Friday, February 21, 2025

CWD, BAITING, AND MINERAL LICKS, WHAT IF?

 Chronic wasting disease prions on deer feeders and wildlife visitation to deer feeding areas


Miranda H. J. Huang, Steve Demarais, Marc D. Schwabenlander, Bronson K. Strickland, Kurt C. VerCauteren, William T. McKinley, Gage Rowden, Corina C. Valencia Tibbitts … See all authors

First published: 10 February 2025


Abstract

Eliminating supplemental feeding is a common regulatory action within chronic wasting disease (CWD) management zones. These regulations target the potential for increased animal-animal contact and environmental contamination with CWD prions. Prions, the causative agent of CWD, have been detected on feeder surfaces in CWD-positive, captive deer facilities but not among free-ranging populations, and information on the relative risk of transmission at anthropogenic and natural food sources is limited. In this study, we established and maintained 13 gravity feeders from September 2022 to March 2023 in a CWD zone in northern Mississippi, USA (apparent prevalence ~30%). We set up feeders up in 3 ways: no exclusion (deer feeders, n = 7), exclusion of deer using fencing with holes cut at the ground-level to permit smaller wildlife to enter (raccoon feeders, n = 3), and environmental control feeders, which were fully fenced and not filled with feed (control feeders, n = 3). We swabbed feeder spouts at setup and at 4 intervals approximately 6 weeks apart to test for prion contamination via real-time quaking-induced conversion (RT-QuIC). We detected prions 12 weeks after setup on all deer and raccoon feeders. We compared relative transmission risk using camera traps at these feeders, 6 agronomic plantings for wildlife forage (i.e., food plots), and 7 oak mast trees. Weekly visitation rate by white-tailed deer (Odocoileus virginianus; hereafter: deer) differed (P = 0.02) among deer feeders (median = 24.5 deer/week, range = 15.6–65.7), food plots (median = 12.7, range = 3.8–24.7), and mast trees (median = 2.0, range = 0.4–5.1). Contact rates between individual deer also differed between site types (P < 0.01): deer feeders (median = 2.1 deer-to-deer contacts/week, range = 0–10.1), food plots (median = 0.1, range = 0–4.0), and mast trees (median = 0, range = 0–0.3). Raccoons also visited feeders at greater rates than food plots and mast trees (P < 0.04). Finally, we swabbed 19 feeders in 2 areas where CWD was newly detected, finding prion contamination on swabs from 4 feeders. We show that deer feeders in free-ranging populations with high CWD prevalence become contaminated with CWD prions quickly, becoming a potential site of exposure of deer to CWD prions. Our results also demonstrate the ability to find evidence of prion contamination on deer feeders, even in areas where CWD is newly detected.

Snip…

We found that supplemental feeding increased the risk of exposure to CWD prions due to contamination of feeders, increased deer visitation, and increased deer-to-deer contact.

The 12-fold increase in deer visitation to feeders compared to mast trees and 2-fold increase compared to food plots demonstrates increased risk for direct disease spread.


Mineral licks as environmental reservoirs of chronic wasting disease prions
Ian H. Plummer,Chad J. Johnson,Alexandra R. Chesney,Joel A. Pedersen ,Michael D. Samuel 
Abstract 
Chronic wasting disease (CWD) is a fatal neurodegenerative disease of deer, elk, moose, and reindeer (cervids) caused by misfolded prion proteins. The disease has been reported across North America and recently discovered in northern Europe. Transmission of CWD in wild cervid populations can occur through environmental routes, but limited ability to detect prions in environmental samples has prevented the identification of potential transmission “hot spots”. We establish widespread CWD prion contamination of mineral licks used by free-ranging cervids in an enzootic area in Wisconsin, USA. We show mineral licks can serve as reservoirs of CWD prions and thus facilitate disease transmission. Furthermore, mineral licks attract livestock and other wildlife that also obtain mineral nutrients via soil and water consumption. Exposure to CWD prions at mineral licks provides potential for cross-species transmission to wildlife, domestic animals, and humans. Managing deer use of mineral licks warrants further consideration to help control outbreaks of CWD.
Snip...
DISCUSSION
Our results demonstrate that CWD-infected white-tailed deer deposit prions at mineral licks they visit. Although the mechanism of prion deposition is unknown, we suspect deposition of saliva by infected deer during ingestion of soil and water at mineral licks has the highest potential to facilitate indirect transmission to susceptible deer. Saliva from white-tailed deer infected with CWD contains on the order of 1–5 infectious doses (ID50) per 10 mL as quantified by real-time quaking-induced conversion, where an ID50 is the dose of CWD prions capable of infecting half of the transgenic mice expressing cervid prion protein [48]. Frequent visitation by infected cervids could allow mineral licks to become potential “hot spots” for indirect transmission of CWD [49]. Currently, little is known about the relative importance of direct contact and environmental routes of CWD transmission in free-ranging cervids [10]. Thus, how artificial and natural mineral licks contribute to current and future CWD infection in cervids and whether licks should be managed to control cervid use are important questions for further research.
Despite the relatively recent detection of CWD in Wisconsin (2001) and the moderate incidence of infection (6–19% prevalence in adult deer in the area sampled at the time of sample collection), our results suggest contamination of mineral licks in the CWD outbreak zone is widespread. This finding suggests that mineral licks may serve as reservoirs of CWD prions that contribute to disease transmission to susceptible animals. Although the levels of CWD prions in the samples analyzed appears low, we note that the association of prions with clay minerals often present at mineral licks can dramatically enhance disease transmission via the oral route of exposure [30–31]. For hamster-adapted scrapie prions binding to montmorillonite clay particles enhanced transmission by a factor of 680, however, an upper bound on the enhancement factor could not be assigned [30–31]. At present, the degree to which binding to clay mineral particles enhances CWD transmission to deer via the oral (or nasal) route of exposure is not known. Furthermore, repeated oral exposure to prions is associated with increased likelihood of disease transmission [50]. Differences in the sialyation status of N-linked glycans between brain-derived and secreted/excreted PrPCWD may impact oral infectivity [51]. Cervid species that avoid interspecific contact make use of the same mineral lick sites [49], potentially leading to interspecies transmission. Mineral licks also attract livestock and other wildlife that supplement mineral intake via soil and water consumption, exposing these animals to CWD prions. Exposure of predators and scavengers to CWD prions via consumption of infected tissue has been previously documented [23]; our results suggest that environmental exposure of non-cervid animal groups can also occur via environmental routes.
We also detected CWD prions in fecal samples collected in proximity to a mineral lick, indicating that fecal excretion represents a route of CWD deposition into the environment with potential transmission to susceptible cervids [19]. Deposition of fecal pellets by white-tailed deer near bait sites increases with higher deer visitation [52] and similar patterns probably occur at mineral licks. Thus, increased local fecal deposition by CWD-infected deer likely contributes to increased environmental concentrations of prions in and around mineral licks. Deer generally avoid consumption of feces [52]; however, the apparent long-term duration of prion infectivity in the environment [27–29], the enhanced disease transmission by soil-bound prions combined with the repeated visitation, long-term existence of and multi-generational use of mineral licks suggest the impact of concentrated environmental contamination on the dynamics of disease transmission warrants further investigation. Recent laboratory research indicates plants grown in prion-contaminated soil can accumulate prions [53]. Our data suggest that plants growing near contaminated mineral licks may warrant investigation as a source of prions for foraging animals. Areas where cervids congregate for mineral consumption, feeding and baiting sites, winter yarding, wallows [54] or other activities where CWD prions are deposited in the environment may also provide potential long-term reservoirs for transmission to cervid and non-cervid species. 
CONCLUSIONS
We used mb-PMCA to detect CWD in soil and water from mineral licks naturally contaminated with prions and used by free-ranging deer, livestock, and non-cervid wildlife species. Detection of prions in environmental reservoirs represents an important first step in understanding the contribution of environmental transmission to CWD epizootics and potential for cross-species transmission. The present study characterized an environmental prion reservoir by (1) identifying an apparent “hot spot” of deposition and potential exposure to both cervid and non-cervid species; (2) indicating CWD prions shed by free-ranging cervids are present in areas of frequent use leading to environmental contamination and potentially plant uptake; and (3) motivating investigation of the exposure and susceptibility of non-cervid species to CWD contaminated soil, water, and plant materials. Future research should be directed at quantifying CWD prion concentrations at mineral licks and other areas where cervids congregate, determining the persistence of prion infectivity at these sites, delineating spatial-temporal patterns of environmental prion deposition and accumulation, and assessing consumption by susceptible animals. Identifying additional environmental reservoirs of CWD prions and determining the contributions of direct and indirect transmission over the course of CWD outbreaks represent key aims in advancing understanding of long-term CWD infection dynamics.
December 2014, Volume 36, Issue 6, pp 1049–1061 | Cite as

Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer 

Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4. 
Article First Online: 08 April 2014 258 Downloads 1 Citations 

Abstract 

Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus 

https://rd.springer.com/article/10.1007/s10653-014-9600-0

Elk and Deer Use of Mineral Licks: Implications for Disease Transmission 

Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W.. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov 

North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado.. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents. 
https://int-cwd-sympo.org/wp-content/uploads/2023/06/final-agenda-with-abstracts.pdf
THE CWD TSE Prion aka mad cow type disease is not your normal pathogen.

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.

you cannot cook the TSE prion disease out of meat.

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.

the TSE prion agent also survives Simulated Wastewater Treatment Processes.

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.

you can bury it and it will not go away.

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.

it’s not your ordinary pathogen you can just cook it out and be done

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area


Prions in Waterways


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals


THURSDAY, FEBRUARY 28, 2019

BSE infectivity survives burial for five years with only limited spread


So, this is what we leave our children and grandchildren?

Detection of chronic wasting disease prions in the farm soil of the Republic of Korea

Here, we show that prion seeding activity was detected in extracts from farm soil following 4 years of incubation with CWD-infected brain homogenate.

https://journals.asm.org/doi/10.1128/msphere.00866-24

"Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation."

Detection of prions in soils contaminated by multiple routes

Results: We are able to detect prion seeding activity at multiple types of environmental hotspots, including carcass sites, contaminated captive facilities, and scrapes (i.e. urine and saliva). Differences in relative prion concentration vary depending on the nature and source of the contamination. Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation.

Conclusions: Detection of prions in the environment is of the utmost importance for controlling chronic wasting disease spread. Here, we have demonstrated a viable method for detection of prions in complex environmental matrices. However, it is quite likely that this method underestimates the total infectious prion load in a contaminated sample, due to incomplete recovery of infectious prions. Further refinements are necessary for accurate quantification of prions in such samples, and to account for the intrinsic heterogeneities found in the broader environment.

Funded by: Wisconsin Department of Natural Resources

Prion 2023 Abstracts

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

Chronic wasting disease prions on deer feeders and wildlife visitation to deer feeding areas 

Miranda H. J. Huang, Steve Demarais, Marc D. Schwabenlander, Bronson K. Strickland, Kurt C. VerCauteren, William T. McKinley, Gage Rowden, Corina C. Valencia Tibbitts … See all authors 

First published: 10 February 2025

https://doi.org/10.1002/jwmg.70000

Abstract 

Eliminating supplemental feeding is a common regulatory action within chronic wasting disease (CWD) management zones. These regulations target the potential for increased animal-animal contact and environmental contamination with CWD prions. Prions, the causative agent of CWD, have been detected on feeder surfaces in CWD-positive, captive deer facilities but not among free-ranging populations, and information on the relative risk of transmission at anthropogenic and natural food sources is limited. In this study, we established and maintained 13 gravity feeders from September 2022 to March 2023 in a CWD zone in northern Mississippi, USA (apparent prevalence ~30%). We set up feeders up in 3 ways: no exclusion (deer feeders, n = 7), exclusion of deer using fencing with holes cut at the ground-level to permit smaller wildlife to enter (raccoon feeders, n = 3), and environmental control feeders, which were fully fenced and not filled with feed (control feeders, n = 3). We swabbed feeder spouts at setup and at 4 intervals approximately 6 weeks apart to test for prion contamination via real-time quaking-induced conversion (RT-QuIC). We detected prions 12 weeks after setup on all deer and raccoon feeders. We compared relative transmission risk using camera traps at these feeders, 6 agronomic plantings for wildlife forage (i.e., food plots), and 7 oak mast trees. Weekly visitation rate by white-tailed deer (Odocoileus virginianus; hereafter: deer) differed (P = 0.02) among deer feeders (median = 24.5 deer/week, range = 15.6–65.7), food plots (median = 12.7, range = 3.8–24.7), and mast trees (median = 2.0, range = 0.4–5.1). Contact rates between individual deer also differed between site types (P < 0.01): deer feeders (median = 2.1 deer-to-deer contacts/week, range = 0–10.1), food plots (median = 0.1, range = 0–4.0), and mast trees (median = 0, range = 0–0.3). Raccoons also visited feeders at greater rates than food plots and mast trees (P < 0.04). Finally, we swabbed 19 feeders in 2 areas where CWD was newly detected, finding prion contamination on swabs from 4 feeders. We show that deer feeders in free-ranging populations with high CWD prevalence become contaminated with CWD prions quickly, becoming a potential site of exposure of deer to CWD prions. Our results also demonstrate the ability to find evidence of prion contamination on deer feeders, even in areas where CWD is newly detected.

Snip…

We found that supplemental feeding increased the risk of exposure to CWD prions due to contamination of feeders, increased deer visitation, and increased deer-to-deer contact.

The 12-fold increase in deer visitation to feeders compared to mast trees and 2-fold increase compared to food plots demonstrates increased risk for direct disease spread.

https://wildlife.onlinelibrary.wiley.com/doi/10.1002/jwmg.70000

Artificial mineral sites that pre-date endemic chronic wasting disease become prion hotspots

The detection of PrPCWD in soils at attractant sites within an endemic CWD zone significantly advances our understanding of environmental PrPCWD accumulation dynamics, providing valuable information for advancing adaptive CWD management approaches.

https://int-cwd-sympo.org/wp-content/uploads/2023/06/final-agenda-with-abstracts.pdf

Chronic wasting disease detection in environmental and biological samples from a taxidermy site

Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster.

Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in i) soils that were in contact with the heads of dead animals, ii) insects involved in the cleaning of skulls, and iii) an empty dumpster where animal carcasses were previously placed. This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD.

Prion 2022 Conference abstracts: pushing the boundaries

https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286

***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.82011-0

Rapid recontamination of a farm building occurs after attempted prion removal

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease. snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapie positive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

https://bvajournals.onlinelibrary.wiley.com/doi/abs/10.1136/vr.105054

***>This is very likely to have parallels with control efforts for CWD in cervids.

https://pubmed.ncbi.nlm.nih.gov/30602491/

Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home