Saturday, March 24, 2018

New York Status Chronic Wasting Disease CWD TSE Prion History To Date

Status of CWD

No new Chronic Wasting Disease (CWD) cases have been identified in New York since 2005.

CWD Timeline in New York

Below are details on the initiation of DEC's CWD surveillance program, information on the first case of CWD in New York, and actions taken by DEC to minimize its spread.
2002
  • New York initiated a statewide CWD surveillance program in response to the first detection of the disease in eastern states of North America (Wisconsin).
2003
  • DEC initiated Part 189: Chronic Wasting Disease regulations to reduce the risk of bringing the disease into New York and to minimize its spread if it was detected in our state.
2005
  • First case of CWD in New York: In early April, the first case of CWD was confirmed in five white-tailed deer from two captive breeding facilities in Oneida County.
  • After detection, a containment area was imposed around the infected area in Madison and Oneida counties (Wildlife Management Unit 6P), with a mandatory deer check for harvested deer. Other activities were prohibited, including movement of intact carcasses outside the containment area, possession and use of deer or elk urine taken from the containment area, deer rehabilitation, possession of a deer killed by a motor vehicle, and requirements for taxidermist record-keeping and contact barriers with live cervids.
  • In addition to amending the CWD regulation (Part 189) for the containment area, the regulation also prohibited importation of whole hunter-harvested carcasses from states where CWD had been detected. It also provided DEC with options to better address threats posed by CWD to New York's wild white-tailed deer.
  • An intensive monitoring program was established by DEC to sample deer in the infected area. Monitoring efforts for the month of April resulted in testing 290 deer samples from Oneida County, 2 from Madison County, and 25 from Hamilton County.
  • In late April, two wild white-tailed deer were confirmed to have CWD within the infected area.
2009
  • Mandatory testing of deer from the Oneida/Madison county containment area ended, with routine testing to continue statewide.
2010
  • More than 31,000 wild white-tailed deer were tested statewide from 2002 through 2010.
  • In July, the Oneida/Madison containment area was lifted as no new cases of CWD were detected, but additional sample collection continued for the area.
2011
  • Increased effort by DEC field staff to collect sick deer and deer behaving abnormally from public reports. Sick and abnormal deer are the highest suspects for CWD.
  • More than 1,800 hunter-harvested deer tested negative for CWD during statewide surveillance.
2012
  • Risk-based surveillance survey initiated to determine possible routes of CWD entry into New York and exposure to wild deer.
  • First case of CWD in Pennsylvania: Pennsylvania reported their first CWD-positive deer in a captive farm in Adams County. Three wild deer were also reported CWD-positive from Blair and Bedford counties. Emergency New York regulations prohibited whole carcasses taken in Pennsylvania from being brought into New York.
  • More than 1,500 hunter-harvested deer tested negative for CWD during statewide surveillance.
2013
  • Implemented a statewide weighted surveillance system to increase the number of older age-class deer sampled. Increased sampling in counties that have higher deer densities with potential risk-factors (i.e. counties bordering Pennsylvania).
  • Developed pilot program (the Taxidermy Partnership Program) to partner with taxidermists to collect samples from older age bucks.
  • Educational campaign to stakeholders and the public on the current CWD science, including the presence of prions in urine, the persistence of prions in soil leading to long-term environmental contamination, and measures they can take to keep CWD out of New York.
  • More than 2,500 hunter-harvested deer tested negative for CWD during statewide surveillance.
2014
  • First case of CWD discovered in Ohio: on October 23, 2014, Ohio reported its first case of CWD. It was diagnosed in a deer at a captive facility in Holmes county. Emergency New York regulations prohibited whole carcasses taken in Ohio from being brought into New York.
  • More than 2,300 hunter-harvested deer tested negative for CWD during statewide surveillance.
  • The Taxidermy Partnership Program was very successful, with 15 cooperators collecting 381 samples from older age-class bucks.
2015
  • Michigan discovered a CWD-positive white-tailed deer in Ingham County. This deer was in the advanced stages of CWD-infection as it was emaciated and behaving abnormally. Michigan was already on the list of prohibited states for whole-carcass imports because of the previous case of CWD found in a Kent County captive facility in 2008.
  • Arkansas found a CWD-positive 2.5 year old hunter-harvested elk near Pruitt. Subsequent testing has found the disease was also in white-tailed deer in several counties. Arkansas was already on the list of prohibited states for import of whole carcasses into New York.
  • In New York, annual surveillance for CWD tested 2,492 white-tailed deer with no positives. In the past 10 years, 33,553 wild white-tailed deer have been tested for CWD.
2016
  • CWD was discovered in a free-ranging reindeer in Norway. This was the first detection of CWD in Europe and the first natural infection of a reindeer worldwide. Two additional moose have been confirmed to have CWD in Norway.
  • Minnesota found two CWD-positive white-tailed deer during their firearms season near Lanesboro in Fillmore County. They had previously found a wild CWD-positive white-tailed deer in 2011 with no subsequent detections.
  • The NYSDEC Environmental Conservation Officers have increased confiscation and ticketing of illegally imported hunter-harvested white-tailed deer. These carcasses have been brought back intact from prohibited states, such as Ohio and Pennsylvania. DEC regulations allow import from numerous states and provinces of only specific carcass parts: meat (without backbone), cleaned hide and cape, skull plate and/or antlers cleaned of all meat and brain tissue, upper canine teeth, finished taxidermy mounts, and tanned hides (see importation of hunter-killed deer, elk, or moose).
2017
  • Montana discovered CWD in seven mule deer and one white-tailed deer in Carbon (southcentral Montana near the border with Wyoming) and one mule deer in Liberty County (northcentral Montana near the border with Canada). A special hunt is ongoing until February 15, 2018 or whenever harvest quotas are reached.
  • The New York State Department of Environmental Conservation and Department of Agriculture and Markets put out an Interagency CWD Risk Minimization Plan for public comment. This plan presents recommendations to reasonably minimize the risk of re-entry and spread of the disease. The goals will be accomplished through specific strategies and actions that address regulation changes, field activities, and education plans for both agencies over the next five years. The goals of the plan are to:
  • prevent new introductions;
  • prevent exposure of infectious material to wild white-tailed deer and moose in New York;
  • provide education to increase the public understanding of CWD risks and impacts.
Learn more about New York's CWD management and surveillance efforts.


New York State Chronic Wasting Disease CWD TSE Prion History in Wild and Capitve Herds

New York State 

 CWD has been confirmed in wild and captive deer in NY state back in around 2005. however, they have been either real lucky, or just doing something right (their surveillance system does seem to be a bit better than others), because cwd has not been detected there in some time, around a decade or so, if my mind does not fail me...i don't recall the total figures, 5 or so captive and 3 or so in the wild in 2005. ...quick look at files; New York State Chronic Wasting Disease CWD TSE Prion History in Wild and Capitve Herds 

Subject: POSITIVE CASE OF CWD FOUND IN ONEIDA COUNTY NY DEER 

From: "Terry S. Singeltary Sr." <flounder@WT.NET

Reply-To: Bovine Spongiform Encephalopathy L@KALIV.UNI -KARLSRUHE.DE> 

Date: Thu, 31 Mar 2005 13:50:50 -0600 

Content-Type: text/plain Parts/Attachments: Parts/Attachments text/plain (107 lines) Reply Reply 

##################### Bovine Spongiform Encephalopathy #####################

Department of Agriculture & Markets News Thursday, March 31, 2005 Contact: Jessica A. Chittenden 518-457-3136jessica.chittenden@agmkt.state.ny.us 

------------------------------------------------------------------------ 

POSITIVE CASE OF CWD FOUND IN ONEIDA COUNTY DEER Mandatory Testing Protocols Find CWD in a Captive White-Tailed Doe

The first positive case of chronic wasting disease (CWD) in New York State has been confirmed in a white-tailed doe from a captive herd in Oneida County. CWD is a transmissible disease that affects the brain and central nervous system of deer and elk.

There is no evidence that CWD is linked to disease in humans or domestic livestock other than deer and elk.

The animal that tested positive for CWD was a six-year old white-tailed doe that was slaughtered from a captive herd in Oneida County as part of the State s mandatory CWD surveillance and testing protocols. Preliminary tests performed at the New York State Veterinary Diagnostic Laboratory at Cornell University determined the presumptive positive, which was confirmed late yesterday by the National Veterinary Services Laboratory in Ames, Iowa.

The New York State Department of Agriculture and Markets has officially quarantined the index herd in which the positive deer was found, and will depopulate and test all deer on the premises. Other herds associated with the index herd have also been quarantined and an investigation has been initiated to find and test any susceptible deer that came into contact with the index herd and to assess the health and environmental risks associated with such establishments. The Department of Environmental Conservation (DEC) will conduct intensive monitoring of the wild deer population surrounding the index herd to ensure CWD has not spread to wild deer.

CWD is a transmissible spongiform encephalopathy (TSE) of deer and elk. Scientific and epidemiological research into CWD is ongoing. To date, research shows that the disease is typified by chronic weight loss, is always fatal, and is transmissible between susceptible species. CWD has only been found in members of the deer family in North America, which include white-tailed deer, mule deer, elk and moose.

CWD has been detected in both wild and captive deer and elk populations in isolated regions of North America. To date, CWD has been found in Colorado, Illinois, Kansas, Minnesota, Montana, Nebraska, New Mexico, Oklahoma, South Dakota, Utah, Wisconsin and Wyoming in the United States, and in Saskatchewan and Alberta in Canada.

Establishing the known CWD health status of captive and wild cervid populations is a critical component for controlling CWD. In New York, the responsibility for controlling CWD is shared between the State Department of Agriculture and Markets, DEC, and the U.S. Department of Agriculture s (USDA) Animal and Plant Health Inspection Service (APHIS). New York s cooperative, active surveillance program serves as a model for the nation in CWD control.

The State Department of Agriculture and Markets monitors the health and movement of all captive deer and elk for the presence of common livestock diseases, including CWD. In July 2004, the Department initiated the CWD Enhanced Surveillance and Monitoring Program, which requires captive deer and elk herd owners to take various actions, including routine sampling and testing, animal identification and an annual herd inventory. Since the inception of testing for CWD in 2000, 681 captive deer and elk have been tested and found negative for CWD.

DEC issues licenses to individuals who possess, import or sell white-tailed deer. DEC also routinely tests New York s wild deer population. Following the discovery of CWD in Wisconsin, DEC implemented a statewide surveillance program in April 2002 to test wild white-tailed deer for the presence of CWD. Samples are collected and sent to an approved USDA laboratory for analysis. To date, DEC has taken samples from 3,457 wild white-tailed deer, including 40 from the county where the positive deer was found. All samples from wild white-tailed deer have tested to date have been negative for CWD.

DEC will also implement precautionary regulations limiting transportation and possession of whole carcasses and some parts of wild deer taken near the location of the captive herd. These regulations will be similar to those currently in place for importation of carcasses and parts of deer into New York.

DEC has also implemented regulations restricting various activities to help control CWD within the State, including restrictions on the importation of live deer and elk, deer feeding, importation and possession of certain deer parts and carcasses, and transportation of deer and elk carcasses through New York State.

USDA APHIS supports individual State programs by providing funding for CWD prevention and surveillance. USDA APHIS reimburses states conducting CWD testing on their wild and captive cervid population and also provides indemnification dollars for captive herds that must be destroyed due to the presence of CWD.

New York State has 433 establishments raising 9,600 deer and elk in captivity. In the wild, DEC estimates there are approximately one million deer statewide.

###


TSS


Re: CHRONIC WASTING DISEASE FOUND IN ONEIDA COUNTY WILD DEER Terry S. Singeltary Sr. <flounder@WT.NET> Thu, 28 Apr 2005 20:49:23 -0500 429 lines 

CHRONIC WASTING DISEASE FOUND IN ONEIDA COUNTY WILD DEER The New York State Department of Environmental Conservation (DEC) today announced it has received a preliminary positive result for chronic wasting disease (CWD) in a wild deer sampled in Oneida County. If confirmed, this will be the first known occurrence of CWD in the wild in New York State.Terry S. Singeltary Sr. <flounder@WT.NET> Thu, 28 Apr 2005 09:13:20 -0500 145 lines 

DEC TO TEST FOR CHRONIC WASTING DISEASE IN HAMILTON COUNTY Terry S. Singeltary Sr. <flounder@WT.NET> Thu, 14 Apr 2005 16:26:38 -0500 95 lines 

CWD NY CONSUMPTION AND CONTACT 'DON'T TOUCH THAT ANIMAL' or 'don't worry, be happy' Terry S. Singeltary Sr. <flounder@WT.NET> Sat, 9 Apr 2005 11:30:23 -0500 111 lines New Thread 

CWD NY DEPT OF HEALTH FACTS AND FICTION CWD NY DEPT OF HEALTH FACTS AND FICTION Terry S. Singeltary Sr. <flounder@WT.NET> Sun, 10 Apr 2005 14:44:06 -0500 1827 lines

CWD UPDATE, TEST RESULTS REVEAL ***THREE ADDITIONAL POSITIVES FROM INDEX HERD Terry S. Singeltary Sr. <flounder@WT.NET> Fri, 8 Apr 2005 17:07:46 -0500 97 lines 

DEC RELEASES RESULTS OF TESTS FOR CHRONIC WASTING DISEASE Oneida County to Date Shows No Signs of CWD in Wild Herd 

DEC has implemented intensive monitoring efforts after CWD was found in two captive white-tailed deer herds in Oneida County – the first incidents of CWD in New York State. 

***Earlier this month, the State Department of Agriculture and Markets (DAM) completed testing of the captive deer and found a total of ***five positive results for CWD in the two captive herds. 

Terry S. Singeltary Sr. <flounder@WT.NET

CHRONIC WASTING DISEASE UPDATE NEW YORK Herds Depopulated, Public Meeting Scheduled for Friday Terry S. Singeltary Sr. <flounder@WT.NET> Wed, 6 Apr 2005 15:59:50 -0500 115 lines 

you can see a run down on cwd in NY state here;




TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011





zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm

***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116***



> However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




To date there is no direct evidence that CWD has been or can be transmitted from animals to humans. 

However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure. 

Both infected brain and muscle tissues were found to transmit disease. 

Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods. 

Summary and Recommendation: 

snip...

Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle. 

These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle. 


*** WDA 2016 NEW YORK *** 

We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. 

In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

Student Presentations Session 2 

The species barriers and public health threat of CWD and BSE prions 

Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 

Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. 

These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. 

The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. 

We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. 

We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders


PRION 2016 TOKYO Zoonotic Potential of CWD Prions: 

An Update 

Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions. 

PRION 2016 TOKYO In Conjunction with Asia Pacific Prion Symposium 2016 PRION 2016 Tokyo Prion 2016 


Cervid to human prion transmission 

Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States 

Abstract 

Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. 

CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. 

However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that: 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

(3) Reliable essays can be established to detect CWD infection in humans; and 

***(4) CWD transmission to humans has already occurred. 

We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3. 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. 

The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans. Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. 

This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans. 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

 In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.



Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.



Chronic Wasting Disease and Potential Transmission to Humans 

Ermias D. Belay,* Ryan A. Maddox,* Elizabeth S. Williams,† Michael W. Miller,‡ Pierluigi Gambetti,§ and Lawrence B. Schonberger*

Chronic wasting disease (CWD) of deer and elk is endemic in a tri-corner area of Colorado, Wyoming, and Nebraska, and new foci of CWD have been detected in other parts of the United States. Although detection in some areas may be related to increased surveillance, introduction of CWD due to translocation or natural migration of animals may account for some new foci of infection. Increasing spread of CWD has raised concerns about the potential for increasing human exposure to the CWD agent. The foodborne transmission of bovine spongiform encephalopathy to humans indicates that the species barrier may not completely protect humans from animal prion diseases. Conversion of human prion protein by CWDassociated prions has been demonstrated in an in vitro cellfree experiment, but limited investigations have not identified strong evidence for CWD transmission to humans. More epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions.



*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”


From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ;



 I urge everyone to watch this video closely...terry 

*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***



*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 



BSE INQUIRY


CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.



*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;



TUESDAY, SEPTEMBER 12, 2017 

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 



SATURDAY, JANUARY 27, 2018 

CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018



TUESDAY, MARCH 06, 2018 

ZOONOSIS OF CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE, who makes the final call?



Sunday, February 25, 2018 

PRION ROUND TABLE CONFERENCE 2018 MAY, 22-25 A REVIEW



MONDAY, MARCH 05, 2018 

Chronic Wasting Disease: Status, Science, and Management EXPLANATION U.S. Department of the Interior U.S. Geological Survey Open-File Report 2017–1138 March 2018



Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018

CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE. 

THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$

BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.

SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.

SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.

SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***



CDC CWD TSE PRION UPDATE USA JANUARY 2018

As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids. 

Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018 

snip.... 



Prion 2017 Conference Abstracts CWD

 2017 PRION CONFERENCE 

First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 

Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 

University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 

This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 

Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 

At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 

PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 

Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO 

PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 

*** PRION 2017 CONFERENCE VIDEO 




TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT 

First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress


Fatal deer disease would impact more than hunters in Alabama LAND VALUES

The impact

Alabama is a hunting crazy state.

“The economic impact, of course, is huge,” Sykes said. “Hunting is a major part of the economy in rural areas of Alabama. And hunting is a huge part of the culture in Alabama. It is a part of the fabric of so many people’s lives.”

Land values will likely be the first indicator of bad news if CWD comes to the state, said Jeff Roberts, a real estate agent who sells hunting land in the Black Belt.

“For farmers and landowners, leasing the hunting rights to their places is a huge secondary income for many,” he said. “If CWD comes to Alabama, the land values are going to go into the basement. I’ve had clients turn their backs on absolutely beautiful hunting tracts when they found out feral hogs were on the property. You can imagine what CWD would do to spook buyers.”


WEDNESDAY, MAY 17, 2017

*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***


MONDAY, JUNE 12, 2017

Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?


USAHA 2017 RESOLUTIONS

RESOLUTION NUMBER: 23 

APPROVED AS AMENDED SOURCE: COMMITTEE ON WILDLIFE AND CAPTIVE WILDLIFE 

SUBJECT MATTER: Annual Reporting on Chronic Wasting Disease Epidemiological Data 

BACKGROUND INFORMATION: Chronic wasting disease (CWD) has been recognized in wild cervids since the 1980’s. Availability of complete epidemiological information is critical for evaluating the effectiveness of science-based disease control programs. Access to pertinent information from epidemiological investigations across the country in wild populations is imperative to developing success strategies for managing the disease. More comprehensive information is needed on CWD epidemiology in the affected wild populations. Analysis of data from CWD affected populations across the country will improve risk assessment. Comprehensive epidemiological data evaluation may potentially identify factors contributing to the detection of CWD, enhance mitigation strategies to reduce the likelihood of CWD in new populations, and facilitate its earliest detection when it is present. 

RESOLUTION: The United States Animal Health Association (USAHA) requests the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Veterinary Services and other appropriate federal and state agencies to work cooperatively to assemble, analyze, summarize, and make available annually to the Committee on Wildlife and Captive Wildlife at the USAHA meeting all pertinent information from epidemiological investigations of Chronic Wasting Disease (CWD) in cervid populations (including wild, free-ranging, and captive). 

Specific information requested may include: 

1) Compiled CWD testing data from each state to include: 

a) Overall state testing numbers of each susceptible species tested; 

b) Number of CWD positive tests found annually in each state; 

c) Overall state testing in wild populations; 

d) Prevalence of CWD in positive populations; 

e) Population totals for each susceptible species of wild herds in each state; 

f) Demography of positive and negative animals in infected herds; 

g) Results from all tissues that were tested; 

h) Duration of monitoring prior to detection of the first case - including numbers of animals in the herd, numbers tested, and numbers not tested; 

i) Results of trace-forward and trace-back investigations; and 

j) All other pertinent data that will enhance risk assessment of CWD in cervids and identification of effective mitigation measures. 

2) Compiled data should also be posted on the USDA website.

http://www.usaha.org/upload/Resolution/2017/Resolution_23_CWD_Data.pdf

RESOLUTION NUMBER: 21 APPROVED SOURCE: COMMITTEE ON SHEEP, GOATS AND CAMELIDS SUBJECT MATTER: National Scrapie Eradication Program Funding 

BACKGROUND INFORMATION: Due to the success of the cooperative National Scrapie Eradication Program, no new cases of scrapie have been identified in the United States (US) in the past 18 months. There are key components of the program that have been critical to this success and the effort to have the US be recognized internationally as free from scrapie, which would open new markets to US sheep and goat products. Surveillance and traceability are vital to this eradication program. Program use of sheep and goat official tags have demonstrated that official plastic tags are preferred over metal tags for readability and to reduce safety concerns. Funding for tags that are readable, acceptable to producers and efficient for regulators is essential to continue identification compliance and progress of the program. 

RESOLUTION: The United States Animal Health Association urges the United States Secretary of Agriculture to request a congressional appropriation of five million additional dollars of new money to be added to the Equine, Cervid and Small Ruminant health line for the purpose of supporting Small Ruminant Health Programs to complete the eradication of scrapie and assure program success. It is vital that this new funding does not reduce other current United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services program funding lines. 



lol, drop in the bucket and a band-aid approach to something that needed a tourniquet decades ago...

PRION CONFERENCE 2015, 2016, 2017, ON potential for CWD TSE PRION ZOONOSIS, if it has not happened already...

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


MONDAY, MARCH 05, 2018 

TRUCKING AROUND AND SPREADING CHRONIC WASTING DISEASE CWD TSE PRION VIA MOVEMENT OF CERVID AND TRANSPORTATION VEHICLES

Sunday, February 25, 2018 

WEDNESDAY, MARCH 21, 2018 

World Animal Organization (OIE) Appoints Veterinary Institute as first European reference laboratory for land animal health field of CWD or skrantesjuke scratch disease



MONDAY, MARCH 05, 2018 

Chronic Wasting Disease: Status, Science, and Management EXPLANATION U.S. Department of the Interior U.S. Geological Survey Open-File Report 2017–1138 March 2018


WEDNESDAY, MARCH 07, 2018 

Addressing deer disease: DNR, MSU collaborate on deer movement study in south-central Michigan


P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum

Justin Greenlee1, S JO Moore1, Jodi Smith1, M Heather WestGreenlee2 and Robert Kunkle1

1National Animal Disease Center; Ames, IA USA

2Iowa State University; Ames, IA USA

The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. 

***In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation

snip...

It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that

1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and

2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.

This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.



2012

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

snip...

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 
2011

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.



CWD TO PIGS


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:

This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.

CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



CONFIDENTIAL


EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...



we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


 
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....



snip...see much more here ;


WEDNESDAY, APRIL 05, 2017

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease



WEDNESDAY, APRIL 05, 2017

*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***



cattle are highly susceptible to white-tailed deer CWD and mule deer CWD

***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.

SNIP...


price of prion poker goes up for cwd to cattle;

Monday, April 04, 2016

*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***


THURSDAY, MARCH 08, 2018 

Cervid, Wild Hogs, Coyotes, Wolves, Cats, Rodents, Gut Piles and Scavengers, A Potential Risk as Regards Disease Transmission CWD TSE Prion


the tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 



TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 



 *** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 



*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years *** 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3 


Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

=========================

***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 



New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 



Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 



Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 



A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 



Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 



PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 




Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 

 
Wednesday, December 16, 2015 

*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission *** 



161: Prion soil binding may explain efficient horizontal CWD transmission 

Nathaniel Denkers1, Davin Henderson1, Shannon Bartelt-Hunt2, Jason Bartz3 and Edward Hoover1

1Colorado State University; Fort Collins, Colorado USA

2University of Nebraska-Lincoln; Omaha, Nebraska USA

3Creighton University; Omaha, Nebraska USA

Background Chronic wasting disease (CWD) is unique due to the facile spread in nature. The interaction of excreted CWD prions and soil is a hypothesized contributor in environmental transmission. The present study examines whether and to what degree CWD prions bind to silty clay loam (SCL) using an adapted version of real-time quaking-induced conversion (RT-QuIC) methodology.

Materials and Methods Varying amounts (50–3.12 mg) of SCL were incubated with 1 mL-serial dilutions of CWD (+), CWD (−), or no brain homogenate (BH). Samples were centrifuged, washed, diluted 1:10 in 0.1% SDS, and 2.5 uL seeded in RT-QuIC assays employing recombinant Syrian hamster prion PrP substrate. Multiple well replicates of sample and supernatant fractions were assayed for positive seeding activity (recorded as thioflavin T fluorescence emission; 480 nm). Samples were considered positive if they crossed a threshold of 25,000. Reaction rates (RR) were calculated, averaged, and expressed as 1/RR.

Results Positive seeding activity was detected for most SCL samples incubated with CWD (+) BH dilutions. Higher SCL concentrations (50 mg) produced low fluorescent readings due to optical interference. Lower SCL concentrations (6.25 mg) produced minimal optical interference and removed the vast majority of seeding activity from CWD+ BH in a concentration-dependent manner; determined by seeding activity in residual BH supernatants. Control SCL and supernatants produced minimal false-positive reactions (8 of 240 replicates; 3.3%). We estimated the prion binding capacity of SCL to be 0.16 ng/mg.

Conclusion Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.


TSE Scrapie, CWD, BSE, Prion, Soil

Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois

Sheena J. Dorak, Michelle L. Green, Michelle M. Wander, Marilyn O. Ruiz, Michael G. Buhnerkempe, Ting Tian, Jan E. Novakofski & Nohra E. Mateus-Pinilla

Scientific Reportsvolume 7, Article number: 18062(2017) doi:10.1038/s41598-017-18321-x

Download Citation

Ecological epidemiology Ecological modelling Infectious diseases Prions

Received: 21 August 2017

Accepted: 08 December 2017

Published online: 22 December 2017

Abstract

Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.


Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles

Author Summary

Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.



tse prion soil





cwd tse prion and soil, see more ;


MONDAY, JUNE 12, 2017

Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?


WEDNESDAY, MAY 17, 2017

*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***



USAHA 2017 RESOLUTIONS

RESOLUTION NUMBER: 23 

APPROVED AS AMENDED SOURCE: COMMITTEE ON WILDLIFE AND CAPTIVE WILDLIFE 

SUBJECT MATTER: Annual Reporting on Chronic Wasting Disease Epidemiological Data 

BACKGROUND INFORMATION: Chronic wasting disease (CWD) has been recognized in wild cervids since the 1980’s. Availability of complete epidemiological information is critical for evaluating the effectiveness of science-based disease control programs. Access to pertinent information from epidemiological investigations across the country in wild populations is imperative to developing success strategies for managing the disease. More comprehensive information is needed on CWD epidemiology in the affected wild populations. Analysis of data from CWD affected populations across the country will improve risk assessment. Comprehensive epidemiological data evaluation may potentially identify factors contributing to the detection of CWD, enhance mitigation strategies to reduce the likelihood of CWD in new populations, and facilitate its earliest detection when it is present. 

RESOLUTION: The United States Animal Health Association (USAHA) requests the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Veterinary Services and other appropriate federal and state agencies to work cooperatively to assemble, analyze, summarize, and make available annually to the Committee on Wildlife and Captive Wildlife at the USAHA meeting all pertinent information from epidemiological investigations of Chronic Wasting Disease (CWD) in cervid populations (including wild, free-ranging, and captive). 

Specific information requested may include: 

1) Compiled CWD testing data from each state to include: 

a) Overall state testing numbers of each susceptible species tested; 

b) Number of CWD positive tests found annually in each state; 

c) Overall state testing in wild populations; 

d) Prevalence of CWD in positive populations; 

e) Population totals for each susceptible species of wild herds in each state; 

f) Demography of positive and negative animals in infected herds; 

g) Results from all tissues that were tested; 

h) Duration of monitoring prior to detection of the first case - including numbers of animals in the herd, numbers tested, and numbers not tested; 

i) Results of trace-forward and trace-back investigations; and 

j) All other pertinent data that will enhance risk assessment of CWD in cervids and identification of effective mitigation measures. 

2) Compiled data should also be posted on the USDA website.

http://www.usaha.org/upload/Resolution/2017/Resolution_23_CWD_Data.pdf

RESOLUTION NUMBER: 21 APPROVED SOURCE: COMMITTEE ON SHEEP, GOATS AND CAMELIDS SUBJECT MATTER: National Scrapie Eradication Program Funding 

BACKGROUND INFORMATION: Due to the success of the cooperative National Scrapie Eradication Program, no new cases of scrapie have been identified in the United States (US) in the past 18 months. There are key components of the program that have been critical to this success and the effort to have the US be recognized internationally as free from scrapie, which would open new markets to US sheep and goat products. Surveillance and traceability are vital to this eradication program. Program use of sheep and goat official tags have demonstrated that official plastic tags are preferred over metal tags for readability and to reduce safety concerns. Funding for tags that are readable, acceptable to producers and efficient for regulators is essential to continue identification compliance and progress of the program. 

RESOLUTION: The United States Animal Health Association urges the United States Secretary of Agriculture to request a congressional appropriation of five million additional dollars of new money to be added to the Equine, Cervid and Small Ruminant health line for the purpose of supporting Small Ruminant Health Programs to complete the eradication of scrapie and assure program success. It is vital that this new funding does not reduce other current United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services program funding lines. 



lol, drop in the bucket and a band-aid approach to something that needed a tourniquet decades ago...

PRION CONFERENCE 2015, 2016, 2017, ON potential for CWD TSE PRION ZOONOSIS, if it has not happened already...

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


THURSDAY, MARCH 22, 2018 

TEXAS CWD TSE PRION JUMP TO 100 POSITIVE, NEW CASES 17 BREEDER, 1 BREEDER RELEASE, AND 1 WILD SINCE JAN 31, 2018



Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home