TEXAS TPWD CWD TSE PRION 2 MORE FROM BREEDER RELEASE SITE TOTALS 81 CASES TO DATE
TEXAS TPWD CWD TSE PRION 2 MORE FROM BREEDER RELEASE SITE TOTALS 81 CASES TO DATE
CWD Positive
Year Confirmed
CWD Positive
Confirmation Date Free Range / Captive County Source Species Sex Age
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer M 3.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer M 3.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 6.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 5.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 4.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 4.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 8.5
2018 1/8/18 Breeder Deer Uvalde Facility #3 White-tailed Deer F 3.5
2018 1/8/18 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 5.5
2018 1/8/18 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 4.5
2018 1/29/18 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 6.5
2018 1/31/18 Breeder Release Site Uvalde Facility #3 White-tailed Deer F 2.5
2017 7/6/17 Breeder Deer Medina Facility #5 White-tailed Deer M 4
2017 9/13/17 Breeder Deer Uvalde Facility #3 White-tailed Deer F 5
2017 10/6/17 Release Site Medina Facility #3 Elk F 4
2017 10/6/17 Breeder Deer Uvalde Facility #3 White-tailed Deer F 1
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer M 7
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 9
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 9
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 6
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer M 4
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2017 10/11/17 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2017 10/25/17 Breeder Deer Medina Facility #5 White-tailed Deer F 3
2017 11/27/17 Breeder Release Site Medina Facility #4 White-tailed Deer M 4.5
2017 11/29/17 Breeder Release Site Medina Facility #3 White-tailed Deer M 4.5
2017 12/18/17 Free Range El Paso Mule Deer M 5.5
2017 12/22/17 Free Range Hartley Mule Deer M 2.5
2017 12/22/17 Free Range Hartley Mule Deer M 4.5
2017 12/29/17 Free Range Hartley White-tailed Deer M 2.5
2016 4/1/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4.5
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 1
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer M 1
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 1
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer M 1
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 6/29/16 Breeder Deer Medina Facility #4 White-tailed Deer F 4
2016 4/13/16 Breeder Deer Lavaca Facility #2 White-tailed Deer M 3
2016 4/13/16 Breeder Deer Lavaca Facility #2 White-tailed Deer M 3
2016 4/13/16 Breeder Deer Lavaca Facility #2 White-tailed Deer M 3
2016 4/13/16 Breeder Deer Lavaca Facility #2 White-tailed Deer M 3
2016 3/29/16 Breeder Deer Medina Facility #3 White-tailed Deer M 3
2016 2/4/16 Breeder Release Site Medina Facility #3 White-tailed Deer M 3
2016 9/21/16 Breeder Release Site Medina Facility #3 White-tailed Deer M 3.5
2016 10/28/16 Breeder Deer Uvalde Facility #3 White-tailed Deer M 5.5
2016 10/28/16 Breeder Deer Uvalde Facility #3 White-tailed Deer F 4.5
2016 12/6/16 Free Range Dallam Elk M 8.5
2016 6-Jan Free Range Dallam Mule Deer M 2.5
2016 1/6/17 Free Range El Paso Mule Deer M 4.5
2016 1/18/17 Free Range Hartley Mule Deer M 4.5
2016 1/18/17 Breeder Release Site Uvalde Facility #3 White-tailed Deer M 5.5
2016 1/18/17 Breeder Release Site Uvalde Facility #3 White-tailed Deer M 3.5
2016 1/24/17 Free Range Medina White-tailed Deer M 1.5
2016 2/9/17 Free Range Hudspeth Mule Deer M 3.5
2016 2/9/17 Free Range Hudspeth Mule Deer M 7.5
2016 2/17/17 Free Range Hudspeth Mule Deer M 7.5
Showing 1 to 65 of 81 entries
2016 2/17/17 Free Range Hudspeth Mule Deer M 5.5
2016 2/18/17 Breeder Release Site Medina Facility #4 White-tailed Deer M 3.5
2015 9/14/15 Breeder Deer Lavaca Facility #2 White-tailed Deer M 3
2015 8/12/15 Breeder Deer Medina Facility #1 White-tailed Deer M 2.5
2015 8/6/15 Breeder Deer Medina Facility #1 White-tailed Deer M 2.5
2015 8/6/15 Breeder Deer Medina Facility #1 White-tailed Deer M 2.5
2015 6/30/15 Breeder Deer Medina Facility #1 White-tailed Deer M 2.5
2015 3/25/16 Free Range Hartley Mule Deer M 3.5
2015 3/18/16 Free Range Hudspeth Mule Deer M 5.5
2014 12/4/14 Free Range Hudspeth Mule Deer M 4.5
2012 12/28/12 Free Range Hudspeth Mule Deer M 3.5
2012 12/1/12 Free Range Hudspeth Mule Deer M 4.5
2012 12/2/12 Free Range Hudspeth Mule Deer M 5.5
2012 12/10/12 Free Range Hudspeth Mule Deer M 4.5
2012 7/12/12 Free Range Hudspeth Mule Deer F 6.5
2012 7/12/12 Free Range Hudspeth Mule Deer F 4.5
Showing 66 to 81 of 81 entries
CWD MAP
WEDNESDAY, JANUARY 24, 2018
TEXAS CHRONIC WASTING DISEASE CWD TSE PRION MOUNTING, JUMPS TO 79 CASES TO DATE
FRIDAY, FEBRUARY 16, 2018
Texas Deer Breeders Continue fight against the state’s wildlife agency and its regulations trying to contain CWD TSE Prion
TEXAS HISTORY OF CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD COW TYPE DISEASE
WEDNESDAY, FEBRUARY 07, 2018
New Mexico Bans All Live Cervid Importation Due To CWD TSE Prion still NO Final 2017 Positives Update for N.M.
CHRONIC WASTING DISEASE TSE PRION ROUNDUP
02/15/2018
Wisconsin Deer from Now-Quarantined Lancaster County Farm Tests Positive for Chronic Wasting Disease
Harrisburg, PA - The Pennsylvania Department of Agriculture today announced that a deer harvested from a Wisconsin hunting preserve subsequently tested positive for Chronic Wasting Disease (CWD). The deer originated from a Lancaster County farm that is now under quarantine.
DNA testing confirmed on February 13, 2018, that the deer was born and raised on the West Cocalico Township, Lancaster County, breeding farm. A two-and-a-half-year-old buck from the same farm tested positive for CWD earlier this month. Neither deer showed signs of the disease prior to its death.
The farm has been quarantined since December 15, 2017, when Wisconsin’s state veterinarian notified the department of the potential traceback. DNA testing was run to confirm the deer’s identity in the absence of official identification tags for the deer.
The department, along with the United States Department of Agriculture, is currently evaluating the farm in cooperation with the herd owner to establish a Herd Management Plan to mitigate the threat of this disease spreading. The plan, which all three parties sign, may include indemnification of the herd by the USDA or a continuous quarantine with mandatory testing. A quarantine would be extended five years every time a positive is detected.
CWD attacks the brain of infected deer, elk and moose, producing small lesions that eventually result in death. Animals can get the disease through direct contact with saliva, feces and urine from an infected animal or contaminated environment.
Clinical signs include weight loss, excessive salivation, increased drinking and urination, and abnormal behavior like stumbling, trembling, and depression. Infected deer and elk may also allow unusually close approach by humans or natural predators. The disease is fatal and there is no known treatment or vaccine.
The Centers for Disease Control and Prevention report no strong evidence that humans or livestock can contract CWD.
The infectious agent, known as a prion, tends to concentrate in the brain, spinal column, eyes, spleen, and lymph nodes. These high-risk parts must be properly handled and disposed of at the harvest location to prevent disease spread. Low-risk parts such as deboned meat, clean skull caps and capes present little risk and may be taken home.
The Pennsylvania Department of Agriculture coordinates a mandatory surveillance program for the disease for 860 breeding farms, hobby farms and hunting preserves across the state. Since 1998, accredited veterinarians and certified CWD technicians have tested 27,000 captive deer in Pennsylvania. The Pennsylvania Game Commission collects samples from hunter-harvested deer and elk and wild deer that appear sick or behave abnormally.
Find more information about Pennsylvania’s captive deer CWD programs and the department’s broader efforts to safeguard animal health at agriculture.pa.gov.
MEDIA CONTACT: Shannon Powers - 717.783.2628
# # #
MONDAY, FEBRUARY 12, 2018
Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties
Durkin: Stop private deer industry from trucking CWD across state
Patrick Durkin, For USA TODAY NETWORK-Wisconsin Published 10:13 a.m. CT Feb. 16, 2018
A Waupaca County captive-deer shooting preserve that discovered its first two cases of chronic wasting disease in October found 10 more CWD cases last fall, with 11 of the deer coming from a breeding facility in Iowa County — Wisconsin’s most infected county.
Hunt’s End Deer Ranch near Ogdensburg is one of 376 fenced deer farms in Wisconsin, according to the Department of Agriculture, Trade and Consumer Protection. Hunt’s End bought the diseased deer from Windy Ridge Whitetails, a 15-acre, 110-deer breeding facility south of Mineral Point in Iowa County. Of Wisconsin’s 4,175 CWD cases in wild deer, 2,261 (54 percent) are in Iowa County.
Since CWD’s discovery in three wild deer shot during the November 2001 gun season, CWD has been detected on 18 Wisconsin deer farms, of which 11 were “depopulated.” DATCP has identified 242 CWD cases in captive facilities the past 16 years.
The state’s worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for this always-fatal disease from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70-acre pen in January 2006, 60 of the remaining 76 deer carried CWD, a nearly 80 percent infection rate.
The Department of Natural Resources bought the heavily contaminated site for $465,000 in 2011 and has kept it fenced and deer-free since.
The last time DATCP exterminated a captive herd was November 2015, when it killed 228 deer at Fairchild Whitetails, a 10-acre breeding facility in Eau Claire County, and paid its owner, Richard Vojtik, $298,770 in compensation. Tests revealed 34 of those deer carried CWD (15 percent), but two bucks had escaped earlier. Those bucks roamed five months before being shot and tested. They, too, had CWD.
Both operations were outside the endemic CWD region in southern Wisconsin; Buckhorn Flats by about 60 miles and Fairchild Whitetails by about 120. Wisconsin’s four most active CWD outbreaks on deer farms are north of U.S. 10, and farther away from the endemic region — basically the DNR’s Southern Farmlands district — which had 584 CWD cases 2017-18 and 4,148 since 2001.
Those businesses are:
• Wilderness Whitetails, near Eland in Marathon County: 68 CWD cases, including 43 in 2017-18. DATCP first reported CWD there in December 2013 in a 5-year-old buck shot by a facility client. The operation also found three cases in 2014, nine in 2015 and 12 in 2016.
The preserve held about 310 deer in its 351-acre pen last summer. Since beginning tests in 2002, the facility tested 373 deer before finding its first case 11 years later.
• Hunt’s End, Waupaca County: 12 cases, all in 2017-18. The owners, Dusty and Mandy Reid, didn’t detect CWD on the 84-acre shooting facility until two 4-year-old bucks tested positive last fall. DATCP announced those cases Oct. 20, and disclosed 10 additional cases in response to my open-records request in January.
Both Oct. 20 bucks originated from Windy Ridge Whitetails. Nine other bucks from Windy Ridge, owned by Steven and Marsh Bertram, tested positive for CWD after being shot by Hunt’s End clients.
Now DATCP records covering the past five years showed Hunt’s End acquired 31 deer from Windy Ridge, which also sent a combined 67 whitetails to nine other Wisconsin deer farms during that period.
Paul McGraw, DATCP’s state veterinarian and administrator in animal health, quarantined three Hunt’s End properties Oct. 20, but let its owners, continue selling hunts because “properly handled dead animals leaving the premises do not pose a disease risk.”
McGraw also quarantined Windy Ridge, but the specifications let the business move more deer to the Waupaca shooting facility. It made two more shipments to Hunt’s End, the last occurring Nov. 13.
• Apple Creek Whitetails, Oconto County: 11 cases. Since discovering CWD in September 2016 in an 18-month-old doe killed inside the facility near Gillett, DATCP has identified 10 more cases, including three in 2017-18. The preserve held about 1,850 deer on 1,363 acres, and tested 466 in 2016. After first testing for CWD in 2009, the business processed 1,192 deer before finding its first case 18 months ago.
• Three Lakes Trophy Ranch, Oneida County: Nine cases. Since discovering CWD in December 2015 in a 3-year-old buck at Three Lakes, DATCP has identified eight more cases, including two in 2017-18. The preserve held about 545 whitetails on 570 acres.
Although the Hunt’s End outbreak traces to Iowa County deer, Windy Ridge Whitetails sent even more deer, 42, to Vojtik’s American Adventures Ranch near Fairchild with no documented problems. DATCP reports no CWD cases there, and Vojtik, who also owned the 10-acre Fairchild Whitetails breeding facility, said he hasn’t bought Windy Ridge deer the past two years.
Vojtik said Wednesday that he and his clients shoot out his enclosure’s herd of about 200 deer each year to reduce CWD risks. And because he’s not in DATCP’s herd-status program, he must only test 50 percent of deer dying there.
Meanwhile, Wilderness Whitetails tests all of its dead deer. It leads the state with 68 CWD cases, even though it has maintained a “closed herd” since opening its Eland facility in 2004, said its owner, Greg Flees, when reached Wednesday. Flees said all deer in the 351-acre facility were born there or came from his family’s Portage County breeding pen, which began in the 1970s and has never had CWD.
Flees said the jump from 12 CWD cases in 2016 to 43 in 2017 is no mystery or surprise. “We shot more deer to lower our densities, so we found more CWD,” he said. He thinks CWD was in the facility’s soils when they enclosed it with an 8-foot-high fence 14 years ago, or it arrived in alfalfa bales brought in for feed.
Perhaps the bigger mystery is why DATCP allows any deer from Iowa County to be shipped anywhere. Windy Ridge Whitetails is one of eight captive-deer facilities in CWD-infected counties — Sauk, Dane, Iowa, Rock, Walworth and Richland — enrolled in DATCP’s herd-status program, which allows deer transfers if facilities follow specified guidelines.
That won’t change soon, either. In a letter Jan. 30 responding to my open records request, Paul Dedinsky, DATCP’s chief legal counsel, wrote, “The Department is not proposing any rule changes to prohibit movement from CWD endemic areas.”
No doubt Wisconsin’s wild deer provide a vast, mostly undocumented pool for spreading CWD, but sick deer can only carry disease as far as they walk. With DATCP’s approval, privately owned deer could spread CWD wherever they’re trucked.
Patrick Durkin is a freelance writer who covers outdoors for USA TODAY NETWORK-Wisconsin. Email him at patrickdurkin56@gmail.com.
FRIDAY, FEBRUARY 16, 2018
Wisconsin Stop private deer industry from trucking CWD across state
FRIDAY, FEBRUARY 16, 2018
Wisconsin Deer from Now-Quarantined PA Lancaster County Farm Tests Positive for Chronic Wasting Disease CWD TSE Prion
FRIDAY, JANUARY 26, 2018
WISCONSIN REPORTS 588 CWD TSE PRION POSITIVE CASES FOR 2017 WITH 4170 CASES CONFIRMED TO DATE
Tuesday, December 20, 2011
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011
The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.
SUMMARY:
captive deer farmers breeders entitlement program, i.e. indemnity program, why?
how many states have $465,000., and can quarantine and purchase there from, each cwd said infected farm, but how many states can afford this for all the cwd infected cervid game ranch type farms, and why do tax payers have to pay for it ???
For Immediate Release Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease ***
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD).
For Immediate Release
Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov Share on facebook Share on twitter Share on email Share on print More Sharing Services 1
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected
CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.
On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.
The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.
The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.
Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.
Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.
The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.
-30-
79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected
CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.
On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.
The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.
The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.
Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.
Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.
The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.
INFORM: Cervid Health and States Indemnity FY 2015
USDA Animal and Plant Health Inspection Service sent this bulletin at 09/19/2014 05:22 PM EDT
Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) received a total of $3 million in appropriated funding to support cervid health activities in fiscal year (FY) 2014, and made approximately $1.0 million of this funding available for indemnity of chronic wasting disease (CWD) positive, suspect, and exposed farmed cervids. All of the available FY2014 indemnity funding was used to depopulate three CWD-infected herds. However, several States have asked about the availability of Federal indemnity funds for CWD-exposed animals in the future.
VS plans to offer Federal indemnity for CWD-exposed cervids beginning in FY2015. Briefly, we will prioritize the highest risk CWD-exposed animals for indemnity based on the availability of funding. Any newly reported CWD-positive herds will be considered for indemnity as they are identified, based first on funding availability and secondly on the risk presented by the herd.
We will reassess our fiscal year funding on a quarterly basis so that providing indemnity for exposed animals does not exhaust available funding early in the fiscal year. By taking this fiscally cautious approach, we hope to provide indemnity for positive herds identified later in the fiscal year while removing high-risk animals from the landscape as soon as possible to minimize the risk for disease spread. Further, removal and testing of these exposed animals will provide a better understanding of the disease risk presented by these animals/herds.
VS plans to work with our State and industry stakeholders on the criteria to assess the risk and on the process through which States can request this indemnity. These will be finalized in a VS Guidance Document in the near future. We look forward to working with you to implement this process in the coming year.
***
SATURDAY, FEBRUARY 10, 2018
Chronic wasting disease management in ranched elk using rectal biopsy testing Research Paper 09 Feb 2018
FRIDAY, FEBRUARY 09, 2018
Mississippi Chronic Wasting Disease confirmed in a White-tailed Deer
TUESDAY, FEBRUARY 13, 2018
*** MISSISSIPPI STATE DEPARTMENT OF HEALTH Chronic Wasting Disease: Public Health Recommendations ***
*** Decontaminating Equipment Personal protective equipment (PPE), such as boots, gloves, clothing, etc., supplies, facilities, and vehicles exposed to potentially CWD infected tissues and environments should be properly cleaned and disinfected after each use.
SATURDAY, FEBRUARY 17, 2018
Montana Special Hunts 9 more cases CWD TSE Prion to date, more samples still pending
WEDNESDAY, FEBRUARY 21, 2018
Maryland Chronic Wasting Disease CWD TSE Prion Found In Ten Deer Allegany and Washington Counties
SUNDAY, FEBRUARY 18, 2018
Chronic Wasting Disease CWD TSE Prion RoundUp February 18, 2018
SATURDAY, JANUARY 14, 2017
CHRONIC WASTING DISEASE CWD TSE PRION GLOBAL UPDATE JANUARY 14, 2017
BSE INQUIRY
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
https://web.archive.org/web/20170126073306/http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
https://web.archive.org/web/20170126073306/http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html
*** I urge everyone to watch this video closely...terry
From: Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html
*** I urge everyone to watch this video closely...terry
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
https://histodb11.usz.ch/Images/videos/video-004/video-004.html
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf
2017
Subject: ***CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
Chronic Wasting Disease (CWD)
Prevention
* Strongly consider having the deer or elk tested for CWD before you eat the meat.
* If you have your deer or elk commercially processed, consider asking that your animal be processed individually to avoid mixing meat from multiple animals.
* If your animal tests positive for CWD, do not eat meat from that animal.
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
TUESDAY, SEPTEMBER 12, 2017
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
SATURDAY, JANUARY 27, 2018
CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE.
THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$
BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.
SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.
SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.
SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
CDC CWD TSE PRION UPDATE USA JANUARY 2018
As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids.
Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018
snip...
Prion 2017 Conference Abstracts CWD
2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
TUESDAY, JULY 04, 2017
*** PRION 2017 CONFERENCE ABSTRACTS ON CHRONIC WASTING DISEASE CWD TSE PRION ***
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
SATURDAY, JULY 29, 2017
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
=========================
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
the tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
URINE
SUNDAY, JULY 16, 2017
*** Temporal patterns of chronic wasting disease prion excretion in three cervid species ***
Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).
Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).
Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.
Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.
Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).
The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.
When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.
Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.
It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.
Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.
Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.
Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.
In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.
In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).
As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.
False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).
This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.
This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.
In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.
Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.
The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.
In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).
A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).
This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.
Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
TSE Scrapie, CWD, BSE, Prion, Soil
Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois
Sheena J. Dorak, Michelle L. Green, Michelle M. Wander, Marilyn O. Ruiz, Michael G. Buhnerkempe, Ting Tian, Jan E. Novakofski & Nohra E. Mateus-Pinilla
Scientific Reportsvolume 7, Article number: 18062(2017) doi:10.1038/s41598-017-18321-x
Download Citation
Ecological epidemiology Ecological modelling Infectious diseases Prions
Received: 21 August 2017
Accepted: 08 December 2017
Published online: 22 December 2017
Abstract
Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.
Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles
Author Summary
Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
tse prion soil
cwd tse prion and soil, see more ;
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;
Some unofficial information from a source on the inside looking out -
Confidential!!!!
As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
CWD CWD CWD
PIGS PIGS PIGS (i love bacon:-(oh no)
oh yes, also, there goes the bacon to. something you should put up in your radar, something i have been worried about for some time, the movement of feral hogs, the amount of land they can tear up, and then move on, to contaminate other lands with the cwd tse prion?, as the crow flies, but much, much, worse. the cwd to pig studies, i think this could be another potential vehicle for movement of the cwd tse prion, along with vehicles and transportation vehicles...just saying...
oh yes, also, there goes the bacon to. something you should put up in your radar, something i have been worried about for some time, the movement of feral hogs, the amount of land they can tear up, and then move on, to contaminate other lands with the cwd tse prion?, as the crow flies, but much, much, worse. the cwd to pig studies, i think this could be another potential vehicle for movement of the cwd tse prion, along with vehicles and transportation vehicles...just saying...
CWD TO PIGS
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin
Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:
Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.
Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.6>
Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:6>6>
This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.
CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
snip...see much more here ;
WEDNESDAY, APRIL 05, 2017
Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
WEDNESDAY, APRIL 05, 2017
*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive Deer, Elk, and Moose
*** DOCUMENT ID: APHIS-2006-0118-0411
i am thinking of that 10,000,000 POUNDS OF BLOOD LACED MEAT AND BONE MEAL IN COMMERCE WARNING LETTER back in 2007, see;
SATURDAY, NOVEMBER 4, 2017
FDA 589.2000, Section 21 C.F.R. Animal Proteins Prohibited in Ruminant Feed WARNING Letters and FEED MILL VIOLATIONS OBSERVATIONS 2017 to 2006
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.