Pages

Wednesday, April 21, 2021

A Texas Rancher Cloned Deer For Years. Some Lawmakers Want To Legalize It (what about cwd tse prion)?

re-A Texas Rancher Cloned Deer For Years. Some Lawmakers Want To Legalize It

from a recent study;

''However, our current finding of skin PrPSc in cohabitating prion-inoculated and PBS-inoculated control animals, as well as the occurrence of brain PrPSc in the PBS-inoculated animals at the late stage suggests that prion contamination of skin may be a potential route of transmission of prion diseases.''

Greetings Huffington Post, Mr. Planas et al, nothing surprised me anymore in Texas, where Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion.

these idiots playing God sure are mucking things up from state to state with these breeder game farms and cwd. i remember the BSE mad cow crisis and the risk factors from what they call 'super ovulation'. google that.

''However, our current finding of skin PrPSc in cohabitating prion-inoculated and PBS-inoculated control animals, as well as the occurrence of brain PrPSc in the PBS-inoculated animals at the late stage suggests that prion contamination of skin may be a potential route of transmission of prion diseases.''
also, you better investigate zoonosis, a recent grant study is complete, and seems the news from that is not good. nobody seems interested in that anymore...kind regards, terry

in reply to;

POLITICS 04/21/2021 05:45 am ET Updated 1 hour ago

A Texas Rancher Cloned Deer For Years. Some Lawmakers Want To Legalize It.

The Lone Star State has long muddled the line between hunting and farming. Now cloning may help game ranches breed big bucks. headshot

By Roque Planas

AUSTIN, Texas — A Republican legislator wants to legalize deer cloning, and is accusing Texas wildlife officials of using the COVID-19 pandemic to undermine a breeder’s attempts to spawn big bucks.

In a state that often blurs the distinction between hunting and farming, many game ranches have looked to science ― from supplemental protein to artificial insemination ― to grow bigger game for the deep-pocketed customers willing to pay well over $10,000 to shoot them. The proposed law, from state Rep. Matt Krause of Fort Worth, would legalize cloning to help in that endeavor.

But the prospect of commercial deer cloning has raised concern from wildlife officials, who say a rancher cloned and sold deer for years without the state’s knowledge or authorization.

Krause filed the bill on behalf of Jason Abraham of Canadian, in Texas, who told HuffPost he has cloned somewhere between 35 and 40 deer over the past decade. The Texas Parks and Wildlife Department issued a regulation forbidding deer cloning last November.

Officials say they thought their rules always barred commercial cloning, but decided to make the prohibition more specific after hearing from unspecified sources that breeders interpreted the rules as permitting cloning.

Abraham thinks they were specifically targeting him. “We did this for 12 years, making clones,” he said. “They put me out of business overnight.”

Legalizing the practice, wildlife officials say, threatens to introduce unknown biological variables into the state’s wildlife populations, and could make it harder to track chronic wasting disease, or CWD, a severe prion illness spreading across the country’s deer herds.

HuffPost was not able to verify if any other states allow deer cloning. Texas officials said they did not know, either, and deer conservation organizations said they don’t track the information. Asked about federal oversight, the U.S. Fish and Wildlife Service referred HuffPost to the Department of Agriculture’s Animal and Plant Health Inspection Service, which in turn said to ask the Food and Drug Administration. An FDA spokesperson said the agency has no rules governing the cloning of either wild or captive deer.

Abraham said his is the only business in the country cloning deer ― or rather, it was, until Texas officials shut him down last year. 

Krause, the state representative, described the action as regulatory overreach that threatens to upend the deer breeding business, a $1.6 billion annual industry in Texas. 

“We need to get back to a place where the legislature gives their input on some of these big, wholesale changes, including the prohibition of deer cloning,” Krause said at a March 29 committee hearing.

Krause’s bill sailed through committee on a 6-2 vote, but needs approval from both houses of the state Legislature and the governor to become law. A Market For Clones Texas has a peculiar relationship with its deer, which creates unique incentives to clone. Unlike other western states that have vast public holdings, around 95% of Texas land is privately owned. Pay-to-hunt schemes abound due to the lack of access to public land.

In the United States, deer are generally considered a public wildlife resource managed by the states. At least five states either ban captive deer breeding or didn’t have a recognized industry as of 2018, according to a report that year by the Quality Deer Management Association. Other states allow it, but consider the animals livestock. Texas is one of about a dozen states that classify captive deer as wildlife.

Commercial hunting has driven major land use trends in the past few decades. Landowners have increasingly enclosed their holdings behind tall fences, partly to keep exotic wildlife from escaping hunting ranches and partly to keep desirable deer from getting killed on neighboring properties. And a 1985 legal change made it easier for game ranches to start breeding their own deer, in the interest of hosting the most impressive bucks.

Nearly 1,000 people in Texas hold deer breeder licenses allowing them to propagate and raise deer, usually with the ambition of growing bucks with the kind of towering racks that fetch the highest prices from paying hunters. Buck fawns raised in captivity can take just two years to grow to a size that might take four years for a fawn in the wild.

Commercial hunting in Texas spurred the first experiments with deer cloning. A few years after scientists cloned the first mammal, Dolly the sheep, in 1996, an unidentified hunter from South Texas presented Texas A&M University Professor Mark Westhusin, an expert in animal biotechnology, with the testicles of an exceptional buck, and asked him to extract the semen — a common industry procedure.

Instead, a group of researchers, led by Westhusin, used skin cells from around the testicles to clone eggs, which they inserted into a captive doe. They produced the world’s first cloned whitetail deer in 2003. 

TPWD would not allow the deer, named Dewey, to be transferred beyond the university. Westhusin and two others went on to form a company, Revolution Whitetails, that cloned three or four more bucks from the cells that produced Dewey for the original requester. The company cloned between eight and 10 whitetails for private breeders before exiting the business.

“At that time, there was no talk about turning clones out to shoot ’em,” Westhusin said. “They were too damned expensive.”

A separate company, ViaGen Pets and Equine, went on to acquire rights for cloning technology, propagating both domestic and wild species. It partnered with the U.S. Fish and Wildlife Service to clone a copy of the endangered black-footed ferret earlier this year, for example. 

Abraham connected with ViaGen to clone horses, propagating hundreds of them. In 2013, Abraham sued the American Quarter Horse Association in federal court for refusing to register reproductions of prizewinning racers and cutting horses. He lost.

Around 2009, a rancher approached Abraham and asked him if he could clone deer. Abraham acquired permission from ViaGen, along with a deer breeder’s license, and launched his business. 

Abraham charged about $50,000 for whitetails and $75,000 for mule deer, focusing on what he calls “blue hens” ― does that reliably birth fawns that grow into exceptional bucks.

“We don’t necessarily need to clone the bucks, because they can freeze the semen on them,” Abraham told HuffPost.

Because Abraham produced his clones from cells harvested from hunted deer, he disputes TPWD’s authority to regulate them. In the United States, the only time public wildlife becomes private property is the moment a hunter legally kills it and places a state-issued tag on the carcass.

Abraham’s business attracted some local press attention in 2013 ― along with a condemnation from Outdoor Life magazine, which denounced his business as an unwelcome manipulation of wildlife. He began plotting his exit from the deer breeder business around 2014, saying he suspected TPWD would require him to kill off his deer herd because the agency had “weaponized” chronic wasting disease. He let his license lapse, but kept cloning for other breeders.

Wildlife officials say they only found out about Abraham’s work after Krause filed legislation to protect him. His cloning operation “was not lawful activity,” TPWD Big Game Program Director Mitch Lockwood told HuffPost. “We weren’t even aware that it was occurring.”

TPWD consulted with several deer breeders before the November changes. None opposed restricting cloning, Lockwood said. Some worried that expanded cloning would damage their industry.

Cloning threatened to introduce deer with modified genetics into wild populations, Lockwood said. And the agency worries that having more deer with identical DNA would thwart its efforts to contain CWD, the cervid version of mad cow disease. In Texas, every deer bred in captivity receives a unique ID number. If an animal’s identification tags get lost, which happens, the state relies on DNA testing to tell the deer apart.

“Obviously, that could be hard to do if these deer have the same DNA,” Lockwood said.

The idea of legalizing deer cloning struck Westhusin, the Texas A&M professor, as farcical. He never asked the government’s permission to clone deer for science. “I don’t know why there would be a bill to allow it — there’s no bill that says you can’t,” Westhusin said. “And there shouldn’t be, in my opinion.”

He dismissed the concerns of wildlife officials, saying there’s no scientific foundation for claiming the clones would mutate in the wild or make it harder to track CWD. 

But he also questioned whether deer cloning makes business sense. Deer breeders today are growing much larger bucks than the one whose scrotal cells yielded his team’s first clone in 2003.

“We already have giant deer,” Westhusin said. “Times have changed. Someone might have an economic model that might make it work, but I can’t come up with one with the deer we have in pens now.”

‘More Like Livestock’ The deer cloning bill promises to heighten long-simmering tensions over deer breeding and high fencing — both controversial subjects in Texas hunting circles.

Tall fences have helped keep large ranches profitable and intact, preserving crucial wildlife habitat in an era where large holdings routinely get subdivided. Well-managed properties often encompass thousands of acres, vastly exceeding a typical whitetail’s home range. And some ranches are now looking to high fences not to keep wildlife in, but to keep chronic wasting disease out.

Abraham described the breeding system as a way to add value for hunters hoping to shoot bigger bucks than those that normally roam Texas. 

“A low-fence guy, he puts out no effort, and he says ‘Come out and shoot a deer,’ and maybe you do it and you shoot a junk deer,” Abraham said. “It might be a little bit more money to shoot a bigger deer under a high fence, but not a lot more.”

"If a deer’s identification tags get lost, the state relies on DNA testing to tell one animal apart from another — which becomes more complicated with clones.

But critics often view the fencing as the privatization of wildlife, and they deride enclosures as “canned hunts” where the wealthy can purchase large animals that skilled hunters spend a lifetime chasing. “It was never OK to clone deer,” rancher Brian Treadwell, the only person to testify in opposition to the bill at its March 29 committee hearing, told HuffPost. “However many he’s cloned, he’s cheating the value of public resources.”

Neither of the two most prominent groups that score deer sizes accept animals killed behind enclosures, no matter how large. That’s partly because the Boone and Crockett Club founded the scoring system in the late 19th century to preserve a biological record of wild animals at a time when unregulated market hunting pushed many species, including the whitetail, toward the brink of extirpation from the United States.

Comparing wild, free-ranging animals to those bred in pens would be like “comparing apples to oranges,” according to Roy Grace, records chairman for Pope and Young, the main scoring group for archers.

“Most non-hunters, if you told them you were hunting inside a pen, they would not have a positive response to that,” Grace told HuffPost. “They are often treated more like livestock than wildlife.”

And conservation groups typically prefer leaving wildlife to breed the old-fashioned way. “We will definitely oppose this,” said Kip Adams of the National Deer Foundation, the country’s largest deer conservation group, referring to Krause’s legalization bill.

While the state works with nearly 1,000 licensed deer breeders, TPWD Wildlife Director John Silovsky noted that every year, 1 million people in Texas buy a hunting license. About 4 out of 5 of them are planning to hunt deer. 

“We have a responsibility to all those people, whether they’re a deer hunter or a deer breeder,” Silovsky said. “We’re managing this resource for everybody.”


TUESDAY, MARCH 12, 2019 

Early preclinical detection of prions in the skin of prion-infected animals 

Published: 16 January 2019

Early preclinical detection of prions in the skin of prion-infected animals 

Zerui Wang, Matteo Manca, Aaron Foutz, Manuel V. Camacho, Gregory J. Raymond, Brent Race, Christina D. Orru, Jue Yuan, Pingping Shen, Baiya Li, Yue Lang, Johnny Dang, Alise Adornato, Katie Williams, Nicholas R. Maurer, Pierluigi Gambetti, Bin Xu, Witold Surewicz, Robert B. Petersen, Xiaoping Dong, Brian S. Appleby, Byron Caughey, Li Cui, Qingzhong Kong & Wen-Quan Zou Nature Communicationsvolume 10, Article number: 247 (2019) | 

A Publisher Correction to this article was published on 04 February 2019 This article has been updated

Abstract

A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.

snip...

Discussion Several lines of evidence have recently suggested that skin is the place where misfolded proteins often stay, which may play a role in the pathogenesis and early detection of neurodegenerative diseases25. While it has been known for a long time that sheep and goats with scrapie often have skin lesions26, prions had not been detected in skin until prion infectivity was first found in skin of prion-infected greater kudu using an animal-based bioassay27. Subsequently, skin PrPSc was detected directly by western blotting after the enrichment of PrPSc in experimentally or naturally scrapie-infected hamsters and sheep, as well as in a single cadaver with vCJD28,29. We recently observed both prion-seeding activity and prion infectivity in the skin of patients with sCJD and vCJD at the terminal stage of the diseases using RT-QuIC assay and a bioassay humanized Tg mouse-based, respectively13. In the current study, we further demonstrated that skin PrPSc is preclinically detectable not only by RT-QuIC, but also by sPMCA before brain damage occurs in two animal models of prion diseases, 263K-inoculated hamsters and sCJDMM1-inoculated humanized Tg40h mice, with parallel RT-QuIC findings in an independent set of scrapie-infected hamsters done in an independent laboratory.

In terms of the earliest time point at which skin PrPSc becomes detectable in animals infected by the intracerebral inoculation of prions, sPMCA showed detection at 2 wpi for hamsters and 4 wpi for Tg40h mice, while RT-QuIC detection was at 3 wpi for hamsters and 20 wpi for Tg40h (Fig. 8a). These findings indicate that skin PrPSc is detectable at least 5 weeks earlier in scrapie-infected animals before brain pathology is observed. Of the five body areas examined, the ear pinna and back skin were the areas that showed earliest prion-seeding activity (3 wpi), while the thigh skin was the latest (9 wpi). The latter was also confirmed by two sets of hamsters examined in two-independent laboratories in this study. In contrast to the prion-seeding activity found in the skin of infected hamsters at the early stage of infection, the earliest time point showing skin prion-seeding activity was at 20 wpi in humanized Tg mice by RT-QuIC (Fig. 8b). This time point was similar whether recombinant hamster or human PrP substrate was used despite our expectation that human PrP might provide a more sensitive RT-QuIC for human PrPSc based on better sequence homology between the seeds and substrate.

Although the reasons for early and widespread presence of PrPSc in the skin remain unclear, possibilities include the spread of the prion inoculum itself, or endogenously replicating prions, from the brain through the peripheral nerves to the skin within the 2–3 weeks required for the first detection by our ultrasensitive sPMCA and RT-QuIC assays. PrP seeding activity has been detected in the blood in the prion-infected hamsters and deer immediately after peripheral inoculation including oral, nasal, or blood route30. However, no reports have shown that PrPSc is consistently detectable in the blood of prion-infected hamsters within 2 weeks post intracerebral inoculation. Thus, the early spread of PrPSc from the brain-to-the skin in the intracerebrally 263K-inoculated hamsters is likely either not through the blood or, if initially from the blood, requires time-dependent concentration or replication in the skin to become detectable.

It is unclear why, according to RT-QuIC, the back skin more consistently accumulates PrPSc than the other skin areas tested. It may depend on the dermatomes of nerves and their distance from the CNS. Between the back and thigh areas examined, the back dermatome is more proximate to the CNS. Similarly, we found prion-seeding activity much earlier in the ear area than the thigh (3 wpi vs 9 wpi). Analogously, misfolded α-synuclein deposition in Parkinson’s disease patients is more frequently detected in proximate (100% in the cervical C7 site) compared to distal (35% in the thoracic T12 region) skin areas by immunofluorescence microscopy31,32,33. In future studies, it would be interesting to determine whether PrPSc in the skin of sCJD has a similar distribution, and whether factors besides dermatome distance from the brain are involved.

Both sPMCA and RT-QuIC assays detected skin PrPSc early in scrapie-infected hamsters. However, sPMCA amplified PrPSc in skin samples from CJD-infected Tg40 mice at 4 wpi, while RT-QuIC assay detected prion-seeding activity only at 20 wpi (Fig. 8). The reason for the difference in Tg40 mice is not clear, but may be due in part to differences between the assays and the prion strains involved. sPMCA is performed in brain homogenates, which provide naturally post-translationally modified (glycosylated and GPI-anchored) PrPC as the substrate, and other potential brain-derived co-factors. RT-QuIC reactions include only unmodified recombinant PrPC as substrate, and no natural co-factors. sPMCA reactions are accelerated by sonication, whereas RT-QuIC reactions are shaken. Also, in successive rounds of sPMCA, the substrate and other brain components are refreshed, but our RT-QuIC reactions were performed in one round, with no refreshment. To exclude the effect of mismatch between seeds and substrates on the sensitivity of RT-QuIC reactions, we tested two recombinant PrP molecules as substrates from two different species including hamster and human and they all showed the similar sensitivity with the same earliest time point at 20 wpi. Finally, 263K scrapie and MM1 sCJD prions undoubtedly differ in conformation, and therefore, perhaps, their interactions with co-factors, various PrPC substrates, and/or skin-derived inhibitors of RT-QuIC reactions. These factors might differentially affect the sensitivity of detection of MM1 sCJD in the skin of Tg40 mice by sPMCA and RT-QuIC. It is also possible that the RT-QuIC assay may become as sensitive as sPMCA for skin prion detection in the Tg40h mice after further optimization of RT-QuIC’s experimental conditions.

Our early detection of PrPSc in the skin of sCJD- and scrapie-infected rodents suggests that it may be possible to do the same with the skin of humans who carry PrP mutations associated with genetic prion diseases such as familial CJD, Gerstmann–Sträussler–Scheinker syndrome, or fatal familial insomnia because it is expected that their mutant PrPC spontaneously converts into PrPSc and accumulates later in life. Skin-based RT-QuIC may reveal early prion-seeding activity in PrP mutation-carriers, or people with suspected exposures to prion infections, while they are still asymptomatic. Even for suspected sCJD cases, who are only identified in the symptomatic phase, skin-based RT-QuIC might be useful for monitoring disease progression, defining severity and diversity, and evaluating the treatment efficacy when potential drugs become available.

Although neither clinical signs nor brain PrPSc were observed in control animals cohabitating with 263K-inoculated hamsters within 12 weeks, the mock-inoculated animals that were housed with scrapie-infected animals had amplifiable PrPSc in the brain and skin via amplification techniques. Moreover, in contrast to the skin PrPSc amplified from the 263K-inoculated hamsters as early as 2 wpi, the control animals that co-habitated with infected hamsters were found to have amplified skin PrPSc after cohabitation for 11 weeks. This finding implies that the skin PrPSc detected early in the scrapie-infected hamsters is not the result of environmental contamination; otherwise, the control animals would exhibit skin PrPSc at 2 wpi as well. The finding of skin PrPSc in the cohabitating control animals may be relevant to the environmental transmission of prions observed in natural animal prion diseases, such as scrapie and CWD. Interestingly, prion transmission has been observed in hamsters by contact with prion-contaminated surfaces through rubbing and bedding34, in which cases skin is expected to be involved. The role that skin may plays in the environmental transmission of prions warrants future investigation.

Skin PrPSc may derive from urine or fecal prion contamination in addition to possible skin shedding due to scratching or biting each other. Indeed, scrapie infectivity was reported in the urine of prion-infected mice coincident with lymphocytic nephritis during their preclinical and clinical stages of prion infection35,36. It was also observed in their urine in intracerebrally inoculated hamsters even without any apparent inflammation21. In addition, deer with clinical CWD and mild to moderate nephritis were found to have sPMCA-detectable PrPSc and CWD-infectivity in urine22. Using sPMCA, PrPSc was detected in urine of ~80% of the hamsters intraperitoneally inoculated with 263K prions at the symptomatic stage23. Notably, PrPSc was detected in urine, but only at the terminal stage of disease in intracerebrally inoculated hamsters, except for a few days immediately after oral administration24. Similar to the observations by Gonzalez-Romero et al.23, Murayama et al. also found that not all infected hamsters had detectable urine PrPSc even at the terminal stage24. The skin PrPSc detected early in the intracerebrally infected hamsters, but not in the co-habitated-negative controls, at 2 wpi suggests that skin prions may not result from urine at the early stage of infection.

Unlike the situation with urine, it has not been very clear whether PrPSc is present in feces of intracerebrally inoculated hamsters at the early stage of prion infection. High titers of prion infectivity were detected in feces throughout the disease incubation in orally inoculated hamsters while low levels of infectivity were occasionally observed in intracerebrally- or intraperitoneally-inoculated animals18. For instance, no prion infectivity was detected in feces of hamsters within 3 wpi, including at 1, 2, and 22 days post inoculation (dpi), except for 8 dpi when 17% transmission rate was detected in feces18. However, fecal PrPSc was only detected during the clinical stage of disease by sPMCA in hamsters with lower doses of oral inoculum19. Western blotting of fecal extracts showed shedding of PrPSc in the excrement at 24–72 h post inoculation, but not at 0–24 h post inoculation, or at later preclinical or clinical time points19. Consistent with this observation, prion infectivity was not detected in feces of mule deer after oral challenge with CWD prions within the first 12–16 wpi, but feces contained infectivity after 36 wpi through to clinical disease stages at 64–80 wpi20. It is likely that PrPSc is present in feces of infected animals at the late stage of prion infection, which may contaminate the skin of cohabitating control animals.

Although prion contamination of skin by excrement may not be a major concern in human prion diseases, it is an important issue for prion transmission in animals, such as cattle, sheep, goats, and cervids. It is worth noting that the high incidence of scrapie in sheep and goats as well as CWD in cervids is believed to be attributable to contamination of the environment due to high prion shedding. The detection of PrPSc in excretions including saliva, urine, and feces clearly indicates this shedding. Oral ingestion due to the coprophagic behavior of animals has been believed to cause wide horizontal transmission of scrapie and CWD. However, our current finding of skin PrPSc in cohabitating prion-inoculated and PBS-inoculated control animals, as well as the occurrence of brain PrPSc in the PBS-inoculated animals at the late stage suggests that prion contamination of skin may be a potential route of transmission of prion diseases.

In conclusion, our study indicates that skin PrPSc may be a useful biomarker not only for the preclinical diagnosis of prion diseases, but also for monitoring disease progression following infection and treatment. Since the chance that PrPSc can be consistently detected in blood and urine of sCJD patients by sPMCA and RT-QuIC assays has been virtually very low10,11,37, it is possible that detection of PrPSc in the skin, a highly accessible tissue, could be developed for evaluating therapeutic efficiency and drug screening. As mentioned earlier, RT-QuIC analysis of CSF and nasal brushing specimens to date has been used for diagnosis of human prion diseases only at the clinical stage. Moreover, it is much less practical in live animals to collect CSF and nasal brushing specimens. In cervids, at least, there has been more focus on RT-QuIC analyses of RAMALT biopsies and various excreta38. Although these analyses are currently the most accurate tests available for chronic wasting disease in live cervids, they do not yet provide 100% diagnostic sensitivity and specificity38. Thus, it may be helpful to have additional or alternative diagnostic specimens, such as skin or ear pinna punches, for RT-QuIC and sPMCA testing.


TUESDAY, DECEMBER 31, 2019 

In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus 

SUNDAY, AUGUST 02, 2015  

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 


SUNDAY, FEBRUARY 16, 2020
***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion?



181 CWD-trace facilities associated with the CWD-positive deer breeding facilities in Hunt and Uvalde Counties, and some are out of state/country in Mexico

i finally got a recent copy of the CWD-trace facilities associated with the CWD-positive deer breeding facilities in Hunt and Uvalde Counties.
seems to date, there are 181 CWD-trace facilities associated with the CWD-positive deer breeding facilities in Hunt and Uvalde Counties, and some are out of state/country in Mexico. i was told that in the coming weeks, some of the facilities will start testing for cwd, and those results will be forthcoming later on. i hope they don't flounder on depopulation efforts if any positives are found. sad for Mexico (8 facilities).

Chronic Wasting Disease Discovered at Deer Breeding Facilities in Hunt and Uvalde Counties




Texas Confirms CWD TSE Prion in 213 white-tailed deer, mule deer, red deer and elk to date, 148 connected to deer breeding facilities and release sites.


TUESDAY, APRIL 13, 2021 

Implications of farmed-cervid movements on the transmission of chronic wasting disease

Conclusion

In conclusion, given that CWD transmission can occur through contact with infected body parts or through indirect contacts via contamination of feed and other fomites, understanding animal movements is critical for mitigating disease spread. Long distance commercial movements of cervids pose one risk for spread of CWD. This study approach can be used to understand disease transmission risks across the region and in North America in general.


WEDNESDAY, MARCH 31, 2021 

Texas TPWD TAHC Chronic Wasting Disease Discovered at Deer Breeding Facilities in Hunt and Uvalde Counties


THURSDAY, MARCH 25, 2021 

Texas CWD suspect positive results for a couple of deer breeding facilities


TUESDAY, MARCH 02, 2021 

Texas Confirms CWD TSE Prion in 213 white-tailed deer, mule deer, red deer and elk to date, 148 connected to deer breeding facilities and release sites


TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show?
OH NO, please tell me i heard this wrong, a potential Texas captive escapee with cwd in the wild, in an area with positive captive cwd herd?
apparently, no ID though. tell me it ain't so please...
23:00 minute mark
''Free Ranging Deer, Dr. Deyoung looked at Genetics of this free ranging deer and what he found was, that the genetics on this deer were more similar to captive deer, than the free ranging population, but he did not see a significant connection to any one captive facility that he analyzed, so we believe, Ahhhhhh, this animal had some captive ahhh, whatnot.''
TEXAS CWD STRAIN
77. Assessing chronic wasting disease strain differences in free-ranging cervids across the United States
Kaitlyn M. Wagnera, Caitlin Ott-Connb, Kelly Strakab, Bob Dittmarc, Jasmine Battend, Robyn Piercea, Mercedes Hennessya, Elizabeth Gordona, Brett Israela, Jenn Ballarde and Mark D Zabela
aPrion Research Center at Colorado State University; bMichigan Department of Natural Resources; cTexas Parks and Wildlife Department; dMissouri Department of Conservation, 5. Arkansas Game and Fish Commission CONTACT Kaitlyn M. Wagner miedkait@rams.colostate.edu
ABSTRACT
Background/Introduction: Chronic wasting disease (CWD) is an invariably fatal prion disease affecting captive and free-ranging cervids, including white-tailed deer, mule deer, moose, elk, and reindeer. Since the initial description of the disease in the 1960’s, CWD has spread to 23 states, 3 Canadian Provinces, South Korea, Norway and, most recently, Finland. While some outbreaks of CWD were caused by transport of infected animals from endemic regions, the origin of CWD in other epizootics is unclear and has not been characterized. Previous studies have shown that there are two distinct strains of CWD. However, the continuous spread and the unclear origin of several outbreaks warrant continued surveillance and further characterization of strain diversity.
Materials and Methods: To address these knowledge gaps, we used biochemical tests to assess strain differences between CWD outbreaks in Michigan, Texas, Missouri, and Colorado, USA. Brain or lymph node samples were homogenized and digested in 50 µg/mL proteinase K (PK). These samples were then run on a Western blot to assess glycoform ratio and electrophoretic mobility. Texas samples were digested in 100 µg/mL PK. To assess conformational stability, brain or lymph node homogenates were incubated in increasing concentrations of guanidine hydrochloride from 0 M to 4 M in 0.5 M increments. Samples were then precipitated in methanol overnight, washed and PK digested in 50 µg/mL PK before slot blotting.
Results: Our results have found significant differences in glycoform ratio between CWD from Michigan and Colorado, but no differences were observed in conformational stability assays. Interestingly, when testing our CWD isolates from Texas to analyse electrophoretic mobility and glycoform ratio, we found that these samples did not exhibit the characteristic band shift when treated with PK, but PK resistant material remained. Additionally, results from our conformational stability assay demonstrate a unique profile of these Texas isolates. Testing of samples from Missouri is currently underway.
Conclusions: Thus far, our data indicate that there are strain differences between CWD circulating in Michigan and CWD in Colorado and provide important insight into CWD strain differences between two non-contiguous outbreaks. We have also identified a unique strain of CWD in Texas with biochemical strain properties not seen in any of our other CWD isolates. These results highlight the importance of continued surveillance to better understand this devastating disease. These results have important implications for CWD emergence, evolution and our understanding of prion strain heterogeneity on the landscape.
SUNDAY, APRIL 14, 2019
Chronic Wasting Disease TSE Prion Strains everything in Texas is bigger, better, and badder The disease devastating deer herds may also threaten human health
Scientists are exploring the origins of chronic wasting disease before it becomes truly catastrophic. Rae Ellen Bichell
Image credit: David Parsons/Istock
April 8, 2019
Wagner and Zabel have suggested a possible answer: Perhaps, they say, there is not just one chronic wasting disease, but rather a bunch of different strains of it. And those different strains could be emerging at different times across the globe.
One day in late February, in their laboratory in Fort Collins, Colorado, Wagner and Zabel compared the prions from the brains of CWD-infected deer in Texas with those of elk in Colorado. They want to know if the proteins were all mangled in the same way, or not. “If they are different, this would suggest that we have different strain properties, which is evidence as we're building our case that we might have multiple strains of CWD circulating in the U.S.,” says Wagner.
Step one is to see if they’re equally easy to destroy using a chemical called guanidine. The shape of a prion dictates everything, including the way it interacts with an animal’s cells and the ease with which chemicals can unfold it.
“Moment of truth,” said Wagner, as she and Zabel huddled around a computer, waiting for results to come through. When they did, Zabel was surprised.
“Wow,” he said. “Unlike anything we've seen before.”
The prions from the Texas deer were a lot harder to destroy than the ones from the Colorado elk. In fact, the guanidine barely damaged them at all. “We’ve never seen that before in any prion strain, which means that it has a completely different structure than we've ever seen before,” says Zabel. And that suggests that it might be a very different kind of chronic wasting disease. The researchers ran the same test on another Texas deer, with the same results.
Now, these are only the preliminary results from a few animals. Wagner and Zabel have a lot more experiments to do. But if future tests come to the same conclusion, it would support their hypothesis that there are multiple strains of chronic wasting disease out there, all with different origins. That, in turn, could mean that this disease will become even trickier to manage than it already is.
And, Zabel adds, there’s something else. “If it's still evolving, it may still evolve into a form that could potentially, eventually affect humans,” he says.
Zabel is not the only one worried about that possibility.
OSTERHOLM, THE EPIDEMIOLOGIST from Minnesota, is also concerned. He directs the Center for Infectious Disease Research and Policy at the University of Minnesota, and is serving a one-year stint as a “Science Envoy for Health Security” with the U.S. State Department. In February, he told Minnesota lawmakers that when it comes to chronic wasting disease, we are playing with fire. “You are going to hear from people that this is not going to be a problem other than a game farm issue. You're going to hear from people that it's not going to transmit to people, and I hope they're right, but I wouldn't bet on it,” he said. “And if we lose this one and haven’t done all we can do, we will pay a price.”
If that wasn’t warning enough, he added: “Just remember what happened in England.”
-----Original Message-----
From: Terry Singeltary <flounder9@verizon.net>
To: Terry Singeltary <flounder9@verizon.net>
Sent: Thu, Feb 25, 2021 2:14 pm
Subject: Texas AN ACT Sec. 43.370. relating to a deer breeding facility affected by chronic wasting disease H.B. 432

Greetings Honorable Legislators, Politicians, Lawmakers et al in Texas,
re-Texas AN ACT Sec. 43.370. relating to a deer breeding facility by chronic wasting disease H.B. 432
I urge you to read the science on chronic wasting disease tse prion aka mad cow type disease in cervid.
sometimes it takes a great length of time to test all cervid on a farm for cwd tse prion. sometimes even court proceedings go on for years, while an infected farmed cwd herd is incubating and spreading cwd, all the while those cervid look perfectly healthy, yet in the end, you have an infection rate as high as 79%, once the legal proceedings had ended, and depopulation finally took place (Iowa). 
IF Texas continues to flounder with the CWD TSE Prion, and continue to cater to the game farms, velvet farms, sperm mills, horn mills, high/low fence shooting pens, we will end up like Wisconsin, Colorado, Pennsylvania, and these other states where cwd is out of control, and you will lose this fight with cwd, if not lost already. i have been trying to tell TAHC/TPWD et al this for decades. tried to tell the TAHC that cwd was waltzing across the border at the WSMR and New Mexico border around Trans Pecos region 10 years and every year there after, before they finally documented cwd...right exactly where i had pleaded with them 10+ years before to start testing. 
i have followed the mad cow follies since hvCJD took my mother December 14, 1997, and you can't believe how terribly bad we failed and are still failing there. for Gods sake, we now know that cwd and scrapie will transmit to pigs by oral route, and NO ONE HAS CHANGED THE MAD COW FEED BAN 21 CFR PART 589.2001 to address these concerns. even DEFRA ET AL i.e. MAFF EU states concerns with this. (see below). we also know that cervid can get cwd by oral routes, and the mad cow feed ban does not pertain to cervid. it's voluntary and it's a terribly failed policy.
IF ANY cervid test positive for cwd tse prion, then that farm should be shut down, quarantined for at least 16 years, should be 21 years imo., science shows this...see;
***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3

snip...see much more updated science on why this is a terrible idea for the great state of Texas...

THURSDAY, FEBRUARY 25, 2021 

Texas AN ACT Sec. 43.370. relating to a deer breeding facility affected by chronic wasting disease H.B. 432


SUMMARY MINUTES OF THE 407th COMMISSION MEETING – 9/22/2020

Scrapie: The flock identified in April 2016 remains under quarantine in Hartley County. 


THURSDAY, FEBRUARY 25, 2021 

Texas AN ACT Sec. 43.370. relating to a deer breeding facility affected by chronic wasting disease H.B. 432


TUESDAY, FEBRUARY 23, 2021 

TAHC SUMMARY MINUTES OF THE 407th COMMISSION MEETING September 22, 2020 Chronic Wasting Disease (CWD) TSE Prion


SUNDAY, JANUARY 31, 2021 

TEXAS ANIMAL HEALTH COMMISSION CWD TSE PRION Legislative Appropriations Request for Fiscal Years 2022-2023


WEDNESDAY, SEPTEMBER 09, 2020 

TEXAS TAHC CWD TSE Prion SUMMARY MINUTES OF THE 406th COMMISSION MEETING


FRIDAY, OCTOBER 16, 2020 

TAHC Rules and Resources for Harvesting Exotic CWD Susceptible Species this 2020-21 Hunting Season


Sent: Sun, Aug 30, 2020 10:37 am

Subject: Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

CWD Positives in Texas

CWD Positive

Confirmation Date Free Range/Captive County Source Species Sex Age

2020-07-30 Breeder Deer Kimble Facility #6 White-tailed Deer M 3

2020-07-29 Free Range El Paso N/A Mule Deer M 2.5

2020-06-25 Free Range El Paso N/A Mule Deer F 5.5


SUNDAY, AUGUST 30, 2020 

Texas CWD TSE Prion 3 More Documented, 185 Cases To Date


SUMMARY MINUTES OF THE 407th COMMISSION MEETING – 9/22/2020

Scrapie: The flock identified in April 2016 remains under quarantine in Hartley County. 


WEDNESDAY, SEPTEMBER 09, 2020 

TEXAS TAHC CWD TSE Prion SUMMARY MINUTES OF THE 406th COMMISSION MEETING


SATURDAY, OCTOBER 24, 2020 

Texas Kimble County Farm Chronic Wasting Disease CWD TSE Prion Approximate Herd Prevalence 12%


FRIDAY, OCTOBER 16, 2020 

TAHC Rules and Resources for Harvesting Exotic CWD Susceptible Species this 2020-21 Hunting Season


THURSDAY, JULY 09, 2020 

Texas CWD TSE Prion Jumps BY 13 To 182 Confirmed Cases To Date


SATURDAY, JULY 04, 2020 

TAHC CHAPTER 40 CHRONIC WASTING DISEASE 406th COMMISSION MEETING AGENDA June 23, 2020 8:30 A.M.


Sent: Sun, Aug 30, 2020 10:37 am

Subject: Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

Texas CWD TSE Prion 3 More Documented, 185 Cases To Date

CWD Positives in Texas

CWD Positive

Confirmation Date Free Range/Captive County Source Species Sex Age

2020-07-30 Breeder Deer Kimble Facility #6 White-tailed Deer M 3

2020-07-29 Free Range El Paso N/A Mule Deer M 2.5

2020-06-25 Free Range El Paso N/A Mule Deer F 5.5


SUNDAY, AUGUST 30, 2020 

Texas CWD TSE Prion 3 More Documented, 185 Cases To Date


Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964 Terry S. Singeltary Goal: Thursday, June 09, 2016

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

How Did CWD Get Way Down In Medina County, Texas?

DISCUSSION

Observations of natural outbreaks of scrapie indicated that the disease spread from flock to flock by the movement of infected, but apparently normal, sheep which were incubating the disease.

There was no evidence that the disease spread to adjacent flocks in the absent of such movements or that vectors or other host species were involved in the spread of scrapie to sheep or goats; however, these possibilities should be kept open...




SATURDAY, JANUARY 19, 2019

Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS


FRIDAY, DECEMBER 20, 2019

TEXAS ANIMAL HEALTH COMMISSION EXECUTIVE DIRECTOR ORDER DECLARING A CHRONIC WASTING DISEASE HIGH RISK AREA CONTAINMENT ZONE FOR PORTIONS OF VAL VERDE COUNTY


TUESDAY, DECEMBER 31, 2019 

In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus 

SUNDAY, AUGUST 02, 2015  

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 


SUNDAY, FEBRUARY 16, 2020

***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion?


TUESDAY, FEBRUARY 04, 2020 

TEXAS REPORTS 20 NEW CWD TSE PRION CASES 3 WILD 17 BREEDER 166 POSITIVE TO DATE


FRIDAY, MAY 22, 2020 

TPW Commission has adopted rules establishing Chronic Wasting Disease (CWD) management zones to further detection and response efforts among WTD


SUNDAY, MARCH 01, 2020 

Texas As one CWD investigation continues, another launches...THE FULL MONTY!


FRIDAY, OCTOBER 18, 2019 

TAHC Exotic CWD Susceptible Species Rules, Regulations, TSE PRION, WHEAT, GRAINS, HAY, STRAY, GLOBAL CONCERNS GROW, UPDATE, October 17, 2019


SATURDAY, DECEMBER 02, 2017 

TEXAS TAHC CWD TSE PRION Trace Herds INs and OUTs Summary Minutes of the 399th and 398th Commission Meeting – 8/22/2017 5/9/2017 


SUNDAY, MAY 14, 2017 

85th Legislative Session 2017 AND THE TEXAS TWO STEP Chronic Wasting Disease CWD TSE Prion, and paying to play 


SUNDAY, JANUARY 22, 2017 

Texas 85th Legislative Session 2017 Chronic Wasting Disease CWD TSE Prion Cervid Captive Breeder Industry 


***> In Texas, the disease was first discovered in 2012 in free-ranging mule deer along a remote area of the Hueco Mountains near the Texas-New Mexico border and has since been detected in 220 captive or free-ranging cervids, including white-tailed deer, mule deer, red deer and elk in 11 Texas counties. For more information on previous detections visit the CWD page on the TPWD website. <***

I tried telling the TAHC et al about my concerns with CWD waltzing across the Texas New Mexico Border some 10 years _before_ CWD was finally documented in Texas, right where i had been trying to tell them to test for 10 years...see history of that here;

*** TEXAS TAHC OLD STATISTICS BELOW FOR PAST CWD TESTING ***

CWD TEXAS TAHC OLD FILE HISTORY

updated from some of my old files, some of the links will not work.

*** Subject: CWD testing in Texas ***

Date: Sun, 25 Aug 2002 19:45:14 –0500

From: Kenneth Waldrup


snip...see full text at bottom here;


Subject: CWD SURVEILLANCE STATISTICS TEXAS (total testing figures less than 50 in two years)

From: "Terry S. Singeltary Sr." <flounder@WT.NET>

Reply To: Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE>

Date: Sun, 25 Aug 2002 21:06:49 -0700

Content-Type: text/plain Parts/Attachments: text/plain (75 lines)

######## Bovine Spongiform Encephalopathy <BSE-L@UNI-KARLSRUHE.DE> #########

greetings list members,

here are some figures on CWD testing in TEXAS...TSS

Dear Dr. Singletary,

In Fiscal Year 2001, seven deer from Texas were tested by the National Veterinary Services Laboratory (NVSL) for CWD (5 fallow deer and 2 white-tailed deer). In Fiscal Year 2002, seven elk from Texas were tested at NVSL (no deer). During these two years, an additional six elk and one white-tailed deer were tested at the Texas Veterinary Medical Diagnostic Laboratory (TVMDL). In Fiscal Year 2002, four white-tailed deer (free-ranging clinical suspects) and at least eight other white-tailed deer have been tested at TVMDL. One elk has been tested at NVSL. All of these animals have been found negative for CWD. Dr. Jerry Cooke of the Texas Parks and Wildlife Department also has records of 601 clinically ill white-tailed deer which were necropsied at Texas A&M during the late 1960's and early 1970's, and no spongiform encepalopathies were noted. Thank you for your consideration.

xxxxxxx

Texas Animal Health Commission

(personal communication...TSS)

Austin 8 news

snip...

"There's about 4 million deer in the state of Texas, and as a resource I think we need to be doing as much as we can to look for these diseases," said Doug Humphreys with Texas Parks and Wildlife. "Right now Texas is clear. We haven't found any, but that doesn't mean we don't look."


With approximately 4 million animals, Texas has the largest population of white-tailed deer in the nation. In addition, about 19,000 white-tailed deer and 17,000 elk are being held in private facilities. To know if CWD is present in captive herds, TPWD and Texas Animal Health Commission are working with breeders to monitor their herds.


How is it spread?

It is not known exactly how CWD is spread. It is believed that the agent responsible for the disease may be spread both directly (animal to animal contact) and indirectly (soil or other surface to animal). It is thought that the most common mode of transmission from an infected animal is via saliva, feces, and urine.


some surveillance?

beyond the _potential_ methods of transmissions above, why, not a single word of SRM of various TSE species in feed as a source?

it's a known fact they have been feeding the deer/elk the same stuff as cows here in USA.

and the oral route has been documented of CWD to mule deer fawns in lab studies.

not to say that other _potential_ transmission mechanisms are possible, but why over look the obvious?

TSS


From: Ken Waldrup, DVM, PhD (host25-207.tahc.state.tx.us

Subject: Re: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border) 

Date: December 15, 2003 at 3:43 pm PST

In Reply to: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border) posted by TSS on December 12, 2003 at 2:15 pm:

Dear sirs: With regard to your comment about Texas NOT looking for CWD along the New Mexico border, it is painfully obvious that you do not know or understand the natural distribution of mule deer out there or the rights of the land owners in this state. 

As of 15 December 2003, a total of 42 deer had been sampled from what we call "Trans-Pecos", beyond the Pecos River. Mule deer are very widely dispersed through this area, sometimes at densities of one animal per 6 square miles. 

The Texas Parks and Wildlife Department does not have the legal authority to trepass on private property to collect deer. 

Some landowners are cooperative. Some are not. 

Franklin State Park is at the very tip of Texas, and deer from the park have been tested (all negative). 

One of the single largest land owners along the border is the National Park Service. 

Deer and elk from the Guadalupe Peak National Park cannot be collected with federal permission. 

The sampling throughout the state is based on the deer populations by eco-region and is dictated by the availability of funds. 

I am concerned about your insinuation that CWD is a human health risk. We are at a stand-off - you have no proof that it is and I have no definitive proof that it isn't. However I would say that the inferred evidence from Colorado, Wyoming and Wisconsin suggests that CWD is not a human health concern (i.e. no evidence of an increased incidence of human brain disorders within the CWD "endemic" areas of these states). 

From my professional interactions with the Texas Parks and Wildlife Department, I can definitely say that they want to do a thorough and sound survey throughout the state, not willy-nilly "look here, look there". 

There are limitations of manpower, finances and, in some places, deer populations. 

I would congratulate TPWD for doing the best job with the limitations at hand rather than trying to browbeat them when you obviously do not understand the ecology of West Texas. 

Thank you for your consideration.

======================


Subject: Re: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border)

Date: December 16, 2003 at 11:03 am PST

In Reply to: Re: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border) posted by Ken Waldrup, DVM, PhD on December 15, 2003 at 3:43 pm:

HEllo Dr. Waldrup,

thank you for your comments and time to come to this board.

Ken Waldrup, DVM, PhD states;

> it is painfully obvious that you do not know or understand the natural distribution of mule deer out there or the rights of the land owners in this state...

TSS states;

I am concerned about all deer/elk not just mule deer, and the rights of land owners (in the case with human/animal TSEs) well i am not sure of the correct terminology, but when the States deer/elk/cattle/sheep/humans are at risk, there should be no rights for land owners in this case. the state should have the right to test those animals. there are too many folks out there that are just plain ignorant about this agent. with an agent such as this, you cannot let landowners (and i am one) dictate human/animal health, especially when you cannot regulate the movement of such animals...

Ken Waldrup, DVM, PhD states;

> Deer and elk from the Guadalupe Peak National Park cannot be collected with federal permission.

TSS states;

I do not understand this? so there is no recourse of action even if every deer/elk was contaminated with CWD in this area (hypothetical)?

Ken Waldrup, DVM, PhD states;

> I am concerned about your insinuation that CWD is a human health risk. We are at a stand-off - you have no proof that it is and I have no definitive proof that it isn't. However I would say that the inferred evidence from Colorado, Wyoming and Wisconsin suggests that CWD is not a human health concern (i.e. no evidence of an increased incidence of human brain disorders within the CWD "endemic" areas of these states)...

TSS states;

indeed i am concerned as well with your insinuation about CWD not being a human health risk. NO, we are not at a standoff, i just think you are wrong in insinuating this when you have absolutely no proof, BUT, CWD does transmit to primate, and there have never been tranmission studies done on man (that's my proof). SO, hypothetically there is more proof that CWD has the potential to infect man than there is proof that it cannot. this should mean something, and in my opinion warrant some sort of public concern. BUT the only concern seems to be with the Industries involved, not for human/animal health. and you have this study;

The EMBO Journal, Vol. 19, No. 17 pp. 4425-4430, 2000 © European Molecular Biology Organization

Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease

G.J. Raymond1, A. Bossers2, L.D. Raymond1, K.I. O?Rourke3, L.E. McHolland4, P.K. Bryant III4, M.W. Miller5, E.S. Williams6, M. Smits2 and B. Caughey1,7

1NIAID/NIH Rocky Mountain Laboratories, Hamilton, MT 59840, 3USDA/ARS/ADRU, Pullman, WA 99164-7030, 4USDA/ARS/ABADRL, Laramie, WY 82071, 5Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO 80526-2097, 6Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA and 2ID-Lelystad, Institute for Animal Science and Health, Lelystad, The Netherlands 7Corresponding author e-mail: bcaughey@nih.gov Received June 7, 2000; revised July 3, 2000; accepted July 5, 2000.

snip...

Clearly, it is premature to draw firm conclusions about CWD passing naturally into humans, cattle and sheep, but the present results suggest that CWD transmissions to humans would be as limited by PrP incompatibility as transmissions of BSE or sheep scrapie to humans. Although there is no evidence that sheep scrapie has affected humans, it is likely that BSE has caused variant CJD in 74 people (definite and probable variant CJD cases to date according to the UK CJD Surveillance Unit). Given the presumably large number of people exposed to BSE infectivity, the susceptibility of humans may still be very low compared with cattle, which would be consistent with the relatively inefficient conversion of human PrP-sen by PrPBSE. Nonetheless, since humans have apparently been infected by BSE, it would seem prudent to take reasonable measures to limit exposure of humans (as well as sheep and cattle) to CWD infectivity as has been recommended for other animal TSEs.

snip...


Ken Waldrup, DVM, PhD states;

> However I would say that the inferred evidence from Colorado, Wyoming and Wisconsin suggests that CWD is not a human health concern (i.e. no evidence of an increased incidence of human brain disorders within the CWD "endemic" areas of these states)...

TSS states;

I disagree with this on several fronts as well. for one thing there is no CJD surveillance to speak of, and there have been an increase of CJD in the USA in the young. some of these unfortunate folks have consumed deer and elk and been avid hunters. what will cwdCJD look like? could it look like sporadic CJD? (please see below) snip...TSS

Ken Waldrup, DVM, PhD states;

> and is dictated by the availability of funds.

snip...

> From my professional interactions with the Texas Parks and Wildlife Department, I can definitely say that they want to do a thorough and sound survey throughout the state, not willy-nilly "look here, look there". There are limitations of manpower, finances and, in some places, deer populations. I would congratulate TPWD for doing the best job with the limitations at hand...

TSS states;

I would concur here, and congradulate them as well. BUT, it is not enough. we must do massive testing and thorough testing in all geographical locations. IF the USA has 270 BILLION to rebuild Iraq, it would seem that we could find enough money to fend off a disease that theoretically could wipe out the deer, elk, cattle, and sheep populations if continued to be ignored, not to speak of what it could do to humans in the long haul, through various proven routes and sources...

Ken Waldrup, DVM, PhD states;

> rather than trying to browbeat them when you obviously do not understand the ecology of West Texas.

TSS states;

I am not browbeating anyone, or no intention, just trying to keep the fire lit here Sir, and this I must do. I think I know more of what I speak of than you seem to be aware of. I am very concerned with the minimal amount of money and time and effort being spent in TEXAS on CWD, especially with the real threat of sub-clinical CWD/TSE infections and especially with cattle, but that's a no no.

again, thank you for your comments, they are very much appreciated.

kind regards, Terry

=================


Subject: Re: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border)

Date: December 16, 2003 at 11:03 am PST

In Reply to: Re: CWD SAMPLING TEXAS (but NOT in the obvious place, the NM, TEXAS border) posted by Ken Waldrup, DVM, PhD on December 15, 2003 at 3:43 pm:

HEllo Dr. Waldrup,

thank you for your comments and time to come to this board.

Ken Waldrup, DVM, PhD states;

> it is painfully obvious that you do not know or understand the natural distribution of mule deer out there or the rights of the land owners in this state...

TSS states;

I am concerned about all deer/elk not just mule deer, and the rights of land owners (in the case with human/animal TSEs) well i am not sure of the correct terminology, but when the States deer/elk/cattle/sheep/humans are at risk, there should be no rights for land owners in this case. the state should have the right to test those animals. there are too many folks out there that are just plain ignorant about this agent. with an agent such as this, you cannot let landowners (and i am one) dictate human/animal health, especially when you cannot regulate the movement of such animals...

Ken Waldrup, DVM, PhD states;

> Deer and elk from the Guadalupe Peak National Park cannot be collected with federal permission.

TSS states;

I do not understand this? so there is no recourse of action even if every deer/elk was contaminated with CWD in this area (hypothetical)?

Ken Waldrup, DVM, PhD states;

> I am concerned about your insinuation that CWD is a human health risk. We are at a stand-off - you have no proof that it is and I have no definitive proof that it isn't. However I would say that the inferred evidence from Colorado, Wyoming and Wisconsin suggests that CWD is not a human health concern (i.e. no evidence of an increased incidence of human brain disorders within the CWD "endemic" areas of these states)...

TSS states;

NEXT, let's have a look at the overall distribution of CWD in Free-Ranging Cervids and see where the CWD cluster in NM WSMR borders TEXAS;

Current Distribution of Chronic Wasting Disease in Free-Ranging Cervids


NOW, the MAP of the Exoregion where the samples were taken to test for CWD;

CWD SURVEILLANCE SAMPLE SUBMISSIONS TEXAS


Ecoregions of TEXAS


IF you look at the area around the NM WSMR where the CWD cluster was and where it borders TEXAS, that ecoregion is called Trans Pecos region. Seems if my Geography and my Ciphering is correct ;-) that region only tested 55% of it's goal. THE most important area on the MAP and they only test some 96 samples, this in an area that has found some 7 positive animals? NOW if we look at the only other border where these deer from NM could cross the border into TEXAS, this area is called the High Plains ecoregion, and again, we find that the sampling for CWD was pathetic. HERE we find that only 9% of it's goal of CWD sampling was met, only 16 samples were tested from some 175 that were suppose to be sampled.

AS i said before;

> SADLY, they have not tested enough from the total population to

> know if CWD is in Texas or not.

BUT now, I will go one step further and state categorically that they are not trying to find it. just the opposite it seems, they are waiting for CWD to find them, as with BSE/TSE in cattle, and it will eventually...

snip...end...TSS

===============================

2005

SEE MAP OF CWD ON THE BORDER OF NEW MEXICO VERY CLOSE TO TEXAS ;



NO update on CWD testing in Texas, New Mexico that i could find. I have inquired about it though, no reply yet...

-------- Original Message --------

Subject: CWD testing to date TEXAS ?

Date: Mon, 09 May 2005 12:26:20 –0500

From: "Terry S. Singeltary Sr."


Hello Mrs. Everett,

I am most curious about the current status on CWD testing in Texas. could you please tell me what the current and past testing figures are to date and what geographical locations these tests have been in. good bust on the illegal deer trapping case. keep up the good work there.........

thank you, with kindest regards,

Terry S. Singeltary Sr. P.O. Box Bacliff, Texas USA 77518

-------- Original Message --------

Subject: CWD testing in New Mexico

Date: Mon, 09 May 2005 14:39:18 –0500

From: "Terry S. Singeltary Sr."


Greetings,

I am most curious of the current and past CWD testing in New Mexico, and there geographical locations...

thank you,

Terry S. Singeltary SR. CJD Watch

#################### https://lists.aegee.org/bse-l.html ####################

2006

----- Original Message -----

From: "Terry S. Singeltary Sr." flounder9@VERIZON.NET


Sent: Saturday, December 23, 2006 1:47 PM

Subject: CWD in New Mexico 35 MILES FROM TEXAS BORDER and low testing sampling figures -- what gives TAHC ???

Subject: CWD in New Mexico 35 MILES FROM TEXAS BORDER and low testing sampling figures -- what gives TAHC ???

Date: December 23, 2006 at 11:25 am PST

Greetings BSE-L members,

i never know if i am going crazy or just more of the same BSe. several years ago i brought up the fact to the TAHC that CWD was literally at the Texas borders and that the sample size for cwd testing was no where near enough in the location of that zone bordering NM. well, i just wrote them another letter questioning this again on Dec. 14, 2006 (see below) and showed them two different pdf maps, one referencing this url, which both worked just fine then. since then, i have NOT received a letter from them answering my question, and the url for the map i used as reference is no longer working? i had reference this map several times from the hunter-kill cwd sampling as of 31 August 2005 pdf which NO longer works now??? but here are those figures for that zone bordering NM, for those that were questioning the url. the testing samples elsewhere across Texas where much much more than that figure in the zone bordering NM where CWD has been documented bordering TEXAS, near the White Sands Missile Range. SO, why was the Texas hunter-kill cwd sampling as of 31 August 2005 document removed from the internet??? you know, this reminds me of the infamous TEXAS MAD COW that i documented some 7 or 8 months before USDA et al documented it, when the TAHC accidentally started ramping up for the announcement on there web site, then removed it (see history at bottom). i am not screaming conspiracy here, but confusious is confused again on the ciphering there using for geographical distribution of cwd tissue sample size survey, IF they are serious about finding CWD in TEXAS. common sense would tell you if cwd is 35 miles from the border, you would not run across state and have your larger samples there, and least samples 35 miles from where is what found..........daaa..........TSS

THEN NOTICE CWD sample along that border in TEXAS, Three Year Summary of Hunter-Kill CWD sampling as of 31 August 2005 of only 191 samples, then compare to the other sample locations ;



TPWD has been conducting surveys of hunter-kill animals since 2002 and has collected more than 7300 samples (as of 31 August 2005). In total, there have been over 9400 samples, both hunter-kill and private samples, tested in Texas to date, and no positives have been found.


SO, out of a total of 9,400 samples taken for CWD surveillance in TEXAS since 2002 of both hunter-kill and private kill, ONLY 191 samples have been taken in the most likely place one would find CWD i.e. the border where CWD has been documented at TEXAS and New Mexico

latest map NM cwd old data



CWD in New Mexico ;

What is the Department doing to prevent the spread of CWD?

Chronic wasting disease (CWD) was recently detected in a mule deer from Unit 34. Until 2005, CWD had only been found in Unit 19. With this discovery, the Department will increase its surveillance of deer and elk harvested in Units 29, 30 and 34.

Lymph nodes and/or brain stems from every harvested deer and brain stems from all elk taken in Unit 34 will be sampled.

snip...







CWD SURVEILLANCE TEXAS


SNIP...SEE FULL TEXT ;

 2011 – 2012

 Friday, October 28, 2011

CWD Herd Monitoring Program to be Enforced Jan. 2012 TEXAS

Greetings TAHC et al,

A kind greetings from Bacliff, Texas.

In reply to ;

Texas Animal Health Commission (TAHC) Announcement October 27, 2011

I kindly submit the following ;





MONDAY, AUGUST 14, 2017

*** Texas Chronic Wasting Disease CWD TSE Prion History ***


2021 Transmissible Spongiform Encephalopathy TSE Prion End of Year Report 2020

CJD FOUNDATION VIRTUAL CONFERENCE CJD Foundation Research Grant Recipient Reports Panel 2 Nov 3, 2020

zoonotic potential of PMCA-adapted CWD PrP 96SS inoculum


4 different CWD strains, and these 4 strains have different potential to induce any folding of the human prion protein. 


***> PIGS, WILD BOAR, CWD <***

***> POPULATIONS OF WILD BOARS IN THE UNITED STATES INCREASING SUPSTANTUALLY AND IN MANY AREAS WE CAN SEE  A HIGH DENSITY OF WILD BOARS AND HIGH INCIDENT OF CHRONIC WASTING DISEASE

HYPOTHOSIS AND SPECIFIC AIMS

HYPOTHOSIS 

BSE, SCRAPIE, AND CWD, EXPOSED DOMESTIC PIGS ACCUMULATE DIFFERENT QUANTITIES AND STRAINS OF PRIONS IN PERIPHERAL TISSUES, EACH ONE OF THEM WITH PARTICULAR ZOONOTIC POTENTIALS


Final Report – CJD Foundation Grant Program A. 

Project Title: Systematic evaluation of the zoonotic potential of different CWD isolates. Principal Investigator: Rodrigo Morales, PhD.


Systematic evaluation of the zoonotic potential of different CWD isolates. Rodrigo Morales, PhD Assistant Professor Protein Misfolding Disorders lab Mitchell Center for Alzheimer’s disease and Related Brain Disorders Department of Neurology University of Texas Health Science Center at Houston Washington DC. July 14th, 2018

Conclusions and Future Directions • We have developed a highly sensitive and specific CWD-PMCA platform to be used as a diagnostic tool. • Current PMCA set up allow us to mimic relevant prion inter-species transmission events. • Polymorphic changes at position 96 of the prion protein apparently alter strain properties and, consequently, the zoonotic potential of CWD isolates. • Inter-species and inter-polymorphic PrPC → PrPSc conversions further increase the spectrum of CWD isolates possibly present in nature. • CWD prions generated in 96SS PrPC substrate apparently have greater inter-species transmission potentials. • Future experiments will explore the zoonotic potential of CWD prions along different adaptation scenarios, including inter-species and inter-polymorphic.



Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease 

Author item MOORE, SARAH - Orise Fellow item Kunkle, Robert item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item SMITH, JODI - Iowa State University item KANTHASAMY, ANUMANTHA - Iowa State University item WEST GREENLEE, M - Iowa State University item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent. 

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 month challenge groups). The remaining pigs (>6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC. 

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP 

Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.

Interpretive Summary:

Technical Abstract: We have previously shown that the chronic wasting disease (CWD) agent from white-tailed deer can be transmitted to domestic pigs via intracranial or oral inoculation although with low attack rates and restricted PrPSc accumulation. The objective of this study was to assess the potential for cross-species transmission of pig-passaged CWD using bioassay in transgenic mice. Transgenic mice expressing human (Tg40), bovine (TgBovXV) or porcine (Tg002) PRNP were inoculated intracranially with 1% brain homogenate from a pig that had been intracranially inoculated with a pool of CWD from white-tailed deer. This pig developed neurological clinical signs, was euthanized at 64 months post-inoculation, and PrPSc was detected in the brain. Mice were monitored daily for clinical signs of disease until the end of the study. Mice were considered positive if PrPSc was detected in the brain using an enzyme immunoassay (EIA). In transgenic mice expressing porcine prion protein the average incubation period was 167 days post-inoculation (dpi) and 3/27 mice were EIA positive (attack rate = 11%). All 3 mice were found dead and clinical signs were not noted prior to death. One transgenic mouse expressing bovine prion protein was euthanized due to excessive scratching at 617 dpi and 2 mice culled at the end of the study at 700 dpi were EIA positive resulting in an overall attack rate of 3/16 (19%). None of the transgenic mice expressing human prion protein that died or were euthanized up to 769 dpi were EIA positive and at study end point at 800 dpi 2 mice had positive EIA results (overall attack rate = 2/20 = 10%). The EIA optical density (OD) readings for all positive mice were at the lower end of the reference range (positive mice range, OD = 0.266-0.438; test positive reference range, OD = 0.250-4.000). To the authors’ knowledge, cervid-derived CWD isolates have not been successfully transmitted to transgenic mice expressing human prion protein. The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


MONDAY, NOVEMBER 23, 2020 

***> Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


MONDAY, JANUARY 04, 2021 

NC1209: North American interdisciplinary chronic wasting disease research consortium Singeltary Submission January 2021


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 

PPo4-4:

Survival and Limited Spread of TSE Infectivity after Burial

Karen Fernie, Allister Smith and Robert A. Somerville The Roslin Institute and R(D)SVS; University of Edinburgh; Roslin, Scotland UK

Scrapie and chronic wasting disease probably spread via environmental routes, and there are also concerns about BSE infection remaining in the environment after carcass burial or waste 3disposal. In two demonstration experiments we are determining survival and migration of TSE infectivity when buried for up to five years, as an uncontained point source or within bovine heads. Firstly boluses of TSE infected mouse brain were buried in lysimeters containing either sandy or clay soil. Migration from the boluses is being assessed from soil cores taken over time. With the exception of a very small amount of infectivity found 25 cm from the bolus in sandy soil after 12 months, no other infectivity has been detected up to three years. Secondly, ten bovine heads were spiked with TSE infected mouse brain and buried in the two soil types. Pairs of heads have been exhumed annually and assessed for infectivity within and around them. After one year and after two years, infectivity was detected in most intracranial samples and in some of the soil samples taken from immediately surrounding the heads. The infectivity assays for the samples in and around the heads exhumed at years three and four are underway. These data show that TSE infectivity can survive burial for long periods but migrates slowly. Risk assessments should take into account the likely long survival rate when infected material has been buried.

The authors gratefully acknowledge funding from DEFRA.

PRION CONFERENCE 2010 ABSTRACT REFERENCE

2018 - 2019

***> This is very likely to have parallels with control efforts for CWD in cervids.

Rapid recontamination of a farm building occurs after attempted prion removal


Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2

Abstract

The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. 

Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. 

Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. 

Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). 

A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. 

Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3. 

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.

Funding This study was funded by DEFRA within project SE1865. 

Competing interests None declared. 






Saturday, January 5, 2019 

Rapid recontamination of a farm building occurs after attempted prion removal 


The effectiveness of on-farm decontamination methods for scrapie - SE1865

Description

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/ replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie-contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Objective

Phase 1

• Determine the presence and relative levels of airborne prions on a scrapie infected farm.

• Evaluate different pen surface decontamination procedures.

Phase 2

• Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

• Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

Time-Scale and Cost

From: 2012 

To: 2016 

Cost: £326,784

Contractor / Funded Organisations

A D A S UK Ltd (ADAS)

Keywords Animals Fields of Study Animal Health


The Effectiveness of on-Farm Decontamination Methods for Scrapie

Institutions ADAS

Start date 2012

End date 2016

Objective Phase 1

Determine the presence and relative levels of airborne prions on a scrapie infected farm. Evaluate different pen surface decontamination procedures.

Phase 2

Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

More information

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Funding Source

Department for Environment, Food and Rural Affairs

Project source

View this project

Project number

SE1865

Categories

Foodborne Disease

Policy and Planning 


Circulation of prions within dust on a scrapie affected farm

Kevin C Gough1 , Claire A Baker2 , Hugh A Simmons3 , Steve A Hawkins3 and Ben C Maddison2*

Abstract

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

snip... 

Discussion We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

Author 

 item Greenlee, Justin item Moore, S - Orise Fellow item Smith, Jodi - Iowa State University item Kunkle, Robert item West Greenlee, M - Iowa State University Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: 8/12/2015 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread


***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 

SOURCE REFERENCE 2018 PRION CONFERENCE ABSTRACT

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Horizontal transmission of chronic wasting disease in reindeer

Author

item MOORE, SARAH - ORISE FELLOW item KUNKLE, ROBERT item WEST GREENLEE, MARY - IOWA STATE UNIVERSITY item Nicholson, Eric item RICHT, JUERGEN item HAMIR, AMIRALI item WATERS, WADE item Greenlee, Justin

Submitted to: Emerging Infectious Diseases

Publication Type: Peer Reviewed Journal

Publication Acceptance Date: 8/29/2016

Publication Date: 12/1/2016

Citation: Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.

Interpretive Summary: Chronic wasting disease (CWD) is a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America and was recently diagnosed in a single free-ranging reindeer (Rangifer tarandus tarandus) in Norway. CWD is a transmissible spongiform encephalopathy (TSE) that is caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Little is known about the susceptibility of or potential for transmission amongst reindeer. In this experiment, we tested the susceptibility of reindeer to CWD from various sources (elk, mule deer, or white-tailed deer) after intracranial inoculation and tested the potential for infected reindeer to transmit to non-inoculated animals by co-housing or housing in adjacent pens. Reindeer were susceptible to CWD from elk, mule deer, or white-tailed deer sources after experimental inoculation. Most importantly, non-inoculated reindeer that were co-housed with infected reindeer or housed in pens adjacent to infected reindeer but without the potential for nose-to-nose contact also developed evidence of CWD infection. This is a major new finding that may have a great impact on the recently diagnosed case of CWD in the only remaining free-ranging reindeer population in Europe as our findings imply that horizontal transmission to other reindeer within that herd has already occurred. Further, this information will help regulatory and wildlife officials developing plans to reduce or eliminate CWD and cervid farmers that want to ensure that their herd remains CWD-free, but were previously unsure of the potential for reindeer to transmit CWD.

Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal prion disease of cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, and CWD was recently reported in a free-ranging reindeer of Norway. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWDwtd), mule deer (Odocoileus hemionus; CWDmd), or elk (Cervus elaphus nelsoni; CWDelk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWDwtd, CWDmd, or CWDelk. Two years after challenge of inoculated reindeer, non-inoculated negative control reindeer were introduced into the same pen as the CWDwtd inoculated reindeer (direct contact; n=4) or into a pen adjacent to the CWDmd inoculated reindeer (indirect contact; n=2). Experimentally inoculated reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrPcwd). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (months PI). PrPcwd was detected in 5 out of 6 sentinel reindeer although only 2 out of 6 developed clinical disease during the study period (< 57 months PI). We have shown that reindeer are susceptible to CWD from various cervid sources and can transmit CWD to naïve reindeer both directly and indirectly.


***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3

First Published: 01 December 2006 https://doi.org/10.1099/vir.0.82011-0 ABSTRACT In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheep-house that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.


Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3

Correspondence

Gudmundur Georgsson ggeorgs@hi.is

1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland

2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland

3 Bethesda, Maryland, USA

Received 7 March 2006 Accepted 6 August 2006

In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.

 
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION 

 
 *** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION 


SEE;

Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;

Some unofficial information from a source on the inside looking out -

Confidential!!!!

As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss


Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).


Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document


Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

=========================

***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 

source reference Prion Conference 2015 abstract book

Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

Sandra Pritzkow,1 Rodrigo Morales,1 Fabio Moda,1,3 Uffaf Khan,1 Glenn C. Telling,2 Edward Hoover,2 and Claudio Soto1, * 1Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA

2Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA

3Present address: IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy *Correspondence: claudio.soto@uth.tmc.edu http://dx.doi.org/10.1016/j.celrep.2015.04.036

SUMMARY

Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc) to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

INTRODUCTION

snip...

DISCUSSION

This study shows that plants can efficiently bind prions contained in brain extracts from diverse prion infected animals, including CWD-affected cervids. PrPSc attached to leaves and roots from wheat grass plants remains capable of seeding prion replication in vitro. Surprisingly, the small quantity of PrPSc naturally excreted in urine and feces from sick hamster or cervids was enough to efficiently contaminate plant tissue. Indeed, our results suggest that the majority of excreted PrPSc is efficiently captured by plants’ leaves and roots. Moreover, leaves can be contaminated by spraying them with a prion-containing extract, and PrPSc remains detectable in living plants for as long as the study was performed (several weeks). Remarkably, prion contaminated plants transmit prion disease to animals upon ingestion, producing a 100% attack rate and incubation periods not substantially longer than direct oral administration of sick brain homogenates.

Finally, an unexpected but exciting result was that plants were able to uptake prions from contaminated soil and transport them to aerial parts of the plant tissue. Although it may seem farfetched that plants can uptake proteins from the soil and transport it to the parts above the ground, there are already published reports of this phenomenon (McLaren et al., 1960; Jensen and McLaren, 1960;Paungfoo-Lonhienne et al., 2008). The high resistance of prions to degradation and their ability to efficiently cross biological barriers may play a role in this process. The mechanism by which plants bind, retain, uptake, and transport prions is unknown. We are currently studying the way in which prions interact with plants using purified, radioactively labeled PrPSc to determine specificity of the interaction, association constant, reversibility, saturation, movement, etc.

Epidemiological studies have shown numerous instances of scrapie or CWD recurrence upon reintroduction of animals on pastures previously exposed to prion-infected animals. Indeed, reappearance of scrapie has been documented following fallow periods of up to 16 years (Georgsson et al., 2006), and pastures were shown to retain infectious CWD prions for at least 2 years after exposure (Miller et al., 2004). It is likely that the environmentally mediated transmission of prion diseases depends upon the interaction of prions with diverse elements, including soil, water, environmental surfaces, various invertebrate animals, and plants.

However, since plants are such an important component of the environment and also a major source of food for many animal species, including humans, our results may have far-reaching implications for animal and human health. Currently, the perception of the riskfor animal-to-human prion transmission has beenmostly limited to consumption or exposure to contaminated meat; our results indicate that plants might also be an important vector of transmission that needs to be considered in risk assessment. 


RIGINAL RESEARCH ARTICLE

Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

1Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK

2Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK

3Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK

4ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

5School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie-affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 


WEDNESDAY, MARCH 13, 2019 

CWD, TSE, PRION, MATERNAL mother to offspring, testes, epididymis, seminal fluid, and blood
Subject: Prion 2019 Conference

See full Prion 2019 Conference Abstracts


Transmissible Spongiform Encephalopathies in exotic species

In exotic species, the last one was in 2007.

SPECIES No. DATES AFFECTED

Ankole cow 2 1991, 95

Bison 1 1996

Cheetah 5 1992 – 98

Eland 6 1989 – 95

Gemsbok 1 1987

Kudu 6 1989 – 92

Asian Leopard Cat1 1 2005

Lion 5 1998 - 2007

Nyala 1 1986

Ocelot 3 1994 – 99

Oryx 2 1989, 92

Puma 3 1992 – 95

Tiger 3 1995 – 99

Data valid to 30 September 2019

1Felis (Prionailurus) bengalensis. 


ZOO ANIMALS AND TSE PRION DISEASE

The 82 zoo animals with BSE:

Id TSE Genus Species Subsp Birth Origin Death Place of Death

654 x Microcebus murinus - 1997 U.Montpellier 1998 U.Montpellier

656 x Microcebus murinus - 1997 U.Montpellier 1998 U.Montpellier

481 + Eulemur fulvus mayottensis 1974 Madagascar 1992 Montpellier zoo

474 + Eulemur fulvus mayottensis 1974 Madagascar 1990 Montpellier zoo

584 - Eulemur fulvus mayottensis 1984 Montpellier 1991 Montpellier zoo

455 + Eulemur fulvus mayottensis 1983 Montpellier 1989 Montpellier zoo

 - + Eulemur fulvus mayottensis 1988 Montpellier 1992 Montpellier zoo

 - + Eulemur fulvus mayottensis 1995 Montpellier 1996 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1992 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1990 Montpellier zoo

 - + Eulemur fulvus albifrons 1988 Paris 1992 Montpellier zoo

456 + Eulemur fulvus albifrons 1988 Paris 1990 Montpellier zoo

586 + Eulemur mongoz - 1979 Madagascar 1998 Montpellier zoo

 - p Eulemur mongoz - 1989 Mulhouse 1991 Montpellier zoo

 - p Eulemur mongoz - 1989 Mulhouse 1990 Montpellier zoo

 - p Eulemur macaco - 1986 Montpellier 1996 Montpellier zoo

 - p Lemur catta - 1976 Montpellier 1994 Montpellier zoo

 - p Varecia variegata variegata 1985 Mulhouse 1990 Montpellier zoo

 - p Varecia variegata variegata 1993 xxx 1994 Montpellier zoo

455 + Macaca mulatta - 1986 Ravensden UK 1992 Montpellier zoo

 - p Macaca mulatta - 1986 Ravensden UK 1993 Montpellier zoo

 - p Macaca mulatta - 1988 Ravensden UK 1991 Montpellier zoo

 - p Saimiri sciureus - 1987 Frejus France 1990 Frejus zoo

700 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

701 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

702 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

703 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

704 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

705 pc eulemur hybrid - - Besancon zoo 1998 Besancon zoo

706 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

707 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

708 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

709 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

710 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

711 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

712 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

713 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

714 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

715 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

716 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

717 pc eulemur hybrid - - Strasbourg zoo 1998 Strasbourg zoo

 x p genus species - - Lille zoo 1996 Lille zoo

 y p genus species - - Lille zoo 1996 Lille zoo

 z p genus species - - Lille zoo 1996 Lille zoo 

1 + Actinonyx jubatus cheetah 1986 Marwell zoo 1991 Pearle Coast AU

Duke + Actinonyx jubatus cheetah 1984 Marwell zoo 1992 Colchester zoo? UK

Saki + Actinonyx jubatus cheetah 1986 Marwell zoo 1993 unknown UK

Mich + Actinonyx jubatus cheetah 1986 Whipsnade 1993 Whipsnade UK

Fr1 + Actinonyx jubatus cheetah 1987 Whipsnade 1997 Safari de Peaugres FR

Fr2 + Actinonyx jubatus cheetah 1991 Marwell zoo 1997 Safari de Peaugres Fr

xx + Actinonyx jubatus cheetah 19xx xxx zoo 199x Fota zoo IR

yy + Actinonyx jubatus cheetah 19xx yyy zoo 1996+ yyyy zoo UK

zz + Actinonyx jubatus cheetah 19xx zzz zoo 1996+ yyyy zoo UK

aaa + Felis concolor puma 1986 Chester zoo 1991 Chester zoo UK

yy + Felis concolor puma 1980 yyy zoo 1995 yyyy zoo UK

zz + Felis concolor puma 1978 zzz zoo 1995 zzzz zoo UK

xxx + Felis pardalis ocelot 1987 xxx 1994 Chester zoo UK

zzz + Felis pardalis ocelot 1980 zzz 1995 zzzz zoo UK

85 + Felis catus cat 1990+ various 1999+ various UK LI NO 

19 + Canis familia. dog 1992+ various 1999+ various UK 

Fota + Panthera tigris tiger 1981 xxx zoo 1995 xxxx zoo UK

yy + Panthera tigris tiger 1983 yyy zoo 1998 yyyy zoo UK

Lump + Panthera leo lion 1986 Woburn SP 1998 Edinburgh zoo UK [since 1994]

1 + Taurotragus oryx eland 1987 Port Lympne 1989 Port Lympne zoo UK

Moll + Taurotragus oryx eland 1989 xx UK 1991 not Port Lympne UK

Nedd + Taurotragus oryx eland 1989 xx UK 1991 not Port Lympne UK

Elec + Taurotragus oryx eland 1990 xx UK 1992 not Port Lympne Uk

Daph p Taurotragus oryx eland 1988 xx UK 1990 not Port Lympne UK

zzz + Taurotragus oryx eland 1991 zz UK 1994 zzz UK 

yyy + Taurotragus oryx eland 1993 yy UK 1995 yyy UK 

Fran p Tragelaphus strepsi. kudu 1985 London zoo 1987 London zoo UK

Lind + Tragelaphus strepsi. kudu 1987 London zoo 1989 London zoo UK

Karl + Tragelaphus strepsi. kudu 1988 London zoo 1990 London zoo UK

Kaz + Tragelaphus strepsi. kudu 1988 London zoo 1991 London zoo UK

Bamb pc Tragelaphus strepsi. kudu 1988 London zoo 1991 London zoo UK

Step - Tragelaphus strepsi. kudu 1984 London zoo 1991 London zoo UK

346 pc Tragelaphus strepsi. kudu 1990 London zoo 1992 London zoo UK

324 + Tragelaphus strepsi. kudu 1989 Marwell zoo 1992 London zoo UK

xxx + Tragelaphus angasi nyala 1983 Marwell zoo 1986 Marwell zoo UK

yy + Oryx gazella gemsbok 1983 Marwell zoo 1986 Marwell zoo UK

zz + Oryx gazella gemsbok 1994+ zzz zoo 1996+ zzzz zoo UK

xx + Oryx dammah scim oryx 1990 xxxx zoo 1993 Chester zoo UK

yy + Oryx leucoryx arab oryx 1986 Zurich zoo 1991 London zoo UK

yy + Bos taurus ankole cow 1987 yyy zoo 1995 yyyy zoo UK

zz + Bos taurus ankole cow 1986 zzz zoo 1991 zzzz zoo UK

xx + Bison bison Eu bison 1989 xxx zoo 1996 xxxx zoo UK






THURSDAY, DECEMBER 19, 2019

TSE surveillance statistics exotic species and domestic cats Update December 2019


172. Establishment of PrPCWD extraction and detection methods in the farm soil

Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn
Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea
ABSTRACT
Introduction: Transmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Chronic wasting disease (CWD) is the prion disease that is known spread horizontally. CWD has confirmed last in Republic of Korea in 2016 since first outbreak of CWD in 2001. The environmental reservoirs mediate the transmission of this disease. The significant levels of infectivity have been detected in the saliva, urine, and faeces of TSE-infected animals. Soil can serve as a stable reservoir for infectious prion proteins. We found that PrPCWD can be extracted and detected in CWD contaminated soil which has kept at room temperature until 4 years after 0.001 ~ 1% CWD exposure and natural CWD-affected farm soil through PBS washing and sPMCAb.
Materials and Methods: Procedure of serial PMCAb. CWD contaminated soil which has kept at room temperature (RT) for 1 ~ 4 year after 0.001%~1% CWD brain homogenates exposure for 4 months collected 0.14 g. The soil was collected by the same method once of year until 4 year after stop CWD exposure. We had conducted the two steps. There are two kinds of 10 times washing step and one amplification step. The washing step was detached PrPSc from contaminated soil by strong vortex with maximum rpm. We harvest supernatant every time by 10 times. As the other washing step, the Washed soil was made by washing 10 times soil using slow rotator and then harvest resuspended PBS for removing large impurity material. Last step was prion amplification step for detection of PrPCWD in soil supernatant and the washed soil by sPMCAb. Normal brain homogenate (NBH) was prepared by homogenization of brains with glass dounce in 9 volumes of cold PBS with TritonX-100, 5 mM EDTA, 150 mM NaCl and 0.05% Digitonin (sigma) plus Complete mini protease inhibitors (Roche) to a final concentration of 5%(w/v) NBHs were centrifuged at 2000 g for 1 min, and supernatant removed and frozen at −70 C for use. CWD consisted of brain from natural case in Korea and was prepared as 10%(w/v) homogenate. Positive sample was diluted to a final dilution 1:1000 in NBH, with serial 3:7 dilutions in NBH. Sonication was performed with a Misonix 4000 sonicator with amplitude set to level 70, generating an average output of 160W with two teflon beads during each cycle. One round consisted of 56 cycles of 30 s of sonication followed 9 min 30 s of 37°C incubation. Western Blotting (WB) for PrPSc detection. The samples (20 µL) after each round of amplification were mixed with proteinase K (2 mg/ml) and incubated 37°C for 1 h. Samples were separated by SDS-PAGE and transferred onto PVDF membrane. After blocking, the membrane was incubated for 1 h with 1st antibody S1 anti rabbit serum (APQA, 1:3000) and developed with enhanced chemiluminescence detection system.
Results: We excluded from first to third supernatant in view of sample contamination. It was confirmed abnormal PrP amplification in all soil supernatants from fourth to tenth. From 0.01% to 1% contaminated washed soils were identified as abnormal prions. 0.001% contaminated washed soil did not show PrP specific band (Fig 1). The soil was collected by the same method once of year until 4 year after stop CWD exposure. After sPMCAb, there were no PrPCWD band in from second to fourth year 0.001% washed soil. but It was confirmed that the abnormal prion was amplified in the washing supernatant which was not amplified in the washed soil. we have decided to use soil supernatant for soil testing (Fig. 2). After third rounds of amplification, PrPSc signals observed in three out of four sites from CWD positive farm playground. No signals were observed in all soil samples from four CWD negative farm (Fig. 3).
Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.
===

186. Serial detection of hematogenous prions in CWD-infected deer

Amy V. Nalls, Erin E. McNulty, Nathaniel D. Denkers, Edward A. Hoover and Candace K. Mathiason
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
CONTACT Amy V. Nalls amy.nalls@colostate.edu
ABSTRACT
Blood contains the infectious agent associated with prion disease affecting several mammalian species, including humans, cervids, sheep, and cattle. It has been confirmed that sufficient prion agent is present in the blood of both symptomatic and asymptomatic carriers to initiate the amyloid templating and accumulation process that results in this fatal neurodegenerative disease. Yet, to date, the ability to detect blood-borne prions by in vitro methods remains difficult.
We have capitalized on blood samples collected from longitudinal chronic wasting disease (CWD) studies in the native white-tailed deer host to examine hematogenous prion load in blood collected minutes, days, weeks and months post exposure. Our work has focused on refinement of the amplification methods RT-QuIC and PMCA. We demonstrate enhanced in vitro detection of amyloid seeding activity (prions) in blood cell fractions harvested from deer orally-exposed to 300 ng CWD positive brain or saliva.
These findings permit assessment of the role hematogenous prions play in the pathogenesis of CWD and provide tools to assess the same for prion diseases of other mammalian species.
Considering the oral secretion of prions, saliva from CWD-infected deer was shown to transmit disease to other susceptible naïve deer when harvested from the animals in both the prions in the saliva and blood of deer with chronic wasting disease
 and preclinical stages69
 of infection, albeit within relatively large volumes of saliva (50 ml). In sheep with preclinical, natural scrapie infections, sPMCA facilitated the detection of PrPSc within buccal swabs throughout most of the incubation period of the disease with an apparent peak in prion secretion around the mid-term of disease progression.70
 The amounts of prion present in saliva are likely to be low as indicated by CWD-infected saliva producing prolonged incubation periods and incomplete attack rates within the transgenic mouse bioassay.41
snip...
Indeed, it has also been shown that the scrapie and CWD prions are excreted in urine, feces and saliva and are likely to be excreted from skin. While levels of prion within these excreta/secreta are very low, they are produced throughout long periods of preclinical disease as well as clinical disease. Furthermore, the levels of prion in such materials are likely to be increased by concurrent inflammatory conditions affecting the relevant secretory organ or site. Such dissemination of prion into the environment is very likely to facilitate the repeat exposure of flockmates to low levels of the disease agent, possibly over years.
snip...
Given the results with scrapie-contaminated milk and CWD-contaminated saliva, it seems very likely that these low levels of prion in different secreta/excreta are capable of transmitting disease upon prolonged exposure, either through direct animal-to-animal contact or through environmental reservoirs of infectivity.
the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.
HUNTERS, CWD TSE PRION, THIS SHOULD A WAKE UP CALL TO ALL OF YOU GUTTING AND BONING OUT YOUR KILL IN THE FIELD, AND YOUR TOOLS YOU USE...

* 1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
Wednesday, September 11, 2019 

Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion

SATURDAY, MARCH 16, 2019 

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019 Singeltary Submission


Monday, November 30, 2020 

CAMEL PRION DISEASE OR MAD CAMEL DISASE

***>Tunisia has become the second country after Algeria to detect a case of CPD within a year


TUESDAY, NOVEMBER 17, 2020 

The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2019 First published 17 November 2020


WEDNESDAY, OCTOBER 28, 2020 

EFSA Annual report of the Scientific Network on BSE-TSE 2020 Singeltary Submission


WEDNESDAY, OCTOBER 28, 2020 

EFSA Scientific Opinion Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for non‐ruminant farmed animals


WEDNESDAY, DECEMBER 2, 2020

EFSA Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates EFSA Panel on Biological Hazards (BIOHAZ) ADOPTED: 21 October 2020

i wonder if a 7 month delay on a suspect BSE case in Texas is too long, on a 48 hour turnaround, asking for a friend???


> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip…
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terry
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA
Qingzhong Kong
Case Western Reserve University School of Medicine, USA
Zoonotic potential of chronic wasting disease prions from cervids
Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.
Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.
SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, just not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




*** IF CWD is not a risk factor for humans, then I guess the FDA et al recalled all this CWD tainted elk tenderloin (2009 Exotic Meats USA of San Antonio, TX) for the welfare and safety of the dead elk. ...tss
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease 
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.
Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.
#
RSS Feed for FDA Recalls Information11 [what's this?12]

FRIDAY, JULY 26, 2019 

Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species

TUESDAY, JANUARY 21, 2020 

***> 2004 European Commission Chronic wasting disease AND TISSUES THAT MIGHT CARRY A RISK FOR HUMAN FOOD AND ANIMAL FEED CHAINS REPORT UPDATED 2020


CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019



***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


TUESDAY, NOVEMBER 17, 2020 

The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2019 First published 17 November 2020


FRIDAY, OCTOBER 30, 2020 

Efficient transmission of US scrapie agent by intralingual route to genetically susceptible sheep with a low dose inoculum



TUESDAY, JANUARY 12, 2021 

Annual Scrapie Report Available for Fiscal Year 2020 USA October 1, 2019 to September 30, 2020



THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021



FRIDAY, FEBRUARY 12, 2021 

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes



WEDNESDAY, FEBRUARY 10, 2021 

SENATORS URGE BIDEN TO WITHDRAW SHEEP IMPORT RULE DUE TO SCRAPIE TSE Prion CONCERNS



WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al



TUESDAY, JANUARY 5, 2021 

Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy



2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strainsNo

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


WEDNESDAY, OCTOBER 28, 2020 

***> EFSA Annual report of the Scientific Network on BSE-TSE 2020 Singeltary Submission


SUNDAY, OCTOBER 11, 2020 

Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ 


THURSDAY, SEPTEMBER 24, 2020 

The emergence of classical BSE from atypical/ Nor98 scrapie


FRIDAY, OCTOBER 23, 2020 

Scrapie TSE Prion Zoonosis Zoonotic, what if?


 ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE


MONDAY, DECEMBER 16, 2019 

Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?

DECEMBER 2020 TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE BSE, SCRAPIE, CWD, CPD, PPD, CJD END OF YEAR REPORTS

MONDAY, DECEMBER 14, 2020 

Experimental oral transmission of chronic wasting disease to sika deer (Cervus nippon)


Sunday, January 10, 2021

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission
June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...






WEDNESDAY, DECEMBER 23, 2020 

***> BSE research project final report 2005 to 2008 SE1796 SID5 


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


TSS REPORT ON 2ND TEJAS MAD COW Mon, 22 Nov 2004 17:12:15 -0600 (the one that did NOT get away, thanks to the Honorable Phyllis Fong)

-------- Original Message -------- 

Subject: Re: BSE 'INCONCLUSIVE' COW from TEXAS ???

Date: Mon, 22 Nov 2004 17:12:15 -0600

From: "Terry S. Singeltary Sr."

To: Carla Everett

References: <[log in to unmask]>

<[log in to unmask] us> 

Greetings Carla,still hear a rumor;

Texas single beef cow not born in Canada no beef entered the food chain?

and i see the TEXAS department of animal health is ramping up forsomething, but they forgot a url for update?

I HAVE NO ACTUAL CONFIRMATION YET...can you confirm???

terry

============================== ============================== 

-------- Original Message -------- 

Subject: Re: BSE 'INCONCLUSIVE' COW from TEXAS ???

Date: Fri, 19 Nov 2004 11:38:21 -0600

From: Carla Everett

To: "Terry S. Singeltary Sr."

References: <[log in to unmask]>

The USDA has made a statement, and we are referring all callers to the USDA web site. We have no information about the animal being in Texas. 

Carla At 09:44 AM 11/19/2004, you wrote:

>Greetings Carla,

>>i am getting unsubstantiated claims of this BSE 'inconclusive' cow is from

>TEXAS. can you comment on this either way please?

>>thank you,

>Terry S. Singeltary Sr.

>>

=================== =================== 

-------- Original Message -------- 

Subject: Re: BSE 'INCONCLUSIVE' COW from TEXAS ???

Date: Mon, 22 Nov 2004 18:33:20 -0600

From: Carla Everett

To: "Terry S. Singeltary Sr."

References: <[log in to unmask]>

<[log in to unmask] us>

<[log in to unmask]> 

<[log in to unmask] us> 

<[log in to unmask]>

our computer department was working on a place holder we could post USDA's announcement of any results. There are no results to be announced tonight by NVSL, so we are back in a waiting mode and will post the USDA announcement when we hear something.

At 06:05 PM 11/22/2004, you wrote: >why was the announcement on your TAHC site removed?

>>Bovine Spongiform Encephalopathy:

>November 22: Press Release title here 

>>star image More BSE information

>>>>terry

>>Carla Everett wrote:

>>>no confirmation on the U.S.' inconclusive test...

>>no confirmation on location of animal.

>>>>>>

========================== ==========================

THEN, 7+ MONTHS OF COVER-UP BY JOHANN ET AL! no doubt about it now $$$ 

NO, it's not pretty, be nice, im not pretty, but these are the facts, take em or leave em, however, you cannot change them.

with kindest regards,

I am still sincerely disgusted and tired in sunny Bacliff, Texas USA 77518

Terry S. Singeltary Sr.

FULL 130 LASHINGS TO USDA BY OIG again


FOR IMMEDIATE RELEASE

Statement

May 4, 2004

Media Inquiries: 301-827-6242

Consumer Inquiries: 888-INFO-FDA 

Statement on Texas Cow With Central Nervous System Symptoms

On Friday, April 30 th , the Food and Drug Administration learned that a cow with central nervous system symptoms had been killed and shipped to a processor for rendering into animal protein for use in animal feed.

FDA, which is responsible for the safety of animal feed, immediately began an investigation. On Friday and throughout the weekend, FDA investigators inspected the slaughterhouse, the rendering facility, the farm where the animal came from, and the processor that initially received the cow from the slaughterhouse.

FDA's investigation showed that the animal in question had already been rendered into "meat and bone meal" (a type of protein animal feed). Over the weekend FDA was able to track down all the implicated material. That material is being held by the firm, which is cooperating fully with FDA.

Cattle with central nervous system symptoms are of particular interest because cattle with bovine spongiform encephalopathy or BSE, also known as "mad cow disease," can exhibit such symptoms. In this case, there is no way now to test for BSE. But even if the cow had BSE, FDA's animal feed rule would prohibit the feeding of its rendered protein to other ruminant animals (e.g., cows, goats, sheep, bison).

FDA is sending a letter to the firm summarizing its findings and informing the firm that FDA will not object to use of this material in swine feed only. If it is not used in swine feed, this material will be destroyed. Pigs have been shown not to be susceptible to BSE. If the firm agrees to use the material for swine feed only, FDA will track the material all the way through the supply chain from the processor to the farm to ensure that the feed is properly monitored and used only as feed for pigs.

To protect the U.S. against BSE, FDA works to keep certain mammalian protein out of animal feed for cattle and other ruminant animals. FDA established its animal feed rule in 1997 after the BSE epidemic in the U.K. showed that the disease spreads by feeding infected ruminant protein to cattle.

Under the current regulation, the material from this Texas cow is not allowed in feed for cattle or other ruminant animals. FDA's action specifying that the material go only into swine feed means also that it will not be fed to poultry.

FDA is committed to protecting the U.S. from BSE and collaborates closely with the U.S. Department of Agriculture on all BSE issues. The animal feed rule provides crucial protection against the spread of BSE, but it is only one of several such firewalls. FDA will soon be improving the animal feed rule, to make this strong system even stronger.

####



-------- Original Message --------

Subject: Re: Congressman Henry Waxmans's Letter to the Honorable Ann Veneman on failure by USDA/APHIS TO TEST TEXAS MAD COW

Date: Wed, 9 Jun 2004 16:48:31 –0500

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


######## Bovine Spongiform Encephalopathy #########

USA BSE RED BOOK

October 1998

BSE Red Book 2.1-36

7.2.1.7 Laboratory Coordination--The Laboratory Coordination Officer will advise the READE(3 Director concerning laboratory capabilities and appropriate laboratory examinations to be conducted to provide needed results as rapidly as possible. This individual will assist with interpretation of results.

seems that if the 'enhanced BSE/TSE testing program' is to test some 400,000+ animals in 1 1/2 years, they better hurry up, times a wasting.

BSE Red Book 2.1-39

7.6 Depopulation Procedures

Under no circumstances may BSE suspects be sent fo slaughhter or rendering.

snip...

BSE Red Book 2.1-40

7.7 Disposal Under no circumstances may BSE suspects be sent to slaughter or rendering. Notify FDA, CVM if you suspect that the carcass of a BSE-confirmed animal has moved to rendering or animal feed manufacturing. Field personel should arrange for the carcass to be transported to and examined by a qualified veterinary pathologist or field veterinary medical officer. After the pathologic examination has been completed and the necessary diagnostic specimens have been obtained, field personnel should arrange for disposal of the carcass. Before a method of disposal is selected, there are many factors that must be considered, and often other State and Federal agencies must be consulted. The environmental and legal impacts of the operation must be considered. Upon recommendation of the State or Federal agencies, VS may consider other disposal methods.

snip...

7.7.3 Rendering Because BSE is spread by rendered animal protein, BSE-suspect and confirmed carcasses must not be rendered, unless the rendered material is incinerated. Notify FDA, CVM if you suspect that dead BSE animals or carcasses have moved to rendering or animal feed manufacturing.

snip...

7.10.11 Prevention--Suspects and animals confirmed to have BSE must not be rendered. Producers, feed mills, and rendering establishments should adhere to U.S. State and local rendering policies and FDA regulations concerning the feeding of rendered animal protein to ruminants.

TSS

Terry S. Singeltary Sr. wrote:

######## Bovine Spongiform Encephalopathy #########

ONE HUNDRED EIGHTH CONGRESS CONGRESS OF THE UNITED STATES HOUSE OF REPRESENTATIVES COMMITTEE ON GOVERNMENT REFORM 2157 RAYBURN HOUSE OFFICE BUILDING WASHINGTON, DC 20515-6143


> > May 13, 2004 

> > The Honorable Ann M. Veneman Secretary of Agriculture Department of Agriculture 1400 Independence Avenue, SW Washington, DC 20250

Dear Madam Secretary:

I am writing to express concern that the recent failure of the U.S. Department of Agriculture (USDA) to test a Texas cow with neurological symptoms for bovine spongiform encephalopathy (BSE) may reflect wider problems in the surveillance program. USDA apparently does not keep track of how many cows condemned for central nervous system symptoms are tested for BSE nor does it require that suspect carcasses be held pending testing. Effective surveillance and control of BSE in the United States require a reliable system for ensuring that potentially infected cows are tested and that no infected materials enter the animal or human food supply.

Under USDA regulations, any cow that exhibits signs of central nervous system (CNS) problems must be condemned by Food Safety Inspection Service (FSIS) personnel at the plant.1 

According to a 1997 Animal and Plant Health Inspection Service (APHIS) Memorandum, brain samples all of such animals should be sent for BSE testing.2 

The memorandum notes that "[i]t is essential that brain specimens be collected from adult cattle condemned for CNS signs as part of our national surveillance of BSE."3

The cow slaughtered at the Lone Star Beef slaughterhouse last week staggered and fell, and was condemned ante mortem by FSIS personnel.4 

Despite a request from APHIS personnel at the plant to conduct BSE testing, however, an APHIS supervisor in Austin reportedly refused the test and instructed the plant to send the carcass for rendering.5

1 9 CFR 309.4.

2 USDA APHIS, Veterinary Services Memorandum No. 580.16. Procedures/or Investigation of Adult Cattle With Clinical Signs of Central Nervous System (CNS) Disease and Procedures for Surveillance of Downer Cows for Bovine Spongiform Encephalopathy (BSE) (June 11,1997). 

3 Id.

4 U.S. Confirms a Failure to Use Mad Cow Test, Wall Street Journal (May 4, 2004).

The Honorable Ann M. Veneman May 13, 2004 Page 2

This sequence of events is troubling, and it raises the question of whether this is an isolated incident. In 1997, USDA noted a major gap between the number of cattle condemned for CNS symptoms and the number of these cows actually tested for mad cow disease. The Department found:

Based on information provided by the Food Safety and Inspection Service (FSIS), the number of adult cattle (2 years of age or greater) condemned at slaughter due to CNS signs is much greater than the number whose brains have been collected for testing.6

Despite recognizing the problem more than six years ago, however, USDA apparently did not adopt procedures to ensure that these samples would be collected. In March 2004, the Government Reform Committee asked USDA to provide, for each of the last five years, the number of BSE tests performed on cattle condemned by FSIS inspectors on the basis of CNS symptoms.7 

In response, USDA provided information on the numbers of cattle condemned for CNS symptoms by FSIS, but replied that "[i]t is not possible to determine, from the data we currently collect, how many of these cattle were tested by APHIS for BSE."8 

It thus appears that not only does USDA not routinely track the gap between the number of condemned and tested cattle, but that USDA could not even calculate this gap when requested to do so by Congress.

There also appears to be a lack of clarity regarding the disposition of cattle with CNS symptoms while BSE tests are pending. In the past, companies could send cattle awaiting BSE testing results for rendering, which would allow their remains to be used in feed for animals other than ruminants, such as pigs and chickens. After this incident, both FDA and USDA policy appear to have changed — in different ways.

USDA policy has apparently shifted to requesting that companies not send cattle to rendering while awaiting test results. A May 5, 2004 memo from APHIS states, "it is requested — though not required — that [the cattle] not go to inedible rendering until the sample comes

USDA's San Angelo Vets and Techs Ordered Not to Test Suspect Cow, Meating Place (May 5, 2004).

6 USDA APHIS, supra note 2.

7 Letter from Rep. Tom Davis and Rep. Henry A- Waxman to Secretary of Agriculture Ann M. Veneman (Mar. 8, 2004).

8 Letter from Ronald F. Hicks, Assistant Administrator, Office of Program Evaluation, Enforcement, and Review- FSIS. to Reo. Henrv A. Waxman- Attachment 1 (Mar. 22- 2004).

The Honorable Ann M. Veneman May 13,2004 Page 3

back negative."9 

There is no explanation of why this course of action is requested, but not required.

FDA policy also appears to have shifted towards prohibiting the use of carcasses of cattle with CNS symptoms and indeterminate BSE status in certain types of animal feed. On April 30, FDA requested that the rendering company holding the remains of the Texas cow either destroy them or use them exclusively in swine feed. m the case that the remains are included in swine feed, FDA "will track the material all the way through the supply chain from the processor to the farm to ensure that the feed is properly monitored and used only as feed for pigs."10

Any confusion over what to do with cattle condemned for CNS symptoms awaiting testing for BSE seems unnecessary. The obvious approach is to require companies either to destroy the carcasses or hold them until test results become available. Such a policy would avoid any need for complicated traceback procedures after the discovery of a positive result. According to the information provided to the Committee by USDA, the FSIS has condemned only 200 to 250 cows per year because of signs of central nervous system damage." Mandating the destruction or holding of their carcasses would have minimal economic impact.

The experience with the BSE-infected cow in Washington State illustrates the prudence of waiting for the results of BSE tests. Prior to December 2003, USDA permitted cattle that were sampled as part of the BSE surveillance program to enter commerce even while BSE tests were pending. As a result, when the BSE-infected cow was discovered, it had already entered the food supply. This led to a complicated and partially successful traceback procedure in which hundreds of thousands of pounds of beef had to be destroyed. Because of this debacle, USDA quickly developed a new policy to require holding all carcasses from the human food chain during BSE testing.

I appreciate that you have taken steps to enhance the safety of the U.S. food supply since the discovery of BSE in the United States. I urge you to consider the lessons of this latest incident. USDA should develop a process that ensures the tracking of cattle condemned for CNS signs and should institute a policy requiring all carcasses with pending BSE tests to be destroyed or held. If there are any statutory barriers to these steps, please do not hesitate to let me know.

9 Memo from John R. Clifford, Acting Deputy Administrator, Veterinary Services, and William Smith, Assistant Administrator, Office of Field Operations, Food Safety and Inspection Service, to VSMT, Regional Directors, Area Veterinarians in Charge, and Veterinary Services, Subject: Policy Statement Regarding BSE Sampling of Condemned Cattle at Slaughter Plants - for Immediate Implementation (May 5, 2004) (online at http://www.aphis.usda.gov/lpa/issues/bse/BSE_APHIS-FSIS.pdf).

10 FDA, Statement on Cow -with Central Nervous System Symptoms (Apr. 20, 2004) (online at http://www.fda.gov/bbs/topics/news/2004/NEW01061.html).

11 The yearly totals of FSIS antemortem CNS condemnation for all adult cattle were 233 (1999), 220 (2000), 201 (2001), 249 (2002), and 247 (2003). The database for 2003 had not yet closed.

The Honorable Ann M. Veneman May 13, 2004 Page 4

Sincerely,

XXXXX X. XXXXXX

Henry A. Waxman

Ranking Minority Member

Congressman Henry Waxmans's Letter to the Honorable Ann Veneman


TSS


H. Rept. 108-815 - ACTIVITIES of the HOUSE COMMITTEE ON GOVERNMENT REFORM ONE HUNDRED EIGHTH CONGRESS FIRST AND SECOND SESSIONS 2003-2004 (Pursuant to House Rule XI, 1(d)(4)) 108th Congress (2003-2004)

snip...

After the December 23, 2003, USDA announcement of the discovery of the first U.S. case of Bovine Spongiform Encephalopathy [BSE], commonly known as ``mad cow disease,'' the committee initiated a 7-month investigation into concerns about the process for identification of BSE-infected cows and USDA's actions upon discovery of the cow. Committee investigators traveled to Washington State to interview the owner of the slaughterhouse where the BSE-infected cow was identified; requested documents from USDA; and held several meetings with USDA representatives and representatives of the cattle industry.

 As a result of the committee's investigation, USDA established written protocols to be followed in case of discovery of another BSE-infected cow. USDA also implemented an expanded BSE surveillance plan to better determine whether BSE is actually present in the U.S. cattle population, and if so, at what level. The committee held a joint hearing with the Committee on Agriculture to examine USDA's expanded surveillance plan, including concerns regarding the written protocols and management of the plan. The committee will continue to conduct oversight over USDA's surveillance plan during the 109th Congress.


THE USDA JUNE 2004 ENHANCED BSE SURVEILLANCE PROGRAM WAS TERRIBLY FLAWED ;

CDC DR. PAUL BROWN TSE EXPERT COMMENTS 2006

The U.S. Department of Agriculture was quick to assure the public earlier this week that the third case of mad cow disease did not pose a risk to them, but what federal officials have not acknowledged is that this latest case indicates the deadly disease has been circulating in U.S. herds for at least a decade.

The second case, which was detected last year in a Texas cow and which USDA officials were reluctant to verify, was approximately 12 years old.

These two cases (the latest was detected in an Alabama cow) present a picture of the disease having been here for 10 years or so, since it is thought that cows usually contract the disease from contaminated feed they consume as calves. The concern is that humans can contract a fatal, incurable, brain-wasting illness from consuming beef products contaminated with the mad cow pathogen.

"The fact the Texas cow showed up fairly clearly implied the existence of other undetected cases," Dr. Paul Brown, former medical director of the National Institutes of Health's Laboratory for Central Nervous System Studies and an expert on mad cow-like diseases, told United Press International. "The question was, 'How many?' and we still can't answer that."

Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive.

USDA officials finally retested the cow and confirmed it was infected seven months later, but only at the insistence of the agency's inspector general.

"Everything they did on the Texas cow makes everything USDA did before 2005 suspect," Brown said. ...snip...end


CDC - Bovine Spongiform Encephalopathy and Variant Creutzfeldt ... Dr. Paul Brown is Senior Research Scientist in the Laboratory of Central Nervous System ... Address for correspondence: Paul Brown, Building 36, Room 4A-05, ...


PAUL BROWN COMMENT TO ME ON THIS ISSUE

Tuesday, September 12, 2006 11:10 AM

"Actually, Terry, I have been critical of the USDA handling of the mad cow issue for some years, and with Linda Detwiler and others sent lengthy detailed critiques and recommendations to both the USDA and the Canadian Food Agency." ........TSS

THURSDAY, JANUARY 23, 2020 

USDA Consolidates Regulations for NAHLN Laboratory Testing USDA Animal and Plant Health Inspection Service sent this bulletin at 01/23/2020 02:15 PM EST



***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


SUNDAY, OCTOBER 4, 2020 

Cattle Meat and Offal Imported from the United States of America, Canada and Ireland to Japan (Prions) Food Safety Commission of Japan


TUESDAY, SEPTEMBER 29, 2020 

ISO's Updated 22442 Animal Tissue Standards — What Changed? TSE Prion!


THURSDAY, DECEMBER 17, 2020 

THE MAD COW BSE TSE PRION THAT STOLE CHRISTMAS DECEMBER 2003, WHAT REALLY HAPPENED, A REVIEW 2020 


THURSDAY, AUGUST 20, 2020 

Why is USDA "only" BSE TSE Prion testing 25,000 samples a year?


WEDNESDAY, OCTOBER 21, 2020 

Human Prion Disease Surveillance in Washington State, 2006-2017


MONDAY, NOVEMBER 23, 2020 

***> Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


FRIDAY, FEBRUARY 05, 2021 

USA 50 STATE CWD TSE Prion UPDATE FEBRUARY 2021


SATURDAY, FEBRUARY 20, 2021 
Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease
RESEARCH ARTICLE

Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection


TUESDAY, MARCH 02, 2021 

Texas Confirms CWD TSE Prion in 213 white-tailed deer, mule deer, red deer and elk to date, 148 connected to deer breeding facilities and release sites


Mad cow disease: Could it be here?

Man's stubborn crusade attracts experts' notice

Photo of Carol Christian

Carol Christian

Chron.com / Houston Chronicle

Aug. 5, 2001

Updated: Aug. 16, 2011 1:10 a.m.


SUNDAY, MARCH 21, 2021 

Investigation Results of Texas Cow That Tested Positive for Bovine Spongiform Encephalopathy (BSE) Aug. 30, 2005 Singeltary's Regiew 2021


THURSDAY, DECEMBER 17, 2020

THE MAD COW BSE TSE PRION THAT STOLE CHRISTMAS DECEMBER 2003, WHAT REALLY HAPPENED, A REVIEW 2020


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA


THURSDAY, MARCH 25, 2021 

Texas CWD suspect positive results for a couple of deer breeding facilities


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission
Greetings APHIS et al, i would kindly like to comment on Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004.
Greetings APHIS et al, i would kindly like to comment on Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004.
***> 1st and foremost your biggest problem is 'VOLUNTARY'! AS with the BSE 589.2001 FEED REGULATIONS, especially since it is still voluntary with cervid, knowing full well that cwd and scrapie will transmit to pigs by oral route. VOLUNTARY DOES NOT WORK! all animal products should be banned and be made mandatory, and the herd certification program should be mandatory, or you don't move cervid. IF THE CWD HERD CERTIFICATION IS NOT MANDATORY, it will be another colossal tse prion failure from the start. 
***> 2nd USA should declare a Declaration of Extraordinary Emergency due to CWD, and all exports of cervid and cervid products must be stopped internationally, and there should be a ban of interstate movement of cervid, until a live cwd test is available. 
***> 3rd Captive Farmed cervid ESCAPEES should be made mandatory to report immediately, and strict regulations for those suspect cwd deer that just happen to disappear. IF a cervid escapes and is not found, that farm should be indefinitely shut down, all movement, until aid MIA cervid is found, and if not ever found, that farm shut down permanently. 
***> 4th Captive Farmed Cervid, INDEMNITY, NO MORE Federal indemnity program, or what i call, ENTITLEMENT PROGRAM for game farm industry. NO MORE BAIL OUTS FROM TAX PAYERS. if the captive industry can't buy insurance to protect not only themselves, but also their customers, and especially the STATE, from Chronic Wasting Disease CWD TSE Prion or what some call mad deer disease and harm therefrom, IF they can't afford to buy that insurance that will cover all of it, then they DO NOT GET A PERMIT to have a game farm for anything. This CWD TSE Prion can/could/has caused property values to fall from some reports in some places. roll the dice, how much is a state willing to lose?
***> 5th QUARANTINE OF ALL FARMED CAPTIVE, BREEDERS, URINE, ANTLER, VELVET, SPERM, OR ANY FACILITY, AND THEIR PRODUCTS, that has been confirmed to have Chronic Wasting Disease CWD TSE Prion, the QUARANTINE should be for 21 years due to science showing what scrapie can do. 5 years is NOT near long enough. see; Infectious agent of sheep scrapie may persist in the environment for at least 16 to 21 years.
***> 6th America BSE 589.2001 FEED REGULATIONS CWD TSE Prion
***> 7TH TRUCKING TRANSPORTING CERVID CHRONIC WASTING DISEASE TSE PRION VIOLATING THE LACEY ACT
***> 8TH ALL CAPTIVE FARMING CERVID OPERATIONS MUST BE INSURED TO PAY FOR ANY CLEAN UP OF CWD AND QUARANTINE THERE FROM FOR THE STATE, NO MORE ENTITLEMENT PROGRAM FOR CERVID GAME FARMING PAY TO PLAY FOR CWD TSE PRION OFF THE TAX PAYERS BACK.
***> 9TH ANY STATE WITH DOCUMENTED CWD, INTERSTATE, NATIONAL, AND INTERNATIONAL MOVEMENT OF ALL CERVID, AND ALL CERVID PRODUCTS MUST BE HALTED!
***> 10TH BAN THE SALE OF STRAW BRED BUCKS AND ALL CERVID SEMEN AND URINE PRODUCTS
***> 11th ALL CAPTIVE FARMED CERVID AND THEIR PRODUCTS MUST BE CWD TSE PRION TESTED ANNUALLY AND BEFORE SALE FOR CWD TSE PRION
Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission
Comment ID
APHIS-2021-0004-0002
wasted days and wasted nights...Freddy Fender

Terry S. Singeltary Sr.

Bacliff, Texas USA 77518 <flounder9@verizon.net> Galveston Bay...on the bottom!

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.