteristics were compared using computer based scoring of brain pathology (e.g. PrPCWDbrain distribution), western blot and protein misfolding cyclic amplification (PMCA).

Results: Transmission of various isolates resulted in the selection of strain mixtures in hosts expressing similar PrPC, particularly for polymorphic white-tailed deer and for Norwegian reindeer. As of the second passage, transmission of P153 moose prions from Norway has not resulted in emergence of strains with properties similar to any North American CWD strains in our taxonomic collection (Wisc-1, CWD2, H95+and 116AG).

Conclusions: Our data indicates polymorphic white-tailed deer can favor infection with more than one strain. Similar to transmission studies of Colorado CWD isolates from cervids expressing a single PrPCprimary structure, the isolate from Norway reindeer (V214) represents a strain mixture, suggesting intrinsic strain diversity in the Nordfjella epizootic. The diversity of CWD strains with distinct transmission characteristics represents a threat to wildlife, sympatric domestic animals and public health.

Funded by: Genome Canada and Genome Alberta (Alberta Prion Research Institute and Alberta Agriculture & Forestry); NSERC

Grant number: #LSARP 10205; NSERC RGPIN-2017-05539

Acknowledgement: We would like to thank Margo Pybus (Alberta Environment and Parks) Trent Bollinger (University of Saskatchewan) for providing us with tissue samples from hunter-harvested deer and Sylvie Benestad for providing moose and reindeer samples.

Application of PMCA to understand CWD prion strains, species barrier and zoonotic potential

Sandra Pritzkowa, Damian Gorskia, Frank Ramireza, Fei Wanga, Glenn C. Tellingb, Justin J. Greenleec, Sylvie L. Benestadd, and Claudio Sotoa

aDepartment of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA; bDepartment of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA; cVirus and Prion Research Unit, United States Department of Agriculture, Ames, Iowa, USA; dNorwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway

Aims: Chronic wasting disease (CWD) is a prion disease affecting various species of cervids that continues to spread uncontrollably across North America and has recently been detected in Scandinavia (Norway, Sweden and Finland). The mechanisms responsible for the natural transmission of CWD are largely unknown. Furthermore, the risk of CWD transmission to other species, including humans, is also unknown and remains a dangerous enigma. In this study, we investigated the potential of CWD prions to infect several other animal species (sheep, cattle, pig, hamster, and mouse) including humans, by examining their capacity to convert the normal prion protein of distinct species in a PMCA reaction. Moreover, we also investigated whether the in vivo passage of CWD through intermediate species alters their capacity for zoonotic transmission, which may represent a major hazard to human health.

Material and Methods: For these studies, we used brain material from CWD-infected white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis), and mule deer (Odocoileus hemionus) as species native to North America. We also used CWD-infected Moose (Alces alces), reindeer (Rangifer tarandus) and red deer (Cervus elaphus) as Norwegian cervids. We also used brains from cattle, sheep and pigs experimentally infected by CWD. To study interspecies-transmission and zoonotic potential, samples were tested via PMCA for the conversion of PrPCinto PrPScusing different combinations of inoculum and host species. Based on these analyses we estimated the spillover and zoonotic potential for different CWD isolates. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at the expense of normal prion proteins from various mammals and human, respectively.

Results: Our results show that prions from some cervid species, especially those found in Northern Europe, have a higher potential to transmit disease characteristics to other animals. Conversely, CWD-infected cervids originated in North America appear to have a greater potential to generate human PrPSc. We also found that in vivo transmission of CWD to cattle, but not to sheep or pigs substantially increases the ability of these prions to convert human PrPCby PMCA.

Conclusions: Our findings support the existence of different CWD prion strains with distinct spillover and zoonotic potentials. We also conclude that transmission of CWD to other animal species may increase the risk for CWD transmission to humans. Our studies may provide a tool to predict the array of animal species that a given CWD prion could affect and may contribute to understanding the risk of CWD for human health.

Funded by: National Institute of Health

Grant number: P01 AI077774

Generation of human chronic wasting disease in transgenic mice

Zerui Wanga, Kefeng Qinb, Manuel V. Camachoa, Ignazio Cali a,c, Jue Yuana, Pingping Shena, Tricia Gillilanda, Syed Zahid Ali Shaha, Maria Gerasimenkoa, Michelle Tanga, Sarada Rajamanickama, Anika Yadatia, Lawrence B. Schonbergerd, Justin Greenleee, Qingzhong Konga,c, James A. Mastriannib, and Wen-Quan Zoua,c

aDepartment of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; bDepartment of Neurology and Center for Comprehensive Care and Research on Memory Disorders, the University of Chicago Pritzker School of Medicine, Chicago, USA; cNational Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; dDivision of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA; eVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA, USA

Aims: Chronic wasting disease (CWD) results from the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC) in the brains of deer and elk. It has been spreading rapidly throughout many regions of North America, exported inadvertently to South Korea, and more recently identified in Europe. Mad cow disease has caused variant Creutzfeldt-Jakob disease (vCJD) in humans and is currently the only known zoonotic prion disease. Whether CWD is transmissible to humans remains uncertain. The aims of our study were not only to confirm whether CWD prion isolates can convert human brain PrPCinto PrPScin vitro by serial protein misfolding cyclic amplification (sPMCA) but also to determine whether the sPMCA-induced CWD-derived human PrPScis infectious.

Material and Methods: Eight CWD prion isolates from 7 elks and 1 deer were used as the seeds while normal human brain homogenates containing either PrP-129 MM (n = 2) or PrP-129 VV (n = 1) were used as the substrates for sPMCA assay. A normal elk brain tissue sample was used as a negative control seed. Two lines of humanized transgenic (Tg) mice expressing either human PrP-129VV or −129 MM polymorphism were included for transmission studies to determine the infectivity of PMCA-amplified PrPSc. Wester blotting and immunohistochemistry and hematoxylin & eosin staining were used for determining PrPScand neuropathological changes of inoculated animals.

Results: We report here the generation of the first CWD-derived infectious human PrPScusing elk CWD PrPScto initiate conversion of human PrPCfrom normal human brain homogenates with PMCA in vitro. Western blotting with a human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPScwas derived from the human brain PrPCsubstrate. Two lines of humanized transgenic mice expressing human PrPCwith either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPScpatterns and neuropathological changes in the brain.

Conclusions: Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSchas the potential to overcome the species barrier and directly convert human PrPCinto infectious PrPScthat can produce bona fide prion disease when inoculated into humanized transgenic mice.

Funded by: CJD Foundation and NIH


PRION 2018 CONFERENCE 

Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 

Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. 

After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 

Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. 

The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. 

The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.. 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <*** 

=====

https://prion2018.org/

171. Schatzl HM, Hannaoui S, Cheng Y‐C, Gilch S, Beekes M, Schulz‐Schaeffer W, Stahl‐Hennig C and Czub S, 2018. Oral transmission of CWD into cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio‐assayed transgenic mice. Prion, 2018, 35–36.


P219 First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress

Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen

This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.

Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.

At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.



Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO

PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS

PRION 2017 CONFERENCE VIDEO



Cervid to human prion transmission 

Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States

We hypothesize that: 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

(3) Reliable essays can be established to detect CWD infection in humans; and 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 


 *** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




WA2 Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice

Schatzl HM (1, 2), Hannaoui S (1, 2), Cheng Y-C (1, 2), Gilch S (1, 2), Beekes M (3), SchulzSchaeffer W (4), Stahl-Hennig C (5) and Czub S (2, 6)

(1) University of Calgary, Calgary Prion Research Unit, Calgary, Canada (2) University of Calgary, Faculty of Veterinary Medicine, Calgary, Canada, (3) Robert Koch Institute, Berlin, Germany, (4) University of Homburg/Saar, Homburg, Germany, (5) German Primate Center, Goettingen, Germany, (6) Canadian Food Inspection Agency (CFIA), Lethbridge, Canada.

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were found in spinal cord and brain of euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and preclinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

See also poster P103

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

=====

WA16 Monitoring Potential CWD Transmission to Humans

Belay ED

Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA.

The spread of chronic wasting disease (CWD) in animals has raised concerns about increasing human exposure to the CWD agent via hunting and venison consumption, potentially facilitating CWD transmission to humans. Several studies have explored this possibility, including limited epidemiologic studies, in vitro experiments, and laboratory studies using various types of animal models. Most human exposures to the CWD agent in the United States would be expected to occur in association with deer and elk hunting in CWD-endemic areas. The Centers for Disease Control and Prevention (CDC) collaborated with state health departments in Colorado, Wisconsin, and Wyoming to identify persons at risk of CWD exposure and to monitor their vital status over time. Databases were established of persons who hunted in Colorado and Wyoming and those who reported consumption of venison from deer that later tested positive in Wisconsin. Information from the databases is periodically cross-checked with mortality data to determine the vital status and causes of death for deceased persons. Long-term follow-up of these hunters is needed to assess their risk of development of a prion disease linked to CWD exposure.

=====

P166 Characterization of CJD strain profiles in venison consumers and non-consumers from Alberta and Saskatchewan

Stephanie Booth (1,2), Lise Lamoureux (1), Debra Sorensen (1), Jennifer L. Myskiw (1,2), Megan Klassen (1,2), Michael Coulthart (3), Valerie Sim (4)

(1) Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg (2) Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg (3) Canadian CJD Surveillance System, Public Health Agency of Canada, Ottawa (4) Division of Neurology, Department of Medicine Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton.

Chronic wasting disease (CWD) is spreading rapidly through wild cervid populations in the Canadian provinces of Alberta and Saskatchewan. While this has implications for tourism and hunting, there is also concern over possible zoonotic transmission to humans who eat venison from infected deer. Whilst there is no evidence of any human cases of CWD to date, the Canadian CJD Surveillance System (CJDSS) in Canada is staying vigilant. When variant CJD occurred following exposure to BSE, the unique biochemical fingerprint of the pathologic PrP enabled a causal link to be confirmed. However, we cannot be sure what phenotype human CWD prions would present with, or indeed, whether this would be distinct from that see in sporadic CJD. Therefore we are undertaking a systematic analysis of the molecular diversity of CJD cases of individuals who resided in Alberta and Saskatchewan at their time of death comparing venison consumers and non-consumers, using a variety of clinical, imaging, pathological and biochemical markers. Our initial objective is to develop novel biochemical methodologies that will extend the baseline glycoform and genetic polymorphism typing that is already completed by the CJDSS. Firstly, we are reviewing MRI, EEG and pathology information from over 40 cases of CJD to select clinically affected areas for further investigation. Biochemical analysis will include assessment of the levels of protease sensitive and resistant prion protein, glycoform typing using 2D gel electrophoresis, testing seeding capabilities and kinetics of aggregation by quaking-induced conversion, and determining prion oligomer size distributions with asymmetric flow field fractionation with in-line light scattering. Progress and preliminary data will be presented. Ultimately, we intend to further define the relationship between PrP structure and disease phenotype and establish a baseline for the identification of future atypical CJD cases that may arise as a result of exposure to CWD.

=====

Source Prion Conference 2018 Abstracts


P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Chronic wasting disease (CWD) is a prion disease of deer and elk that has been identified in freeranging cervids in 23 US states. While there is currently no epidemiological evidence for zoonotic transmission through the consumption of contaminated venison, studies suggest the CWD agent can cross the species barrier in experimental models designed to closely mimic humans. We compared rates of human prion disease in states with and without CWD to examine the possibility of undetermined zoonotic transmission.

Methods

Death records from the National Center for Health Statistics, case records from the National Prion Disease Pathology Surveillance Center, and additional state case reports were combined to create a database of human prion disease cases from 2003-2015. Identification of CWD in each state was determined through reports of positive CWD tests by state wildlife agencies. Age- and race-adjusted mortality rates for human prion disease, excluding cases with known etiology, were determined for four categories of states based on CWD occurrence: highly endemic (>16 counties with CWD identified in free-ranging cervids); moderately endemic (3-10 counties with CWD); low endemic (1-2 counties with CWD); and no CWD states. States were counted as having no CWD until the year CWD was first identified. Analyses stratified by age, sex, and time period were also conducted to focus on subgroups for which zoonotic transmission would be more likely to be detected: cases <55 years old, male sex, and the latter half of the study (2010-2015).

Results

Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states (rate ratio [RR]: 1.12, 95% confidence interval [CI] = 1.01 - 1.23), as did low endemic states (RR: 1.15, 95% CI = 1.04 - 1.27). Moderately endemic states did not have an elevated mortality rate (RR: 1.05, 95% CI = 0.93 - 1.17). In age-stratified analyses, prion disease mortality rates among the <55 year old population were elevated for moderately endemic states (RR: 1.57, 95% CI = 1.10 – 2.24) while mortality rates were elevated among those ≥55 for highly endemic states (RR: 1.13, 95% CI = 1.02 - 1.26) and low endemic states (RR: 1.16, 95% CI = 1.04 - 1.29). In other stratified analyses, prion disease mortality rates for males were only elevated for low endemic states (RR: 1.27, 95% CI = 1.10 - 1.48), and none of the categories of CWD-endemic states had elevated mortality rates for the latter time period (2010-2015).

Conclusions

While higher prion disease mortality rates in certain categories of states with CWD in free-ranging cervids were noted, additional stratified analyses did not reveal markedly elevated rates for potentially sensitive subgroups that would be suggestive of zoonotic transmission. Unknown confounding factors or other biases may explain state-by-state differences in prion disease mortality.

=====

P172 Peripheral Neuropathy in Patients with Prion Disease

Wang H(1), Cohen M(1), Appleby BS(1,2)

(1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.

Prion disease is a fatal progressive neurodegenerative disease due to deposition of an abnormal protease-resistant isoform of prion protein. Typical symptoms include rapidly progressive dementia, myoclonus, visual disturbance and hallucinations. Interestingly, in patients with prion disease, the abnormal protein canould also be found in the peripheral nervous system. Case reports of prion deposition in peripheral nerves have been reported. Peripheral nerve involvement is thought to be uncommon; however, little is known about the exact prevalence and features of peripheral neuropathy in patients with prion disease.

We reviewed autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017. We collected information regarding prion protein diagnosis, demographics, comorbidities, clinical symptoms, physical exam, neuropathology, molecular subtype, genetics lab, brain MRI, image and EMG reports. Our study included 104 patients. Thirteen (12.5%) patients had either subjective symptoms or objective signs of peripheral neuropathy. Among these 13 patients, 3 had other known potential etiologies of peripheral neuropathy such as vitamin B12 deficiency or prior chemotherapy. Among 10 patients that had no other clear etiology, 3 (30%) had familial CJD. The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%). The Majority of cases wasere male (60%). Half of them had exposure to wild game. The most common subjective symptoms were tingling and/or numbness of distal extremities. The most common objective finding was diminished vibratory sensation in the feet. Half of them had an EMG with the findings ranging from fasciculations to axonal polyneuropathy or demyelinating polyneuropathy.

Our study provides an overview of the pattern of peripheral neuropathy in patients with prion disease. Among patients with peripheral neuropathy symptoms or signs, majority has polyneuropathy. It is important to document the baseline frequency of peripheral neuropathy in prion diseases as these symptoms may become important when conducting surveillance for potential novel zoonotic prion diseases.


8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.

snip...

The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 


GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


2004

Jeff Swann and his Mom, cwd link... sporadic CJD?, CBC NEWS Jeff Schwan sCJD, CWD, and Professor Aguzzi on BSE and sporadic CJD 

????: CBCnews


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


TUESDAY, MAY 11, 2021

> A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet <

Conclusion

We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.

Supplemental data including molecular tissue sample analysis and autopsy findings could yield further supporting evidence. Given this patient’s clinical resemblance to CBD and the known histological similarities of CBD with CJD, clinicians should consider both diseases in the differential diagnosis of patients with a similarly esoteric presentation. Regardless of the origin of this patient’s disease, it is clear that the potential for prion transmission from cervids to humans should be further investigated by the academic community with considerable urgency.


''We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.''


CREUTZFELDT JAKOB DISEASE: A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

i was warning England and the BSE Inquiry about just this, way back in 1998, and was ask to supply information to the BSE Inquiry. for anyone that might be interested, see;

Singeltary submission to the BSE Inquiry on CJD and Nutritional Supplements 1998

ABOUT that deer antler spray and CWD TSE PRION... I have been screaming this since my neighbors mom died from cjd, and she had been taking a supplement that contained bovine brain, bovine eyeball, and other SRMs specified risk materials, the most high risk for mad cow disease. just saying...

I made a submission to the BSE Inquiry long ago during the BSE Inquiry days, and they seemed pretty interested.

Sender: "Patricia Cantos"

To: "Terry S Singeltary Sr. (E-mail)"

Subject: Your submission to the Inquiry

Date: Fri, 3 Jul 1998 10:10:05 +0100 3 July 1998

Mr Terry S Singeltary Sr. E-Mail: Flounder at wt.net Ref: E2979

Dear Mr Singeltary, Thank you for your E-mail message of the 30th of June 1998 providing the Inquiry with your further comments. Thank you for offering to provide the Inquiry with any test results on the nutritional supplements your mother was taking before she died. As requested I am sending you our general Information Pack and a copy of the Chairman's letter. Please contact me if your system cannot read the attachments. Regarding your question, the Inquiry is looking into many aspects of the scientific evidence on BSE and nvCJD.

I would refer you to the transcripts of evidence we have already heard which are found on our internet site at ;

http://www.bse.org.uk.

Could you please provide the Inquiry with a copy of the press article you refer to in your e-mail? If not an approximate date for the article so that we can locate it? In the meantime, thank you for you comments. Please do not hesitate to contact me on... snip...end...tss

everyone I tell this too gets it screwed up...MY MOTHER WAS NOT TAKING THOSE SUPPLEMENTS IPLEX (that I ever knew of). this was my neighbors mother that died exactly one year previously and to the day of sporadic CJD that was diagnosed as Alzheimer’s at first. my mother died exactly a year later from the Heidenhain Variant of Creutzfeldt Jakob Disease hvCJD, and exceedingly rare strains of the ever growing sporadic CJD’s. both cases confirmed. ...

kind regards, terry

TSEs i.e. mad cow disease's BSE/BASE and NUTRITIONAL SUPPLEMENTS IPLEX, mad by standard process; vacuum dried bovine BRAIN, bone meal, bovine EYE, veal Bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. also; what about potential mad cow candy bars ? see their potential mad cow candy bar list too... THESE are just a few of MANY of just this ONE COMPANY...TSS

''So, in sum, dietary supplements sold in the United States often contain ruminant tissues from undisclosed sources. Personally, I am rather squeamish and I don't think I would be eating prostate or testicle or pituitary, but I am also a little bit wary of consuming products with those glands, not just out of personal repugnance but simply out of a health concern.'' 

DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR BIOLOGICS EVALUATION AND RESEARCH TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ADVISORY COMMITTEE Friday, January 19, 2001

snip...

15 Open Public Hearing

16 DR. FREAS: We are opening the open public hearing

17 now. We have received one response to speak in this

18 afternoon's open public hearing. That is from Dr. Scott

19 Norton. If Dr. Norton is here, would you please come

20 forward. You can either use the podium or the microphone,

21 whichever is your choice.

22 DR. NORTON: I am Scott Norton and I am a

23 physician in the Washington D.C. area. I am here speaking

24 as a private citizen today.

25 I first became concerned about the presence of 231

1 tissues from ruminant animals in dietary supplements about

2 six months ago and expressed my concern in a letter that was 3 published in New England Journal of Medicine in July of Year 4 2000. 5 A couple of the products that I had looked at, and 6 examined their labels, that raised these concerns I brought 7 in right here. I will just read some of the organs that are 8 found in one that is called Male Power. Deer antler, 9 pancreas, orchic--despite what we just heard that the FDA

10 prefers the term "testicular tissue" to be written on the

11 labels, I have never seen a dietary supplement say

12 "testicle." They always say "orchis" or "orchic" which may

13 sound rather flowery to the etymologically impaired--thymus,

14 adrenal, heart, lymph node, prostate, spleen and pituitary.

15 There are actually seventeen organs in that particular

16 product.

17 There is another product that is called Brain

18 Nutrition that tells us that it is vitamins and minerals

19 essential for important brain function. It does not mention

20 that there is any glandulars on at least the bold print. 21 But if you look at the small print on the back, we learn

22 that it has brain extract and pituitary extract, raw, in

23 there.

24 We know that many of the organs that can be found

25 in the dietary supplements do fall in that list of organs

232

1 that are suspect for contamination with TSEs, the labels, in 2 nearly all cases, identify neither the animal source nor the 3 geographic location from which the organs were derived. I 4 have seen one line that did specify from New Zealand cattle 5 but no other manufacturer will list either the species or 6 the geographic location. 7 The FDA's and the USDA's import alerts that we 8 just learned about prohibit the use of these organs in 9 foods, medicines and medical devices. But my reading of the

10 alert, 17-04, suggests that DSHEA does allow some loopholes

11 for these tissues to possible slip in.

12 I will just read from 17-04 that we heard. On the

13 first page, it says that, "This alert does not establish any

14 obligations on regulated entities." I love seeing

15 legislation that starts out with that caveat.

16 Then it says, further, "The USDA regulations do

17 not apply to bovine-derived materials intended for human

18 consumption as finished dietary supplements." We also learn

19 that the prohibition, or the import alert, is limited to

20 bulk lots of these tissues, completed tissues, from BSE-

21 derived countries. It does not mention if it is not a bulk

22 import or if it is raw materials rather than finished

23 materials.

24 Further, we know that it is strongly recommended

25 but not actually prohibited in the language here. So I have

233

1 not taken the assurances from that import alert that Dr. 2 Moore was trying to convey to us. 3 So, in sum, dietary supplements sold in the United 4 States often contain ruminant tissues from undisclosed 5 sources. Personally, I am rather squeamish and I don't 6 think I would be eating prostate or testicle or pituitary, 7 but I am also a little bit wary of consuming products with 8 those glands, not just out of personal repugnance but simply 9 out of a health concern.

10 So my question to the advisory committee is this;

11 is my caution reasonable and, if it is, should we take

12 further efforts to inform, or even protect, the American

13 public from such exposure.

14 I was curious about Dr. Moore's remarks. I sensed

15 two messages. One was the initial reassurance that FDA has

16 the regulatory authority but then I also learned that it is

17 the manufacturer's responsibility to provide those 18 assurances, that the FDA doesn't actually inspect.

19 I think that the FDA commissioners from Harvey

20 Wylie to David Kessler would say that that track record has

21 proven itself.

22 Thank you very much.

23 [Applause.]

24 DR. BROWN: Thanks, Dr. Norton. 25 Committee Discussion snip...

17 But I think that we could exhibit some quite 18 reasonable concern about blood donors who are taking dietary 19 supplements that contain a certain amount of unspecified- 20 origin brain, brain-related, brain and pituitary material. 21 If they have done this for more than a sniff or something 22 like that, then, perhaps, they should be deferred as blood 23 donors. 24 That is probably worse than spending six months in 25 the U.K. 1/19/01 3681t2.rtf(845) page 501 http://www.fda.gov/ohrms/dockets/ac/cber01.htm

Advisory Committees: CBER 2001 Meeting Documents

see actual paper;




Terry S. Singeltary Sr.


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home