Review: Update on Classical and Atypical Scrapie in Sheep and Goats
Justin J. Greenlee1
Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
Corresponding Author:
Justin J. Greenlee, DVM, PhD, National Animal Disease Center, ARS, USDA, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA. Email: justin.greenlee@ars.usda.gov
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease of sheep and goats. Scrapie is a protein misfolding disease where the normal prion protein (PrPC) misfolds into a pathogenic form (PrPSc) that is highly resistant to enzymatic breakdown within the cell and accumulates, eventually leading to neurodegeneration. The amino acid sequence of the prion protein and tissue distribution of PrPSc within affected hosts have a major role in determining susceptibility to and potential environmental contamination with the scrapie agent. Many countries have genotype-based eradication programs that emphasize using rams that express arginine at codon 171 in the prion protein, which is associated with resistance to the classical scrapie agent. In classical scrapie, accumulation of PrPSc within lymphoid and other tissues facilitates environmental contamination and spread of the disease within flocks. A major distinction can be made between classical scrapie strains that are readily spread within populations of susceptible sheep and goats and atypical (Nor-98) scrapie that has unique molecular and phenotype characteristics and is thought to occur spontaneously in older sheep or goats. This review provides an overview of classical and atypical scrapie with consideration of potential transmission of classical scrapie to other mammalian hosts.
Keywords
goats, prion diseases, prion protein, PRNP, PrPSc, review, scrapie, sheep, transmissible spongiform encephalopathies
Classical scrapie of sheep and goats is a transmissible spongiform encephalopathy (TSE) or prion disease that was first described nearly 300 years ago in the United Kingdom and other western European countries. Since then, classical scrapie has been reported throughout the world with the notable exception of Australia and New Zealand. Classical scrapie can spread within a flock. Within the United States alone, it brings economic losses due to decreased production, export loss, and increased cost for carcass disposal of up to US$20 million annually.157 Other examples of prion diseases include bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease in cervids, and Creutzfeldt-Jakob disease (CJD) in humans.
The UK BSE epidemic in the 1990s and evidence that consumption of BSE-contaminated meat causes variant CJD in humans169 greatly increased interest in the TSEs. More recently, recognition that prion diseases are proteinmisfolding diseases akin to Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis (ALS), and Huntington disease has fueled continued interest in prion diseases. The protein-misfolding diseases share the general mechanism where misfolded proteins catalyze a refolding of normal cellular protein that accumulates and is associated with neural degeneration.3,48,77,130,148,149 In the case of prion diseases, it is host-encoded cellular prion protein (PrPC) that is misfolded into a pathogenic form (PrPSc).131 In the absence of PrPC, such as PRNP knockout27,133 or PrPSc depletion,107 there is no new formation of PrPSc. Prion diseases are distinct from other protein-misfolding diseases because they are capable of potentially transmitting to susceptible individuals after natural exposure.
Pathogenesis
Two factors that play a major role in pathogenesis of classical scrapie are (1) the amino acid sequence of the prion protein as encoded by the prion protein gene (PRNP) and (2) the tissue distribution of the abnormal prion protein in infected hosts. PRNP genotype, especially amino acids at specific codons affecting prion folding, has a major effect on susceptibility to the classical scrapie agent and incubation periods. Tissue distribution of PrPSc, especially widespread distribution within lymphoid tissues, plays a major role in potential environmental contamination, allowing classical scrapie infection to spread within a flock.
Role of the Host Prion Protein Gene (PRNP)
Polymorphisms in the prion protein gene (PRNP) determine the amino acid sequence of the host’s prion protein and play a major role in relative susceptibility or resistance to classical scrapie. The PRNP polymorphisms in sheep are well defined, and increasing the incidence of resistant alleles is the cornerstone to eradication programs in many countries. The US scrapie eradication program has decreased the number of sheep that are scrapie positive at slaughter by 90%. 157
Sheep have 3 major polymorphic sites in PRNP that influence susceptibility to classical scrapie: codons 136, 154, and 171. Susceptibility to classical scrapie is associated with valine (V) 136, arginine (R) 154, and glutamine (Q) 171 (VRQ haplotype). In contrast, alanine (A) 136,54,82 histidine (H) 154,102 and arginine (R) 17155,119 confer resistance after natural exposure to classical scrapie. The ARR haplotype has the greatest benefit for scrapie resistance. Of the polymorphic sites, codon 171 has the most dominant influence where sheep with QQ171 are susceptible and RR171 are resistant.55,119 It is of note that a small number of cases of classical scrapie have been detected in sheep with the RR171 genotype,71,83 and sheep with the RR171 genotype are susceptible to the scrapie agent with a low attack rate and long incubation periods after experimental intracranial inoculation.87 In a minority of breeds, a third polymorphism, lysine (K) 171, occurs at low frequencies. Similarities in charge and structure suggest that K may behave similarly to R. Sheep with a QK171 genotype have prolonged incubation times relative to QQ171 sheep after intracranial inoculation.69 Studies recently completed at the National Animal Disease Center indicate that sheep with the KK171 genotype are susceptible to classical scrapie after intracranial inoculation but are resistant to the classical scrapie agent after oronasal inoculation (unpublished data).
Genotype-based breeding programs designed to increase the RR171 genotype in sheep populations have been used in conjunction with removing affected animals, to significantly reduce the number of classical scrapie cases in the United States and European Union. Indeed, study of infected sheep with the VRQ/ARR genotype shows that PrPSc is composed of over 90% Q171 prion protein.84 Sheep with the ARQ/ARR genotype are considered to have a low susceptibility to the scrapie agent64 and demonstrate mixed results in experimental studies where age and dose may play a role. Sheep with the ARQ/ARR genotype did not develop classical scrapie when orally inoculated as neonates with 0.1 g of brain material67 or when inoculated with 5 g of brain material at 5 to 6 months of age.60 However, 9 of 14 sheep with the ARQ/ARR genotype that were dosed with 5 g of brain material at 7 to 13 days of age had evidence of PrPSc accumulation in lymphoid tissues or brain.64 Several other polymorphisms that occur with lesser frequency may also increase resistance to classical scrapie: substitution of methionine (M) by threonine (T) at codon 112 (M112 T)60,100 or leucine (L) by phenylalanine (F) at codon 141 (L141F).60 Furthermore, codon 141 polymorphisms affect the phenotype of classical scrapie, including clinical presentation and molecular phenotypes.95
At least 50 PRNP polymorphisms have been described in goat breeds,1,36 but how they affect incubation times and susceptibility to classical scrapie is less defined than in sheep. Amino acid substitutions that may affect susceptibility to classical scrapie include G127 S,57 I142 M,56 N146S/D,124 H154 R,10,20,125,158 Q211 R,10 and Q222 K.2,10,158 The M142 polymorphism appears to prolong incubation period in experimental studies56 but not confer resistance to classical scrapie.99 Of 556 goats tested from infected herds in Cyprus, all positive animals were NN146 with no cases of classical scrapie diagnosed in goats that were either heterozygous or homozygous for S146 or D146.124 Goats with the H154, Q211, and K222 polymorphisms appear to be resistant to classical scrapie after oral exposure.99 In 1 recent report of classical scrapie in goats, all affected goats had at least 1 R211 codon, whereas none of the animals were homozygous for Q211 and only 2 heterozygotes were affected, suggesting a strong protective effect after natural exposure.152 Cases have been diagnosed in goats with 1 K222 allele but not in goats homozygous for the K222 allele.10,35 Further study of goats heterozygous for the K222 allele that were diagnosed with classical scrapie indicates that the PrPSc produced is almost entirely composed of the Q222 variant, perhaps due to effect of the additional positive charge of lysine interfering with PrPC to PrPSc conversion.108 A small number of goats homozygous for the K222 allele developed classical scrapie with extremely prolonged incubation periods after intracranial inoculation, suggesting that resistance to classical scrapie is not absolute.99
Tissue Distribution of PrPSc
Oral exposure of the classical scrapie agent in a contaminated environment is the major route of entry.6,45,65,134,161 After ingestion, PrPSc crosses the intact intestinal barrier at the level of the enterocytes and passes rapidly into lymph and blood, with M cells playing a critical role in prion uptake.43 These initial steps of PrPSc entry are identical in sheep of susceptible and resistant genotypes; however, only in susceptible sheep has PrPSc accumulation been shown to subsequently take place in the follicular dendritic cells of lymphoid structures.76,86 The first replication of the classical scrapie agent is within the gut-associated lymphoid tissues such as the ileal Peyer’s patches.6,86 The greater prominence of gut-associated lymphoid tissues in young animals is likely a factor in the increased relative susceptibility of younger compared to older sheep.129,153
After early replication of prions in gut-associated lymphoid tissues, PrPSc can be demonstrated in tonsil, spleen, and retropharyngeal and mesenteric lymph nodes116,132 for months before there is evidence of PrPSc in the brain. Widespread accumulation of PrPSc in lymphoid tissues during the asymptomatic phase may allow infected sheep to serve as a source of environmental prion contamination long before clinical signs occur as they excrete prions through saliva155 and feces.136
Within infected flocks, the risk of natural transmission is greatest from the ewe to offspring of susceptible genotypes through the placenta and placental fluids, resulting in vertical transmission to susceptible offspring and the potential for horizontal exposure at the time of lambing.156 PrPSc in the placenta is associated with the placentomes of genetically susceptible offspring7 or occurs in lesser amounts in the cotyledons associated with lambs of intermediately resistant genotypes (ARQ/ ARR) if they share the same uterine horn as a susceptible sibling.4 Infectivity of fetoplacental tissues may also lead to in utero transmission.150 Milk and colostrum represent an additional risk of transmission to susceptible offspring born to infected ewes.93,96
Goats that are infected with classical scrapie commonly come from herds that are comingled with sheep,117 but classical scrapie also spreads within herds containing only goats.172 Similar to what is observed in sheep with classical scrapie, assessment of goats with classical scrapie suggests widespread involvement of the lymphoreticular system.63 Accumulation of PrPSc in the brain of goats with classical scrapie appears to be affected by the PRNP genotype at codon 142, with M142 carriers showing earlier and more frequent accumulation of PrPSc in the brain as opposed to I142 homozygotes that accumulate PrPSc in the brain only after a large number of lymphoid tissues are affected.62 One factor that may play a major role in the rates of transmission of natural scrapie is that goats with classical scrapie have lower amounts of PrPSc in cotyledons than sheep;120 however, the amount present is adequate to support transmission to goats or sheep after oral exposure.138
Diagnosis of Scrapie
Before 1998, routine diagnosis of TSEs relied on the presence of vacuolation in the brainstem (Fig. 1a). Current diagnostics are based on detection of PrPSc, which can be done by enzymelinked immunosorbent assay (ELISA), immunohistochemistry, or western blot after a pretreatment such as proteinase K to allow for differentiation between PrPC and PrPSc. 110,121 Confirmatory diagnosis of classical scrapie by immunohistochemistry uses tissues from brainstem at the level of the obex (Fig. 1b),122 which is the first area of the brain to become immunoreactive in preclinical cases of classical scrapie.160 PrPSc is detectable by immunohistochemistry in both follicular dendritic cells and tingible body macrophages89 of the lymphoid follicles (Fig. 7), which allows for antemortem diagnosis using biopsies from the third eyelid,118 tonsil,139 or rectal mucosa (Fig. 9).59
Strains
TSE agents can exist in multiple strains that may exhibit different disease phenotypes and pathogenesis.30,143 Strains may be differentiated by clinical signs,126 incubation periods and lesion profiles in mouse models,23,51,52 cellular and neuroanatomical deposition of PrPSc, 24,61 molecular profile on western blot (the apparent molecular mass18 and/or glycoform ratios154 of PrPSc fragments),18 or reactivity to antibodies binding to different regions of PrPSc. 101 Strain properties are maintained through conformational differences in PrPSc as there are no amino acid sequence differences between PrPC and PrPSc. 19,104 The hypothesis that strains arise from differences in protein structure127 is supported by the reaction of different strain isolates to conformational antibodies135 and stability assays.163 It is not known how new strains arise, but it could be due to inherent conformational flexibility of the prion protein, presence of PRNP polymorphisms within a host species, or interspecies transmission events.115
Many scrapie strains are difficult to differentiate by western blot114 but can be differentiated by in-depth analysis of immunoreactivity patterns in multiple brain regions.61,113 A rarely identified sheep scrapie isolate referred to as CH1641 is of note because of an appearance on western blot with some similarities to BSE,80 such as a lower apparent molecular mass of the unglycosylated fragment.154 With the use of a panel of antibodies, CH1641 can be differentiated from BSE by immunohistochemistry85 or western blot.11,12,154 Furthermore, BSE readily transmits to conventional mice,26 whereas CH1641 does not.49 The most important strain designation to recognize in scrapie is between classical scrapie strains (described above) and the more recently described atypical scrapie.
Atypical Scrapie
Atypical (Nor98) scrapie was first detected in Norway in 1998,15,16 but retrospective studies indicate that this phenotype has been present since at least the 1980s.25,166 Atypical scrapie is different from classical scrapie in clinical presentation, molecular characteristics and distribution of PrPSc within infected sheep, genotypes affected, and epidemiology. Atypical scrapie has been identified throughout Europe,9,40,41,47,53 North America,106,111 New Zealand,91 and Australia.34 The worldwide distribution with similar incidence rates where detected supports a separate etiology from classical scrapie47 and that it is spontaneous109 or transmits very poorly under natural conditions.46 Thus, atypical scrapie is recognized as a separate, nonreportable disease by the World Organization for Animal Health (OIE).
The original report cited progressive ataxia as the predominant clinical sign,16 but most often these cases are detected during routine diagnostic screening of older cull animals (active surveillance) where neurologic findings are absent or ill-defined. The spongiform change and PrPSc deposition in atypical scrapie cases occur predominantly in the cortices of the cerebellum (Fig. 4) and the cerebrum (Fig. 6) rather than the medulla oblongata, as seen in classical sheep scrapie.113 Similarly, the immunohistochemistry pattern of PrPSc deposition for atypical scrapie is different from classical scrapie (Figs. 3, 5). PrPSc immunoreactivity in atypical scrapie is mild in the obex (Fig. 2) but more intense and widespread, especially in the cerebellum.113 As opposed to classical scrapie, cases of atypical scrapie demonstrate only 4 morphologic forms of immunoreactivity: fine granular, aggregates, linear, and perineuronal and distinctive immunoreactivity in the white matter.113 Fine granular and aggregate staining types are most common,113 are not cell associated, and may represent PrPSc near synapses or on distal neuronal processes.5 Intraneuronal staining does not occur in atypical scrapie, which may reflect the fact that atypical scrapie is more proteinase K sensitive than classical scrapie,92 suggesting a greater ability of cells to digest the abnormal prion. Current diagnostic methods fail to demonstrate PrPSc in peripheral or lymphoid tissues of sheep affected with atypical scrapie (Figs. 8, 10);8,16 however, infectivity has been demonstrated in ileum, spleen, skeletal muscle, lymphoid tissues, and peripheral nerves by bioassay.8,146
A major diagnostic feature of atypical TSEs are short proteinase K–resistant fragments that are associated with poor transmissibility and immunoreactivity largely limited to synapses.98 Cases of atypical scrapie are distinguished by a 5-band profile on western blot with a prominent lower band at approximately 11 to 12 kDa,9,15,70,92 whereas classical scrapie has the nonglycosylated band at approximately 19 to 21 kDa (Fig. 11).75,80,147 In addition, the PrPSc of atypical scrapie is relatively sensitive to proteinases.92
PRNP genotype is a major factor in atypical scrapie cases with polymorphisms at codons 141 (F, phenylalanine) and 154 (H) being highly associated with identified cases. Sheep in the original report carried at least 1 AHQ allele.16 Atypical scrapie has been transmitted experimentally to AHQ sheep by the intracranial145 and oral146 routes. An increased risk of atypical scrapie has also been identified in sheep with the AF141RQ haplotype.137 Atypical scrapie does experimentally transmit to sheep with the AL141RQ haplotype but with very long incubation periods without clinical signs.123 Furthermore, sheep with the ARR haplotype, which confers resistance to classical scrapie and is the cornerstone of genotype-based eradication programs, do not appear to be protected against developing atypical scrapie.41,137
Atypical scrapie has also been reported in goats,103,142 where the molecular profile on western blot is similar to atypical scrapie in sheep, but the distribution of lesions within the brain is more rostral (thalamus and midbrain) than atypical scrapie of sheep.142 Similar to sheep with atypical scrapie, histidine substitution at PRNP codon 154 is a risk factor for atypical scrapie in goats,32 and PrPSc has not been demonstrated in the lymphoid tissues of affected goats.142
Interspecies Transmission
Experimental interspecies transmission of prion agents provides valuable information about potential host ranges. Unsuccessful attempts at interspecies transmission led to the concept of a species barrier, an influence on prion transmission due to mismatches between host and recipient prion amino acid sequence and the resulting structures and folding.17,31,78,79,112,140,162 Species barrier can manifest as complete lack of susceptibility, incomplete attack rates, or prolonged incubation times. Interspecies transmission studies are done to fully assess potential risks to animal health, and potential risks to human health can be studied through the use of transgenic mice expressing human PRNP.
Classical scrapie has been experimentally transmitted to numerous omnivorous species after intracranial inoculation, including European bank voles (Myodes glareolus),42,128 meadow voles (Microtus pennsylvanicus),28 raccoons,72,74 and pigs.66 With the exception of European bank voles, which express PRNP that is permissive to many donor strains,165 these studies suggest a substantial species barrier to infection by natural routes.
One hypothesis for the origin of BSE in the United Kingdom was that it resulted from the passage of a scrapie-like disease into the cattle population168 through the feeding of ruminantderived meat and bone meal (MBM). Experimental studies performed in the United States and United Kingdom demonstrated that classical scrapie does not transmit to cattle by the oral route of inoculation,37,97 and successful transmission after intracranial inoculation results in a disease that is distinguishable from BSE by clinical signs, the molecular profile of PrPSc, and PrPSc deposition patterns in brain sections.21,38,39,94 These studies, however, are far from exhaustive and leave untested the possibilities that prion protein genotype of the donor or transmission of another prion agent such as CH1641 scrapie or atypical scrapie to cattle could have been the origin of BSE.
The agent of BSE has been demonstrated to transmit to other species, including humans.26,141 Small ruminants were likely exposed to the same sources of BSE infectivity as cattle, creating concern that the BSE agent could be misdiagnosed as scrapie90 and represent an additional risk to human health. Experimental studies demonstrate that the agent of BSE transmits to sheep, results in a wide distribution of PrPSc in peripheral tissues and brain,14,50,105 and can transmit horizontally between sheep.13 Most cases of classical sheep scrapie appear to be invariant in western blot profile that is differentiable from BSE,81 but BSE in sheep has some similarities to the CH1641 strain of scrapie (described above). Despite significant surveillance efforts, no natural cases of BSE have been described in sheep, but 2 natural cases of BSE have been identified in goats.44,88,151 One hypothesis as to why these cases have only been identified in goats is that goats are more intensively managed and had higher exposure to contaminated feed concentrates,151 similar to the explanation of why the incidence of BSE is higher in dairy herds relative to beef herds.167
Chronic wasting disease (CWD) is a naturally occurring prion disease of cervids with strong similarities to classical scrapie, including widespread accumulation of PrPSc in the lymphoid and nervous tissues of affected animals.114,144 Chronic wasting disease was first identified in captive cervids, and one hypothesis is that it originated as a cross-species transmission of the classical sheep scrapie agent.170 Experimental studies in white-tailed deer lend support to this hypothesis: inoculation of white-tailed deer results in a 100% attack rate after either intracranial or oronasal inoculation.68 Furthermore, PrPSc is distributed throughout the lymphoid tissues, and samples collected from brainstem have a CWD-like western blot pattern.68 The classical scrapie agent was transmitted to Rocky Mountain elk (Cervus elaphus nelsoni) after experimental intracranial inoculation; however, the results suggest elk are not likely to be susceptible to the classical scrapie agent by more natural routes of exposure. After intracranial inoculation with the classical sheep scrapie agent, only 3 of 6 animals developed neurologic signs, and accumulation of PrPSc was limited to the central nervous system without spreading to lymphoid tissues.73
Continued research is needed to clarify the potential risks of the scrapie agent to human health. There is no evidence from epidemiologic studies that the scrapie agent has ever transmitted to humans,22,159 and studies using transgenic mice that express wild-type levels of human PRNP have failed to demonstrate transmission of the classical58 or atypical164,171 scrapie agents. However, the classical scrapie agent has transmitted to cynomolgus macaques (with a slightly different prion protein amino acid sequence than humans)33 and mice overexpressing human PRNP.29 Western blot analysis of brain tissues from these studies demonstrates a molecular profile similar to sporadic CJD, suggesting that ongoing surveillance for potential interspecies transmission events and further studies to clarify potential risks of scrapie transmission to humans are critical.
Acknowledgements
Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article. ORCID iD Justin J. Greenlee http://orcid.org/0000-0003-2202-3054
***> Thus, atypical scrapie is recognized as a separate, nonreportable disease by the World Organization for Animal Health (OIE).
''as usual, OIE USDA et al put cart before horse, and put human and animal life at risk...terry''
Atypical scrapie has been transmitted experimentally to AHQ sheep by the intracranial145 and oral146 routes. An increased risk of atypical scrapie has also been identified in sheep with the AF141RQ haplotype.137 Atypical scrapie does experimentally transmit to sheep with the AL141RQ haplotype but with very long incubation periods without clinical signs.123 Furthermore, sheep with the ARR haplotype, which confers resistance to classical scrapie and is the cornerstone of genotype-based eradication programs, do not appear to be protected against developing atypical scrapie.41,137
Atypical scrapie has also been reported in goats,103,142 where the molecular profile on western blot is similar to atypical scrapie in sheep, but the distribution of lesions within the brain is more rostral (thalamus and midbrain) than atypical scrapie of sheep.142 Similar to sheep with atypical scrapie, histidine substitution at PRNP codon 154 is a risk factor for atypical scrapie in goats,32 and PrPSc has not been demonstrated in the lymphoid tissues of affected goats.142
end...see;
A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway
***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)
Abstract
Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice.
*** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.
OR
***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.
OR
*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
OR here;
*** The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
VARIABLY PROTEASE-SENSITVE PRIONOPATHY IS TRANSMISSIBLE ...price of prion poker goes up again $
OR-10: Variably protease-sensitive prionopathy is transmissible in bank voles
Romolo Nonno,1 Michele Di Bari,1 Laura Pirisinu,1 Claudia D’Agostino,1 Stefano Marcon,1 Geraldina Riccardi,1 Gabriele Vaccari,1 Piero Parchi,2 Wenquan Zou,3 Pierluigi Gambetti,3 Umberto Agrimi1 1Istituto Superiore di Sanità; Rome, Italy; 2Dipartimento di Scienze Neurologiche, Università di Bologna; Bologna, Italy; 3Case Western Reserve University; Cleveland, OH USA
Background. Variably protease-sensitive prionopathy (VPSPr) is a recently described “sporadic”neurodegenerative disease involving prion protein aggregation, which has clinical similarities with non-Alzheimer dementias, such as fronto-temporal dementia. Currently, 30 cases of VPSPr have been reported in Europe and USA, of which 19 cases were homozygous for valine at codon 129 of the prion protein (VV), 8 were MV and 3 were MM. A distinctive feature of VPSPr is the electrophoretic pattern of PrPSc after digestion with proteinase K (PK). After PK-treatment, PrP from VPSPr forms a ladder-like electrophoretic pattern similar to that described in GSS cases. The clinical and pathological features of VPSPr raised the question of the correct classification of VPSPr among prion diseases or other forms of neurodegenerative disorders. Here we report preliminary data on the transmissibility and pathological features of VPSPr cases in bank voles.
Materials and Methods. Seven VPSPr cases were inoculated in two genetic lines of bank voles, carrying either methionine or isoleucine at codon 109 of the prion protein (named BvM109 and BvI109, respectively). Among the VPSPr cases selected, 2 were VV at PrP codon 129, 3 were MV and 2 were MM. Clinical diagnosis in voles was confirmed by brain pathological assessment and western blot for PK-resistant PrPSc (PrPres) with mAbs SAF32, SAF84, 12B2 and 9A2.
Results. To date, 2 VPSPr cases (1 MV and 1 MM) gave positive transmission in BvM109. Overall, 3 voles were positive with survival time between 290 and 588 d post inoculation (d.p.i.). All positive voles accumulated PrPres in the form of the typical PrP27–30, which was indistinguishable to that previously observed in BvM109 inoculated with sCJDMM1 cases.
In BvI109, 3 VPSPr cases (2 VV and 1 MM) showed positive transmission until now. Overall, 5 voles were positive with survival time between 281 and 596 d.p.i.. In contrast to what observed in BvM109, all BvI109 showed a GSS-like PrPSc electrophoretic pattern, characterized by low molecular weight PrPres. These PrPres fragments were positive with mAb 9A2 and 12B2, while being negative with SAF32 and SAF84, suggesting that they are cleaved at both the C-terminus and the N-terminus. Second passages are in progress from these first successful transmissions.
Conclusions. Preliminary results from transmission studies in bank voles strongly support the notion that VPSPr is a transmissible prion disease. Interestingly, VPSPr undergoes divergent evolution in the two genetic lines of voles, with sCJD-like features in BvM109 and GSS-like properties in BvI109.
The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
***> P.108: Successful oral challenge of adult cattle with classical BSE
Sandor Dudas1,*, Kristina Santiago-Mateo1, Tammy Pickles1, Catherine Graham2, and Stefanie Czub1 1Canadian Food Inspection Agency; NCAD Lethbridge; Lethbridge, Alberta, Canada; 2Nova Scotia Department of Agriculture; Pathology Laboratory; Truro, Nova Scotia, Canada
Classical Bovine spongiform encephalopathy (C-type BSE) is a feed- and food-borne fatal neurological disease which can be orally transmitted to cattle and humans. Due to the presence of contaminated milk replacer, it is generally assumed that cattle become infected early in life as calves and then succumb to disease as adults. Here we challenged three 14 months old cattle per-orally with 100 grams of C-type BSE brain to investigate age-related susceptibility or resistance. During incubation, the animals were sampled monthly for blood and feces and subjected to standardized testing to identify changes related to neurological disease. At 53 months post exposure, progressive signs of central nervous system disease were observed in these 3 animals, and they were euthanized. Two of the C-BSE animals tested strongly positive using standard BSE rapid tests, however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE. Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
***Our study demonstrates susceptibility of adult cattle to oral transmission of classical BSE.
We are further examining explanations for the unusual disease presentation in the third challenged animal.
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
In 2006, a case of H-type bovine spongiform encephalopathy (BSE) was reported in a cow with a previously unreported prion protein polymorphism (E211K).
The E211K polymorphism is heritable and homologous to the E200K mutation in humans that is the most frequent PRNP mutation associated with familial Creutzfeldt-Jakob disease.
Although the prevalence of the E211K polymorphism is low, cattle carrying the K211 allele develop H-type BSE with a rapid onset after experimental inoculation by the intracranial route.
The purpose of this study was to investigate whether the agents of H-type BSE or H-type BSE associated with the E211K polymorphism transmit to wild type cattle or cattle with the K211 allele after oronasal exposure.
Wild type (EE211) or heterozygous (EK211) cattle were oronasally inoculated with either H-type BSE from the 2004 US Htype BSE case (n=3) or from the 2006 US H-type case associated with the E211K polymorphism (n=4) using 10% w/v brain homogenates.
Cattle were observed daily throughout the course of the experiment for the development of clinical signs.
At approximately 50 months post-inoculation, one steer (EK211 inoculated with E211K associated H-BSE) developed clinical signs including inattentiveness, loss of body condition, weakness, ataxia, and muscle fasciculations and was euthanized.
Enzyme immunoassay confirmed that abundant misfolded protein was present in the brainstem, and immunohistochemistry demonstrated PrPSc throughout the brain.
Western blot analysis of brain tissue from the clinically affected steer was consistent with the E211K H-type BSE inoculum.
With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route.
These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
PRION 2018 CONFERENCE ABSTRACT
WEDNESDAY, AUGUST 15, 2018
***> The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge
MONDAY, JANUARY 09, 2017
Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle
CDC Volume 23, Number 2—February 2017
*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy
Ivett Ackermann1 , Anne Balkema‑Buschmann1 , Reiner Ulrich2 , Kerstin Tauscher2 , James C. Shawulu1 , Markus Keller1 , Olanrewaju I. Fatola1 , Paul Brown3 and Martin H. Groschup1*
Abstract
In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earli‑ est time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplifcation (PMCA) assays. For the frst time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indi‑ cate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.
In summary, our study demonstrates for the frst time PrPBSE (by PMCA) and prion infectivity (by mouse bioassay) in the ileal Peyer’s patch (IPP) of young calves as early as 2 months after infection. From 4 mpi nearly all calves showed PrPBSE positive IPP follicles (by IHC), even with PrPBSE accumulation detectable in FDCs in some animals. Finally, our results confrm the IPP as the early port of entry for the BSE agent and a site of initial propagation of PrPBSE and infectivity during the early pathogenesis of the disease. Terefore, our study supports the recommendation to remove the last four metres of the small intestine (distal ileum) at slaughter, as designated by current legal requirements for countries with a controlled BSE risk status, as an essential measure for consumer and public health protection.
IBNC Tauopathy or TSE Prion disease, it appears, no one is sure
Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT
***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.
***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***
http://www.plosone.org/annotation/listThread.action?root=86610
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge
Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
reading up on this study from Prion 2018 Conference, very important findings ;
***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route.
***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
PRION 2018 CONFERENCE ABSTRACT
WEDNESDAY, OCTOBER 24, 2018
Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip.....
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip.....
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip.....
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip.....
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip.....
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip.....
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip.....
TUESDAY, OCTOBER 29, 2019
America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion
the feds just released this statement and you should read this very carefully about the mad cow feed ban that never was, and still isn't, and why this is so important, since USDA APHIS ARS Scientist recent transmitted Chronic Wasting Disease CWD TSE Prion, BY ORAL ROUTES, to PIGS AND SHEEP. this is terrible news, and proves the mad cow feed ban never worked, especially since it really never existed;
ponder this; ***> Adriano Aguzzi...''We even showed that a prion AEROSOL will infect 100% of mice within 10 seconds of exposure''
SUNDAY, SEPTEMBER 1, 2019
FDA Reports on VFD Compliance
Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.
***> cattle, pigs, sheep, cwd, tse, prion, oh my!
***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006).
Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 6>6>
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period.
This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
CDC
New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES
Mad Camel Disease
Volume 24, Number 6—June 2018 Research
Prion Disease in Dromedary Camels, Algeria Abstract
Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.
SNIP...
The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep. In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.
***> IMPORTS AND EXPORTS <***
***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***
THURSDAY, AUGUST 08, 2019
Raccoons accumulate PrPSc after intracranial inoculation with the agents of chronic wasting disease (CWD) or transmissible mink encephalopathy (TME) but not atypical scrapie
SATURDAY, JUNE 1, 2019
***> Traceability of animal protein byproducts in ruminants by multivariate analysis of isotope ratio mass spectrometry to prevent transmission of prion diseases
ZOONOSIS OF SCRAPIE TSE PRION
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***> why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man.
***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough.
***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***
Transmission of scrapie prions to primate after an extended silent incubation period
Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
SNIP...
Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.
The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.
We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.
Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.
The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.
Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.
Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.
Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.
Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.
In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
Chronic Wasting Disease CWD TSE Prion
Cervid to human prion transmission
Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATEhere is the latest;PRION 2018 CONFERENCE Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.. ***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <*** https://prion2018.org/READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ; P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.. SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states. AND ANOTHER STUDY; P172 Peripheral Neuropathy in Patients with Prion Disease Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.. IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, AND included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), AND THAT The Majority of cases were male (60%), AND half of them had exposure to wild game. snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry https://prion2018.org/wp-content/uploads/2018/05/program.pdf https://prion2018.org/THURSDAY, OCTOBER 04, 2018 Cervid to human prion transmission 5R01NS088604-04 Update http://grantome.com/grant/NIH/R01-NS088604-04 http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.htmlsnip...full text;
SATURDAY, FEBRUARY 09, 2019
Experts: Yes, chronic wasting disease in deer is a public health issue — for people
FRIDAY, JULY 26, 2019
Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species
WEDNESDAY, MAY 29, 2019
Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures USDA HERE'S YOUR SIGN!
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.
PMID: 6997404
Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"
Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).
Gibbs CJ Jr, Gajdusek DC.
Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK
National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
reference...
RB3.20
TRANSMISSION TO CHIMPANZEES
1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.
2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :
3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.
4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.
5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.
R. Bradley
23 September 1990
CVO (+Mr Wells' comments)
Dr T W A Little
Dr B J Shreeve
90/9.23/1.1.
IN CONFIDENCE CHIMPANZEES
CODE 18-77 Reference RB3.46
Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.
She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.
Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.
We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists ormedia. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.
The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.
I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.
Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.
CVO cc Dr T Dr B W A Little Dr B J Shreeve
R Bradley
26 September 1990
90/9.26/3.2
Possible Changes in the Scrapie Agent
I AM NOT AN ADVOCATE FOR EXPERIMENTAL USE OF CHIMPANZEES AS TEST VICTIMS. However, I would be an advocate for (and i have said this before over the years), of death row inmates being used. Their families could be compensated with a monetary award, and the death row inmates could do one final thing for the good of humanity. There going to die anyway. just my opinion. ...TSS-2011
POLICY - RESTRICTED
CREUTZFELDT-JAKOB DISEASE: 3RD ANNUAL REPORT OF THE UK SURVEILLANCE UNIT
1. This submission, which has been agreed with colleagues in HEF(M). alerts PS(L) to the contents of the forthcoming annual report of the CJD Surveillance Unit and presents options for publication. It also highlights concern over the presentation of results which could be misrepresented by the media and others as evidence of a lilnk between CJD and the consumption of veal. ...
RECOMMENDATION
2. PS(L) is invited to agree the recommendation at para 13.
PROBLEM
7. The main findings in the case-control study were STATISTICALLY SIGNIFICANT ASSOCIATIONS BETWEEN CONSUMPTION OF VEAL OR VENISON AND THE DEVELOPMENT OF CJD (INCREASED RISKS OF 2-13x). There was also evidence of a dose-response relationship between dietary exposure and development of the disease. (Last year's findings showed an apparent association between eating black pudding and risk of CJD which was neither statistically significant nor biologically plausible - interestingly, this has not been (replicated was marked out with something i cannot read), and then this complete sentence was marked through to be replaced ;
THIS YEAR'S FINDINGS SHOW A NUMBER OF ASSOCIATIONS BUT THE STRONGEST IS FOR VEAL.
IP PS(L) wishes to probe this further we think it best to explain the matter VERBALLY. The problem is how to present the findings in this year's annual report in a way which avoids unnecessary public alarm and limits the scope for media scare stores. (or the facts...TSS)
This is of considerable concern given recent development. In particular Ministers will be particularly concerned about the European dimension given the recent troubles with the Germans.
9. DH doctors advise - and we understand Dr Wills agrees - that the association the study found between the developments of CJD and veal consumption cannot be regarded as demonstrating a causal relationship or give any reason to change the advice that eating beef and veal is safe. IF PS(L) wishes to probe this further we think it best to explain the matter verbally. The problem is how to present the findings in this year's annual report in a way which avoids unnecessary public alarm and limits the scope for media scare stories.
Next steps ...
snip... full text ;
PROBLEM
7. The main findings in the case-control study were STATISTICALLY SIGNIFICANT ASSOCIATIONS BETWEEN CONSUMPTION OF VEAL OR VENISON AND THE DEVELOPMENT OF CJD (INCREASED RISKS OF 2-13x). There was also evidence of a dose-response relationship between dietary exposure and development of the disease. (Last year's findings showed an apparent association between eating black pudding and risk of CJD which was neither statistically significant nor biologically plausible - interestingly, this has not been (replicated was marked out with something i cannot read), and then this complete sentence was marked through to be replaced ;
see watered down report here ;
Lessons from BSE
4. In retrospect, a problem of scrapie transmission in feedstuffs was perhaps predictable.
Poultry feeding and Fish farming may be particular areas worth studying...
IN CONFIDENCE
NOT FOR PUBLICATION
STRICTLY PRIVATE AND CONFIDENTIAL 25, AUGUST 1995
snip...
To minimise the risk of farmers' claims for compensation from feed compounders.
To minimise the potential damage to compound feed markets through adverse publicity.
To maximise freedom of action for feed compounders, notably by maintaining the availability of meat and bone meal as a raw material in animal feeds, and ensuring time is available to make any changes which may be required.
snip...
THE FUTURE
4..........
MAFF remains under pressure in Brussels and is not skilled at handling potentially explosive issues.
5. Tests _may_ show that ruminant feeds have been sold which contain illegal traces of ruminant protein. More likely, a few positive test results will turn up but proof that a particular feed mill knowingly supplied it to a particular farm will be difficult if not impossible.
6. The threat remains real and it will be some years before feed compounders are free of it. The longer we can avoid any direct linkage between feed milling _practices_ and actual BSE cases, the more likely it is that serious damage can be avoided. ...
Differentiation of ruminant transmissible spongiform encephalopathy isolate types, including bovine spongiform encephalopathy and CH1641 scrapie
J. G. Jacobs1, M. Sauer2, L. J. M. van Keulen1, Y. Tang2, A. Bossers1 and J. P. M. Langeveld1
1 Department of Infection Biology, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands 2 Department of Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
Correspondence J. P. M. Langeveld jan.langeveld@wur.nl
With increased awareness of the diversity of transmissible spongiform encephalopathy (TSE) strains in the ruminant population, comes an appreciation of the need for improved methods of differential diagnosis. Exposure to bovine spongiform encephalopathy (BSE) has been associated with the human TSE, variant Creutzfeldt–Jakob disease, emphasizing the necessity in distinguishing low-risk TSE types from BSE. TSE type discrimination in ruminants such as cattle, sheep, goats and deer, requires the application of several prion protein (PrP)-specific antibodies in parallel immunochemical tests on brain homogenates or tissue sections from infected animals. This study uses in a single incubation step, three PrP-specific antibodies and fluorescent Alexa dye-labelled anti-mouse Fabs on a Western blot. The usual amount of brain tissue needed is 0.5 mg. This multiplex application of antibodies directed towards three different PrP epitopes enabled differential diagnosis of all established main features of classical scrapie, BSE and Nor98-like scrapie in sheep and goats, as well as the currently known BSE types C, H and L in cattle. Moreover, due to an antibody-dependent dual PrP-banding pattern, for the first time CH1641 scrapie of sheep can be reliably discriminated from the other TSE isolate types in sheep.
Wednesday, February 16, 2011
IN CONFIDENCE
SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
Among ovine TSEs, classical scrapie and Nor98 were discriminated from both Norwegian moose isolates, while CH1641 samples had molecular features partially overlapping with the moose, i.e. a low MW PrPres and the presence of CTF13. In contrast, moose PrPSc did not overlap with any bovine PrPSc. Indeed, the MW of moose PrPres was lower than H-BSE and similar to C-BSE and L-BSE PrPres, but the two bovine prions lacked additional PrPres fragments.
Conclusions: Unexpectedly, PrPSc from Norwegian moose revealed features substantially different from all other CWD isolates. The PrPSc pattern of Norwegian moose was also different from Canadian moose, suggesting that the variant PrPSc type observed does not simply reflect a host factor and could represent a new CWD strain. Furthermore, PrPSc of Norwegian moose can be easily discriminated from all BSE types, classical scrapie and Nor98, while showing significant overlapping only with CH1641. Bioassay in voles will help to clarify whether the different PrPSc types observed reflect the presence of a new CWD strain in Norwegian moose, and its relationships with known animal TSEs.
References: 1Benestad et al, Vet Res (2016}47:88
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
please see;
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice
Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2
1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO
Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.
Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.
Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.
Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
snip...
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
snip...see ;
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD
FRIDAY, NOVEMBER 08, 2019
EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
TUESDAY, OCTOBER 29, 2019
USDA Abruptly Halts Animal ID Plan As Experts Testify USA Underprepared For Bioterrorism Threats Such As BSE TSE Prion aka Mad Cow Disease
FRIDAY, OCTOBER 11, 2019
CattleTrace to Host First-Ever Industry Symposium
TUESDAY, MARCH 26, 2019
USDA ARS 2018 USAHA RESOLUTIONS TWO PRONGED APPROACH NEEDED FOR ADVANCING CATTLE TRACEABILITY
RESOLUTION NUMBER: 34 APPROVED
SOURCE: COMMITTEE ON CATTLE AND BISON
MONDAY, MAY 20, 2019
Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeys
SUNDAY, APRIL 14, 2019
Estimation of prion infectivity in tissues of cattle infected with atypical BSE by real time-quaking induced conversion assay
WEDNESDAY, APRIL 24, 2019
USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019
WEDNESDAY, JULY 31, 2019
The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
FRIDAY, OCTOBER 25, 2019
27th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE IN THE UK
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor:
In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally..
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.
doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk
Tracking spongiform encephalopathies in North America
Xavier Bosch
Available online 29 July 2003.
Volume 3, Issue 8, August 2003, Page 463
“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem..” ...
January 28, 2003; 60 (2) VIEWS & REVIEWS
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Ermias D. Belay, Ryan A. Maddox, Pierluigi Gambetti, Lawrence B. Schonberger
Abstract
Transmissible spongiform encephalopathies (TSEs) attracted increased attention in the mid-1980s because of the emergence among UK cattle of bovine spongiform encephalopathy (BSE), which has been shown to be transmitted to humans, causing a variant form of Creutzfeldt-Jakob disease (vCJD). The BSE outbreak has been reported in 19 European countries, Israel, and Japan, and human cases have so far been identified in four European countries, and more recently in a Canadian resident and a US resident who each lived in Britain during the BSE outbreak. To monitor the occurrence of emerging forms of CJD, such as vCJD, in the United States, the Centers for Disease Control and Prevention has been conducting surveillance for human TSEs through several mechanisms, including the establishment of the National Prion Disease Pathology Surveillance Center. Physicians are encouraged to maintain a high index of suspicion for vCJD and use the free services of the pathology center to assess the neuropathology of clinically diagnosed and suspected cases of CJD or other TSEs.
Received May 7, 2002. Accepted August 28, 2002.
RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Terry S. Singeltary, retired (medically)
Published March 26, 2003
26 March 2003
Terry S. Singeltary, retired (medically) CJD WATCH
I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?
Reply to Singletary Ryan A. Maddox, MPH Other Contributors: Published March 26, 2003
Mr. Singletary raises several issues related to current Creutzfeldt- Jakob disease (CJD) surveillance activities. Although CJD is not a notifiable disease in most states, its unique characteristics, particularly its invariably fatal outcome within usually a year of onset, make routine mortality surveillance a useful surrogate for ongoing CJD surveillance.[1] In addition, because CJD is least accurately diagnosed early in the course of illness, notifiable-disease surveillance could be less accurate than, if not duplicative of, current mortality surveillance.[1] However, in states where making CJD officially notifiable would meaningfully facilitate the collection of data to monitor for variant CJD (vCJD) or other emerging prion diseases, CDC encourages the designation of CJD as a notifiable disease.[1] Moreover, CDC encourages physicians to report any diagnosed or suspected CJD cases that may be of special public health importance (e.g...., vCJD, iatrogenic CJD, unusual CJD clusters).
As noted in our article, strong evidence is lacking for a causal link between chronic wasting disease (CWD) of deer and elk and human disease,[2] but only limited data seeking such evidence exist. Overall, the previously published case-control studies that have evaluated environmental sources of infection for sporadic CJD have not consistently identified strong evidence for a common risk factor.[3] However, the power of a case-control study to detect a rare cause of CJD is limited, particularly given the relatively small number of subjects generally involved and its long incubation period, which may last for decades. Because only a very small proportion of the US population has been exposed to CWD, a targeted surveillance and investigation of unusual cases or case clusters of prion diseases among persons at increased risk of exposure to CWD is a more efficient approach to detecting the possible transmission of CWD to humans. In collaboration with appropriate local and state health departments and the National Prion Disease Pathology Surveillance Center, CDC is facilitating or conducting such surveillance and case- investigations, including related laboratory studies to characterize CJD and CWD prions.
Mr. Singletary also expresses concern over a recent publication by Asante and colleagues indicating the possibility that some sporadic CJD cases may be attributable to bovine spongiform encephalopathy (BSE).[4] The authors reported that transgenic mice expressing human prion protein homozygous for methionine at codon 129, when inoculated with BSE prions, developed a molecular phenotype consistent with a subtype of sporadic CJD. Although the authors implied that BSE might cause a sporadic CJD-like illness among persons homozygous for methionine, the results of their research with mice do not necessarily directly apply to the transmission of BSE to humans. If BSE causes a sporadic CJD-like illness in humans, an increase in sporadic CJD cases would be expected to first occur in the United Kingdom, where the vast majority of vCJD cases have been reported. In the United Kingdom during 1997 through 2002, however, the overall average annual mortality rate for sporadic CJD was not elevated; it was about 1 case per million population per year. In addition, during this most recent 6-year period following the first published description of vCJD in 1996, there was no increasing trend in the reported annual number of UK sporadic CJD deaths.[3, 5] Furthermore, surveillance in the UK has shown no increase in the proportion of sporadic CJD cases that are homozygous for methionine (Will RG, National CJD Surveillance Unit, United Kingdom, 2003; personal communication)..
References
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Diagnosis and reporting of Creutzfeldt-Jakob disease. JAMA 2001;285:733-734.
2. Belay ED, Maddox RA, Gambetti P, Schonberger LB. Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States.. Neurology 2003;60:176-181.
3. Belay ED. Transmissible spongiform encephalopathies in humans. Annu Rev Microbiol 1999;53:283-314.
4. Asante EA, Linehan JM, Desbruslais M, et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 2002;21:6358-6366.
Competing Interests: None declared.
Volume 2: Science
4. The link between BSE and vCJD
Summary 4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD.
***>It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people...end
BSE INQUIRY
SATURDAY, JUNE 23, 2018
CDC
***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification
Volume 24, Number 7—July 2018 Dispatch
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
2 January 2000 British Medical Journal U.S.
Scientist should be concerned with a CJD epidemic in the U.S., as well
15 November 1999 British Medical Journal hvCJD in the USA * BSE in U.S..
FRIDAY, NOVEMBER 08, 2019
EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
THURSDAY, SEPTEMBER 26, 2019
Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics
U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001
Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001
Date: Tue, 9 Jan 2001 16:49:00 -0800
From: "Terry S. Singeltary Sr."
Reply-To: Bovine Spongiform Encephalopathy
snip...
[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.
[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]
[host Richard] could you repeat the question?
[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[not sure whom ask this] what group are you with?
[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.
[not sure who is speaking] could you please disconnect Mr. Singeltary
[TSS] you are not going to answer my question?
[not sure whom speaking] NO
snip...see full archive and more of this;
FRIDAY, OCTOBER 25, 2019
27th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE
Terry S. Singeltary Sr.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home