CWD, BAITING, AND MINERAL LICKS, WHAT IF?
Chronic wasting disease prions on deer feeders and wildlife visitation to deer feeding areas
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4.
Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
https://rd.springer.com/article/10.1007/s10653-014-9600-0
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W.. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado.. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
Detection of chronic wasting disease prions in the farm soil of the Republic of Korea
Here, we show that prion seeding activity was detected in extracts from farm soil following 4 years of incubation with CWD-infected brain homogenate.
https://journals.asm.org/doi/10.1128/msphere.00866-24
"Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation."
Detection of prions in soils contaminated by multiple routes
Results: We are able to detect prion seeding activity at multiple types of environmental hotspots, including carcass sites, contaminated captive facilities, and scrapes (i.e. urine and saliva). Differences in relative prion concentration vary depending on the nature and source of the contamination. Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation.
Conclusions: Detection of prions in the environment is of the utmost importance for controlling chronic wasting disease spread. Here, we have demonstrated a viable method for detection of prions in complex environmental matrices. However, it is quite likely that this method underestimates the total infectious prion load in a contaminated sample, due to incomplete recovery of infectious prions. Further refinements are necessary for accurate quantification of prions in such samples, and to account for the intrinsic heterogeneities found in the broader environment.
Funded by: Wisconsin Department of Natural Resources
Prion 2023 Abstracts
https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf
Chronic wasting disease prions on deer feeders and wildlife visitation to deer feeding areas
Miranda H. J. Huang, Steve Demarais, Marc D. Schwabenlander, Bronson K. Strickland, Kurt C. VerCauteren, William T. McKinley, Gage Rowden, Corina C. Valencia Tibbitts … See all authors
First published: 10 February 2025
https://doi.org/10.1002/jwmg.70000
Abstract
Eliminating supplemental feeding is a common regulatory action within chronic wasting disease (CWD) management zones. These regulations target the potential for increased animal-animal contact and environmental contamination with CWD prions. Prions, the causative agent of CWD, have been detected on feeder surfaces in CWD-positive, captive deer facilities but not among free-ranging populations, and information on the relative risk of transmission at anthropogenic and natural food sources is limited. In this study, we established and maintained 13 gravity feeders from September 2022 to March 2023 in a CWD zone in northern Mississippi, USA (apparent prevalence ~30%). We set up feeders up in 3 ways: no exclusion (deer feeders, n = 7), exclusion of deer using fencing with holes cut at the ground-level to permit smaller wildlife to enter (raccoon feeders, n = 3), and environmental control feeders, which were fully fenced and not filled with feed (control feeders, n = 3). We swabbed feeder spouts at setup and at 4 intervals approximately 6 weeks apart to test for prion contamination via real-time quaking-induced conversion (RT-QuIC). We detected prions 12 weeks after setup on all deer and raccoon feeders. We compared relative transmission risk using camera traps at these feeders, 6 agronomic plantings for wildlife forage (i.e., food plots), and 7 oak mast trees. Weekly visitation rate by white-tailed deer (Odocoileus virginianus; hereafter: deer) differed (P = 0.02) among deer feeders (median = 24.5 deer/week, range = 15.6–65.7), food plots (median = 12.7, range = 3.8–24.7), and mast trees (median = 2.0, range = 0.4–5.1). Contact rates between individual deer also differed between site types (P < 0.01): deer feeders (median = 2.1 deer-to-deer contacts/week, range = 0–10.1), food plots (median = 0.1, range = 0–4.0), and mast trees (median = 0, range = 0–0.3). Raccoons also visited feeders at greater rates than food plots and mast trees (P < 0.04). Finally, we swabbed 19 feeders in 2 areas where CWD was newly detected, finding prion contamination on swabs from 4 feeders. We show that deer feeders in free-ranging populations with high CWD prevalence become contaminated with CWD prions quickly, becoming a potential site of exposure of deer to CWD prions. Our results also demonstrate the ability to find evidence of prion contamination on deer feeders, even in areas where CWD is newly detected.
Snip…
We found that supplemental feeding increased the risk of exposure to CWD prions due to contamination of feeders, increased deer visitation, and increased deer-to-deer contact.
The 12-fold increase in deer visitation to feeders compared to mast trees and 2-fold increase compared to food plots demonstrates increased risk for direct disease spread.
https://wildlife.onlinelibrary.wiley.com/doi/10.1002/jwmg.70000
The detection of PrPCWD in soils at attractant sites within an endemic CWD zone significantly advances our understanding of environmental PrPCWD accumulation dynamics, providing valuable information for advancing adaptive CWD management approaches.
https://int-cwd-sympo.org/wp-content/uploads/2023/06/final-agenda-with-abstracts.pdf
Chronic wasting disease detection in environmental and biological samples from a taxidermy site
Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster.
Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in i) soils that were in contact with the heads of dead animals, ii) insects involved in the cleaning of skulls, and iii) an empty dumpster where animal carcasses were previously placed. This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD.
Prion 2022 Conference abstracts: pushing the boundaries
https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286
***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years
***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.
JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12
Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free
https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.82011-0
Rapid recontamination of a farm building occurs after attempted prion removal
First published: 19 January 2019 https://doi.org/10.1136/vr.105054
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease. snip...
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapie positive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
https://bvajournals.onlinelibrary.wiley.com/doi/abs/10.1136/vr.105054
***>This is very likely to have parallels with control efforts for CWD in cervids.
https://pubmed.ncbi.nlm.nih.gov/30602491/
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home