Pages

Tuesday, July 13, 2021

Chronic Wasting Disease and the Canadian Agriculture and Agri-food Sectors Current Knowledge Risks and Policy Options

June 2021

“The science is progressing on the possibility of transmission of CWD to humans through oral transmission, but the complete assessment of this possibility remains to be done.”

''Cow Calf Cattle Operations''

Chronic Wasting Disease and the Canadian Agriculture and Agri-food Sectors: Current Knowledge, Risks and Policy Options

REPORT PREPARED FOR CAPI BY ADAMOWICZ, W., GODDARD, E, LUCKERT, M AND J. PATTISON-WILLIAMS, WITH A. OTERO GARCIA, D. MCKENZIE, J. AIKEN, G. DUROCHER, MERLIN UWALAKA, A. KLOTZ AND J. FLESCH.

Canadian Agri-Food Policy Institute Chronic Wasting Disease and the Canadian Agriculture and Agri-food Sectors: Current Knowledge, Risks and Policy Options

ii

EXECUTIVE SUMMARY

Chronic Wasting Disease (CWD) is a prion disease that affects cervid (deer) species and has been found in both wild and farmed populations in the U.S., Canada and abroad. In this report policy options that may be relevant to reducing the impact of CWD on the Canadian agri-food and agriculture sector are described. Given the nature of the disease, policy options are relevant to either the farmed or wild sector or both, as appropriate. The policy options are situated in the context of the current state of knowledge, stakeholder and rightsholder risk perceptions and policy preferences.

The disease was initially observed in research facilities of Colorado and Wyoming in the late 1960s. In Canada, the first CWD cases were identified, retrospectively, in mule deer at the Toronto Zoo, from postmortems on animal samples from deaths over the period 1973 to 1981 (7 positive animals found from deaths occurring over the period 1975 to 1979) (Dubé et al, 2006). The first farmed cervid was found with the disease in 1996 in a Saskatchewan elk farm (in captive elk that were imported from South Dakota (Williams and Miller, 2002)). In the following years, CWD was detected in farmed white-tailed deer and elk in Alberta and in wild cervid populations from Saskatchewan and Alberta (Kahn et al., 2004). CWD was found in a red deer farm in Quebec in 2018. CWD prevalence in North America has greatly increased in the last decade. Prion infectivity persists in the environment—animal carcasses, predator faeces, soil and plants—for more than 10 years, serving as a long-term source of infection (Georgsson et al., 2006).

To date, no natural transmission of CWD to species outside the Cervidae family has been documented in wild or domestic animal populations but research is on-going. The transmission of prions from one species to another is limited by a transmission barrier. The strength of this barrier depends on multiple factors including the primary sequence of the PrPC of the new host and the PrPCWD from the inoculum and the transmitted prion strain (e.g., Hill et al., 2000). Experimental data, however, has shown that the transmission of CWD to other species, such as cats, pig, sheep and rodents, is possible. Of special concern is the possible transmission of CWD to non-cervid species used in the human food supply chain, especially cattle and other livestock, due to the potential emergence of prions with zoonotic capacity (as with bovine spongiform encephalopathy (BSE)). The interaction of cattle and cervids is common in CWD-affected areas of North America. CWD agents from different species (white-tailed deer, mule deer and elk) are transmissible to cattle after intracerebral inoculation (Hamir et al., 2005; Hamir et al., 2007b; Hamir et al., 2011b; Greenlee et al., 2012), and the characteristics of the disease are very different from BSE (Hamir et al., 2011b). In experimental treatments, no oral transmission of CWD to cattle has occurred, and no CWD prions were detected in cattle that were exposed to CWDcontaminated paddocks for 10 years (Williams et al., 2018). Thus, the risk of CWD transmission to cattle from normal interaction with cervids is currently believed to be very low. There is no evidence of transmission to humans, yet there are concerns about the zoonotic potential of CWD. Nonetheless, questions remain regarding CWD transmission to other wild and domestic animals, into the human food supply (in the case of untested animals and antler velvet) or to humans themselves. Further research into these issues is needed. Furthermore, active disease management practices are warranted to minimize the risk of CWD transmission.

The perspectives of rightsholders and stakeholders impacted by CWD are important for future policies. Using primary survey data, supplemented by secondary data sources, we present the level of knowledge, attitudes and management preferences for CWD. Although the methods to elicit these perspectives has some variation due to the unique characteristics of each group, several trends were observed:

Canadian Public:

• Over time, the number of people who have ever eaten venison has increased. Eating frequency does not appear to be increasing across the population over time

• Awareness and knowledge of CWD has dramatically declined across time.

• The public is significantly interested in mandatory CWD animal testing before meat is marketed and continues to be interested in supporting tax increases to pay for management or surveillance. This implies that healthy cervid populations are important to the Canadian public. 

Indigenous Rightsholders

• Ungulates (noting particularly caribou to whom transmission is possible) are a major component of food security for Indigenous peoples, but also contribute to significant cultural values including sharing networks.

• Concerns about cultural tipping points, arising from environmental conditions, costs, and time constraints of local people, have been expressed by First Nations. However, safety of ungulate meat is an important concern, given the dietary role of cervids.

• The Alberta Assembly of Tribal Chiefs, representing First Nations in Treaty 6, 7 and 8, passed a resolution in June 2019 supporting collaborative research on CWD surveillance.

• There are questions about how the continued spread of CWD, as well as management efforts (e.g., health advisories), has the potential to contribute to increased food insecurity among Indigenous communities, whose traditional economies are also compromised by other stresses, such as habitat degradation and climate change.

• A greater role of communities in disease surveillance (e.g., monitoring) and in decisions of wildlife management may contribute to both social and ecological resilience. Communication and management programs must be centered in the Indigenous communities with recognition of the importance of the cultural significance and context of wildlife.

Cervid Producers

• Cervid farming in Canada was a relatively new industry when CWD was discovered in the farmed sector in Canada.

• CWD caused a serious negative economic shock to the industry, which has been declining in total farms and total animals since CWD was found.

• Cervid farmers are very aware of and knowledgeable about CWD due to the significant economic impact on the industry

• The herd certification program (originally VHCP, now HCP), initiated in 2002 and revamped in 2018, is aimed at preventing CWD exposure, certifying safe cervid production for consumption or trade purposes, and is a prerequisite for the federal government undertaking destruction of a confirmed infected herd and compensating owners should CWD be discovered. Some provinces have complementary programs.

• Mandatory testing for all farmed cervids slaughtered (or other deaths) in Alberta, Saskatchewan, Manitoba, Quebec (rather than sampling as was done prior to 2018) and the Yukon makes testing rates for CWD among farmed cervids higher than in wild cervids; positive cases recently are lower in absolute numbers relative to wild cervids. 

Alberta Hunters

• An extensive CWD monitoring and surveillance program, and hunter surveys in the province, have shown relatively constant hunter awareness and perceptions of CWD over time.

• License sales are not declining over time, indicating that hunters are not reducing their effort, even with moderately high levels of CWD present. Hunters are concerned about CWD impacts on wildlife herd health, and do not think eradication is likely.

• US research indicates reduced hunting effort occurs when CWD reaches high (>30%) prevalence levels. While this is not evident yet in Canada, increasing numbers of hunters are checking prevalence levels prior to draw submission, indicating a shift could occur if prevalence increases dramatically.

• Management options such as hunting season expansion can provide a high benefit-low cost approach to CWD management rather than financially and socially costly herd reduction approaches.

• The removal of the replacement tag program in Alberta in 2019 (for harvested deer that test positive) was not popular among some hunters although recent data suggests that the majority of hunters are not opposed to this change in program. (Source: Adamowicz et al. 2019, 2020).

Professional Outfitters

• Survey results show that outfitters had the highest awareness of the disease in wild cervids when compared with other stakeholder groups, yet did not support CWD management options that increase hunting of animals

• Their views about acceptable management strategies differ considerably from hunter views and from views of the public

• Even given the severity of CWD spread in parts of the country, CWD is not seen to be the most significant risk to outfitter livelihood associated with cervid populations.

Cow Calf Cattle Operations

• Wild ungulates are a concern in terms of disease transmission (CWD and other diseases) and feed consumption.

• Producers generally like cervids and do not want to see them eradicated from their properties and worry about costs of reducing contact between cattle and cervids.

• Preliminary results indicate limited concern over possible trade barriers impacting the beef industry due to CWD. 

There are numerous policy response areas related to CWD that are being considered. The policy space is complicated by the potential for the disease to cross both wildlife and domesticated animals, as well as provincial and national borders. Commensurately, there are a complex set of agencies associated with parts of the policy environment. No one agency has authority over all of the recommended or identified policy areas considered below. Associated industries are also involved in policy making processes and could implement codes of conduct to address CWD. However, clarifying which and how policy options might be implemented (including identifying any coordinating agency responsibilities) is still to be determined. The disease is considered to have differing degrees of urgency among constituencies and development of policies based on risk assessments must be careful not to be too reactive as the trade-offs can be difficult to assess ex ante.

Despite these difficulties, we identify and discuss 10 policy options. The focus is primarily on policies that directly (cervid farm) and indirectly (through reducing spread and prevalence in the wild) affect the Canadian agri-food and agriculture sectors. The ten options chosen are those for which there are frequent recommendations or for which the outcomes seem clearer given previous policies applied across a range of North American jurisdictions and based on research findings to date. In most cases, due to limited publicly available data on the costs of programs which have been implemented by federal or provincial agencies, it is not possible to develop consistent measures of costs or benefits of the suggested policies to specific groups. Decisions around policy adoption in this area cannot purely be made on the basis of market costs and benefits as the disease being managed has the capacity to inflict high non-market costs. Significant research is necessary to properly assess public and private market and non-market values associated with the outcomes of policy choices. Furthermore, additional detail on a range of items including enforcement efficacy and cost, communication approaches and other elements will be required for a complete analysis. Nevertheless, we present an overview of ten policy areas which can be described as having the most potential for reducing the impact of CWD on the Canadian agri-food and agriculture sectors. Later in the document we identify a broader range of policy measures to be considered that include investing in research and other measures to address CWD concerns. The 10 briefly described policies are presented in the following table along with our recommendations regarding whether they should be implemented, recognizing the need for further information to provide a comprehensive final recommendation. The colors in the table reflect policies that appear more socially beneficial (green) to less so (red).

snip...

Further benefit cost analysis should be conducted to solidify rationale for intervention and to identify costs and benefits to particular groups. We have also identified a number of research areas in both the biological sciences and the social sciences that should be invested in to help assess policy options. While policies can be implemented within Canada, international coordination is critical to future spread of a wildlife disease. Without coordinating CWD policies with the US, the Canadian policies may be less effective. Similarly, coordination between provinces, and between the provinces and the federal government, will continue to be important in the development and implementation of CWD policy. Overall, data confirm that developing policy in this area is complex because, for any policy option, there are groups who perceive the approach as beneficial while others who perceive it as costly. Clarification and careful communication of the impacts of the policy on different sectors, will be critical for policy application.

snip...

Humans

There is no clear evidence that CWD can be transmitted to humans, in contrast with BSE, which is clearly zoonotic (Bruce et al., 1997). Numerous epidemiological studies have assessed whether there is a link between Creutzfeldt-Jakob disease (CJD) in humans and CWD. No clear link between CWD exposure and an increase in CJD frequency has been observed in epidemiological studies that assess whether there are more cases of prion diseases in people living in CWD endemic areas (MaWhinney et al., 2006; Abrams et al., 2018; Waddell et al., 2018; Maddox et al., 2019). Studies examining CJD outliers (e.g., young individuals succumbing to CJD) have not provided a link to CWD. For example, no causal relationship between the two prion diseases was found in three young CJD patients who were regularly exposed to, or consumed deer meat (Belay et al., 2001). Similarly, in a surveillance program for CWD, two individuals who had potentially been exposed to CWD developed dementia symptoms. However, these patients were diagnosed with early Alzheimer´s and a rare genetic prion disease, respectively. No correlation could be established between these pathologies and the potential exposure of these patients to CWD (Anderson et al., 2007). The evaluation of the zoonotic potential of CWD through this type of studies is, however, difficult. There are potentially a variety of CWD strains in the environment that could pose a differential risk to humans and the incubation period of prion diseases in our species can last decades. The identification of the zoonotic properties of an agent through epidemiological studies requires the detection of a high number of human cases within a particular geographical location or period, which necessitates a large number of human exposures to the disease. The prevalence of CWD in endemic areas has exponentially increased only in the last ten years and, therefore, there may have not been a sufficient level of exposure to the disease to identify CWD cases in humans.

The zoonotic properties of CWD can be assessed, however, experimentally by inoculating CWD prions in non-human primates and humanized transgenic mice and through in vitro studies of the human transmission barrier to CWD. Squirrel monkeys (Saimiri sciureus; considered a universal host of prion diseases) are susceptible to CWD from multiple cervid species after oral and intracerebral inoculation (Marsh et al., 2005; Race et al., 2009). The susceptibility of cynomolgus macaques (Macaca fascicularis), which are genetically more similar to humans, is still inconclusive. No signs of prion disease were observed in CWD exposed macaques 13 years after the inoculation (Race et al., 2018). A separate study, presented at a conference but not yet published, however, has found that macaques inoculated with CWD show signs of prion neuropathology in spinal cords (Czub et al., 2017). This study, in which macaques were exposed to several isolates of CWD via different routes, was initiated 10 years ago, and the presence of infectivity in these macaques is still to be confirmed (Schwenke et al., 2019). A recent conference presentation (Schaetzl, 2020) provided an update on Czub et al. (2017) presentation and related work. This update illustrates that there is zoonotic potential in CWD. Macaques were infected including from oral ingestion treatments. The presentation also suggests that although the species barrier from cervids to human is high, it may be surmountable, and there are concerns arising from the evolution and adaption of prions. However, Race et al have observed similar depositions of pathology in the spinal cords of noninfected age-matched macaques (Race et al., 2018). In other studies, transgenic mice expressing the human prion protein have been challenged with multiple CWD isolates in seven different studies. None of these studies has found clear evidence of transmission to these mice, suggesting that the transmission barrier of humans to CWD is very strong (Kong et al., 2005; Tamguney et al., 2006; Sandberg et al., 2010; Mitchell et al., 2011; Wilson et al., 2012; Kurt et al., 2015; Race et al., 2019). However, a more recent study found low levels of amyloid seeding in four mice expressing human PrPC and inoculated with elk and white-tailed deer prions, suggesting that a transmission may have occurred. These results should be interpreted with caution, as these mice were analyzed using an ultra-sensitive technique [realtime quaking-induced conversion (RT-QuIC)], the reactions were inconsistently positive, and the mice overexpressed the human PrPC at levels much higher than those found in the human brain (Race et al., 2019).

Finally, the zoonotic potential of CWD has been studied using another ultra-sensitive technique for the detection of prions, Protein Misfolding Cyclic Amplification (PMCA). Barria and colleagues reported successful conversion of human PrP using different CWD isolates. Their studies showed that some CWD prions can convert human PrP more easily than others, with CWD from elk and reindeer having the highest zoonotic potential, followed by white-tailed deer prions and, finally, mule deer CWD (Barria et al., 2011; Barria et al., 2014; Barria et al., 2018). It should be noted, however, that PMCA facilitates the crossing of the transmission barrier and that in a living organism, there are many factors limiting the propagation of prions that are not present in in vitro systems.

Given the continuing geographic spread of CWD, the increasing prevalence of the disease in enzootic areas and the impact on cervid populations, questions that remain include CWD transmission to other wild and domestic animals, into the human food supply (in the case of untested animals) or to humans themselves. Further research into these issues is needed. Furthermore, active disease management practices are warranted to minimize the risk of CWD transmission. 

snip...

Moore et al. (2017) demonstrated that pigs can propagate CWD prions at a low-level, showing a strong transmission barrier. Contrary, however, to transmissions in cattle and sheep, oral transmission of CWD (prions from white-tailed deer) has occurred. In these CWD-challenged pigs, prions were detected, using ultrasensitive techniques, in animals that were euthanized at 8 months of age (e.g., market weight). These results suggest that pigs can act as a reservoir of CWD, which could represent a risk for deer populations since feral pigs share the habitat with CWD-affected cervids (Moore et al., 2017).

8.0 CONCLUSIONS

In assessing the relationship between CWD and the Canadian agricultural and agri-food sector, a number of things become quickly apparent. First, CWD is a disease for which there remain many unknowns, and those unknowns are often associated with how CWD affects agriculture. Second, regardless of the uncertainty associated with CWD and agriculture, policies related to CWD need to be broader than agriculture if there is to be any sustained impact on CWD spread, prevalence and impact on agriculture. In addition, the most significant impacts of CWD appear to be the potential impacts on wildlife populations including threatened caribou populations. Third, effective policies and management options for CWD must be coordinated among provinces and countries that share borders as CWD cannot be controlled in a region/country that shares borders with other CWD endemic regions/countries. Fourth, CWD is unlikely to be eradicated, so there will need to be coordinated proactive and often targeted policies across different agencies and levels of government implemented to manage the ongoing disease (Mysterud et al, 2019). Attempting to prevent spread to sensitive areas and species may be the most important policy approach, along with monitoring, surveillance, and information provision. Fifth, although many groups, and Canadian society as a whole, have significant interests in CWD, there is a relatively low level of knowledge about the disease and its existence in Canada. Finally, risk perceptions and economic interests in the disease vary considerably across groups in our society, making policies somewhat more difficult to implement.

The current state of science with respect to CWD has many yet to be researched issues. There are very few studies (although there has been one exceptional long-term study) about the possibility of transmission of CWD to cattle from contact with infected ungulates, other animals or through ingestion of infected feedstuffs. The science is progressing on the possibility of transmission of CWD to humans through oral transmission, but the complete assessment of this possibility remains to be done. Transmission between ungulates and other wild animals to domesticated animals and the environment has not been exhaustively studied. The development of ante mortem tests for CWD and/ or vaccines could reduce the risks of the disease through antler velvet sales to agriculture and to society. Further research on remediation of sites affected by CWD as a mechanism to reduce risks of spread is also important. More social science research is required to address the benefits, costs, and efficacy of these different CWD policy options. In particular, the policy of increased hunter harvest to prevent spread needs to start with careful research on whether such harvests (or which approaches) are effective and have benefits that exceed costs. This approach means simultaneous trials on ecological and economic aspects of this policy option.

The jurisdictional responsibility for CWD is complex given the existence of a wildlife disease and a concurrent farmed sector. This complexity applies to Canada, the US, Korea and some other jurisdictions in Scandinavia. Within Canada, wildlife management is distributed between federal and provincial, territorial governments and includes Indigenous communities. For the farmed sector, the CFIA has major responsibility for managing the cervid farm industry, but provinces have some authority over encouraging further development of the industry, for licensing game farms and will have some responsibility for managing disease outbreaks for farms not enrolled in the CWD HCP. Moreover, provinces could restrict movement of animals and some cervid products. Without coordinated approaches between the wild and farmed sectors, managing the spread and prevalence of the disease will be very difficult.

With CWD spreading in the US, the threat of spread may soon be stronger from the US than from other areas in Canada. It is not clear whether the regulatory policies currently in place are sufficient to protect all Canadian provinces and monitor the spread of the disease from the US. Harmonizing CWD policies and regulations associated with wildlife may be difficult but there could be significant implications of spread in wildlife that need to be monitored.

There is now no possibility of eradicating CWD within North America so policies and regulations to monitor and reduce spread of the disease are increasingly important. Research on the methods, efficacy, benefits, and costs of targeted harvests to prevent spread is essential. Encouraging higher participation in voluntary/mandatory hunted head submission for CWD testing, mandating testing of all farmed animals that enter the food chain and regulating movement of animals and animal products from wild untested animals are all current policies that can reasonably be considered. No policy, however, will be popular with all interested parties.

There are widely varying levels of knowledge about CWD across society, even within groups who have close connections to hunting and eating venison from hunted animals. Sensible precautions related to only eating tested animals, and other precautions in terms of handling hunted animal carcasses and parts, are not uniformly applied within the country or responded to by all agents. Information about testing, and the availability of convenient testing options is limited in many contexts. Similarly, information for wild game processors, and between processors and their customers, requires improvement. Increasing knowledge might increase adoption of safety practices but can also significantly enhance monitoring. It is particularly important that Indigenous communities engage with wildlife health knowledge dissemination, are included in CWD testing protocols and participate in information sharing about the human safety of venison as the research about that evolves.

Research results suggest strong and oppositional opinions about acceptable CWD management strategies across different groups. One example is our preliminary assessment that professional outfitters are opposed to CWD management strategies that involve increased hunting activities. Another example, cervid farmers are more supportive of taking no action to manage CWD (possibly thinking of action taken to manage disease on the farm) and feel less strongly about most other CWD management strategies than do other groups. Even within groups, such as resident hunters in Alberta, there is a wide range of views on the risks of CWD to humans and the policy options that should be employed, even though the vast majority view CWD as a concern for wildlife health. Many groups see eradicating cervid farming as a solution to CWD although it is clear that this approach would have small, if any, effects on the prevalence or spread of CWD. Developing consistent effective policies for CWD requires navigating difficult space with well entrenched opposing attitudes to many currently existing and potential policies.

Canadian Agri-Food Policy Institute

Chronic Wasting Disease and the Canadian Agriculture and Agri-food Sectors: Current Knowledge, Risks and Policy Options

snip...see full report, 59 pages;

“The science is progressing on the possibility of transmission of CWD to humans through oral transmission, but the complete assessment of this possibility remains to be done.”

''Cow Calf Cattle Operations''


CHRONIC WASTING DISEASE CWD TSE PRION ZOONOSIS ZOONOTIC HUMANS

please see recent data from Professor Kong on cwd zoonosis, IN CONFIDENCE, below, after your report here;...snip...end...tss

CONFIDENTIAL

IN CONFIDENCE

i figure your as about as official as it gets, and i think this science is extremely important for you to know and to converse about with your officials. it's about to burn a whole in my pocket. this is about as close as it will ever get for cwd zoonosis to be proven in my time, this and what Canada Czub et al found with the Macaques, plus an old study from cjd surveillance unit back that showed cjd and a 9% increase in risk from folks that eat venison, i will post all this below for your files Sir. i remember back in the BSE nvCJD days, from when the first BSE case in bovine was confirmed around 1984 maybe 83, i forget the good vets named that screwed it up first, Carol something... CAROL RICHARDSON, but from 83ish to 95 96 when nvCJD was linked to humans from BSE in cattle, so that took 10 to 15 years. hell, at that rate, especially with Texas and cwd zoonsis, hell, i'll be dead before it's official, if ever, so here ya go Sir. there was a grant study on cwd zoonosis that had been going on for some time, i followed it over the years, then the grant date for said study had expired, so, i thought i would write the good Professor about said study i.e. Professor Kong, CWRU et al. i will post the grant study abstract first, and then after that, what reply i got back, about said study that i was told not to post/publish, has not been peer reviewed yet...

i was told;

''At this point, please do not post any of the points publicly yet, but you can refer to points 1-3 in private discussions and all 5 points when discussing with relevant public officials to highlight the long-term risks of CWD zoonosis.'' 

CWD ZOONOSIS GRANT FIRST;

===============

Cervid to human prion transmission

Kong, Qingzhong 

Case Western Reserve University, Cleveland, OH, United States

 Abstract Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that: (1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; (2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; (3) Reliable essays can be established to detect CWD infection in humans; and (4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of humanized Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental human CWD samples will also be generated for Aim 3. 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental human CWD samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.

 Funding Agency Agency National Institute of Health (NIH) Institute National Institute of Neurological Disorders and Stroke (NINDS) Type Research Project (R01) Project # 1R01NS088604-01A1 Application # 9037884 Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND) Program Officer Wong, May Project Start 2015-09-30 Project End 2019-07-31 Budget Start 2015-09-30 Budget End 2016-07-31 Support Year 1 Fiscal Year 2015 Total Cost $337,507 Indirect Cost $118,756

snip... 


Professor Kongs reply to me just this month about above grant study that has NOT been published in peer review yet...

=====IN CONFIDENCE=====

snip...tss


On Sat, Apr 3, 2021 at 12:19 PM Terry Singeltary <flounder9@verizon.net> wrote:

snip...

end...tss

==============END TSS============


CWD ZOONOSIS ZOONOTIC THE FULL MONTY TO DATE

International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA

Qingzhong Kong

Case Western Reserve University School of Medicine, USA

Zoonotic potential of chronic wasting disease prions from cervids

Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.

Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.






Prion Conference 2018 Abstracts

BSE aka MAD COW DISEASE, was first discovered in 1984, and it took until 1995 to finally admit that BSE was causing nvCJD, the rest there is history, but that science is still evolving i.e. science now shows that indeed atypical L-type BSE, atypical Nor-98 Scrapie, and typical Scrapie are all zoonosis, zoonotic for humans, there from. 

HOW long are we going to wait for Chronic Wasting Disease, CWD TSE Prion of Cervid, and zoonosis, zoonotic tranmission to humans there from?

Studies have shown since 1994 that humans are susceptible to CWD TSE Prion, so, what's the hold up with making CWD a zoonotic zoonosis disease, the iatrogenic transmissions there from is not waiting for someone to make a decision.

Prion Conference 2018 Abstracts

P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Chronic wasting disease (CWD) is a prion disease of deer and elk that has been identified in freeranging cervids in 23 US states. While there is currently no epidemiological evidence for zoonotic transmission through the consumption of contaminated venison, studies suggest the CWD agent can cross the species barrier in experimental models designed to closely mimic humans. We compared rates of human prion disease in states with and without CWD to examine the possibility of undetermined zoonotic transmission.

Methods

Death records from the National Center for Health Statistics, case records from the National Prion Disease Pathology Surveillance Center, and additional state case reports were combined to create a database of human prion disease cases from 2003-2015. Identification of CWD in each state was determined through reports of positive CWD tests by state wildlife agencies. Age- and race-adjusted mortality rates for human prion disease, excluding cases with known etiology, were determined for four categories of states based on CWD occurrence: highly endemic (>16 counties with CWD identified in free-ranging cervids); moderately endemic (3-10 counties with CWD); low endemic (1-2 counties with CWD); and no CWD states. States were counted as having no CWD until the year CWD was first identified. Analyses stratified by age, sex, and time period were also conducted to focus on subgroups for which zoonotic transmission would be more likely to be detected: cases <55 years old, male sex, and the latter half of the study (2010-2015).

Results

Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states (rate ratio [RR]: 1.12, 95% confidence interval [CI] = 1.01 - 1.23), as did low endemic states (RR: 1.15, 95% CI = 1.04 - 1.27). Moderately endemic states did not have an elevated mortality rate (RR: 1.05, 95% CI = 0.93 - 1.17). In age-stratified analyses, prion disease mortality rates among the <55 year old population were elevated for moderately endemic states (RR: 1.57, 95% CI = 1.10 – 2.24) while mortality rates were elevated among those ≥55 for highly endemic states (RR: 1.13, 95% CI = 1.02 - 1.26) and low endemic states (RR: 1.16, 95% CI = 1.04 - 1.29). In other stratified analyses, prion disease mortality rates for males were only elevated for low endemic states (RR: 1.27, 95% CI = 1.10 - 1.48), and none of the categories of CWD-endemic states had elevated mortality rates for the latter time period (2010-2015).

Conclusions

While higher prion disease mortality rates in certain categories of states with CWD in free-ranging cervids were noted, additional stratified analyses did not reveal markedly elevated rates for potentially sensitive subgroups that would be suggestive of zoonotic transmission. Unknown confounding factors or other biases may explain state-by-state differences in prion disease mortality.

=====

P172 Peripheral Neuropathy in Patients with Prion Disease

Wang H(1), Cohen M(1), Appleby BS(1,2)

(1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.

Prion disease is a fatal progressive neurodegenerative disease due to deposition of an abnormal protease-resistant isoform of prion protein. Typical symptoms include rapidly progressive dementia, myoclonus, visual disturbance and hallucinations. Interestingly, in patients with prion disease, the abnormal protein canould also be found in the peripheral nervous system. Case reports of prion deposition in peripheral nerves have been reported. Peripheral nerve involvement is thought to be uncommon; however, little is known about the exact prevalence and features of peripheral neuropathy in patients with prion disease.

We reviewed autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017. We collected information regarding prion protein diagnosis, demographics, comorbidities, clinical symptoms, physical exam, neuropathology, molecular subtype, genetics lab, brain MRI, image and EMG reports. Our study included 104 patients. Thirteen (12.5%) patients had either subjective symptoms or objective signs of peripheral neuropathy. Among these 13 patients, 3 had other known potential etiologies of peripheral neuropathy such as vitamin B12 deficiency or prior chemotherapy. Among 10 patients that had no other clear etiology, 3 (30%) had familial CJD. The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%). The Majority of cases wasere male (60%). Half of them had exposure to wild game. The most common subjective symptoms were tingling and/or numbness of distal extremities. The most common objective finding was diminished vibratory sensation in the feet. Half of them had an EMG with the findings ranging from fasciculations to axonal polyneuropathy or demyelinating polyneuropathy.

Our study provides an overview of the pattern of peripheral neuropathy in patients with prion disease. Among patients with peripheral neuropathy symptoms or signs, majority has polyneuropathy. It is important to document the baseline frequency of peripheral neuropathy in prion diseases as these symptoms may become important when conducting surveillance for potential novel zoonotic prion diseases.

=====

P177 PrP plaques in methionine homozygous Creutzfeldt-Jakob disease patients as a potential marker of iatrogenic transmission

Abrams JY (1), Schonberger LB (1), Cali I (2), Cohen Y (2), Blevins JE (2), Maddox RA (1), Belay ED (1), Appleby BS (2), Cohen ML (2)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Sporadic Creutzfeldt-Jakob disease (CJD) is widely believed to originate from de novo spontaneous conversion of normal prion protein (PrP) to its pathogenic form, but concern remains that some reported sporadic CJD cases may actually be caused by disease transmission via iatrogenic processes. For cases with methionine homozygosity (CJD-MM) at codon 129 of the PRNP gene, recent research has pointed to plaque-like PrP deposition as a potential marker of iatrogenic transmission for a subset of cases. This phenotype is theorized to originate from specific iatrogenic source CJD types that comprise roughly a quarter of known CJD cases.

Methods

We reviewed scientific literature for studies which described PrP plaques among CJD patients with known epidemiological links to iatrogenic transmission (receipt of cadaveric human grown hormone or dura mater), as well as in cases of reported sporadic CJD. The presence and description of plaques, along with CJD classification type and other contextual factors, were used to summarize the current evidence regarding plaques as a potential marker of iatrogenic transmission. In addition, 523 cases of reported sporadic CJD cases in the US from January 2013 through September 2017 were assessed for presence of PrP plaques.

Results

We identified four studies describing 52 total cases of CJD-MM among either dura mater recipients or growth hormone recipients, of which 30 were identified as having PrP plaques. While sporadic cases were not generally described as having plaques, we did identify case reports which described plaques among sporadic MM2 cases as well as case reports of plaques exclusively in white matter among sporadic MM1 cases. Among the 523 reported sporadic CJD cases, 0 of 366 MM1 cases had plaques, 2 of 48 MM2 cases had kuru plaques, and 4 of 109 MM1+2 cases had either kuru plaques or both kuru and florid plaques. Medical chart review of the six reported sporadic CJD cases with plaques did not reveal clinical histories suggestive of potential iatrogenic transmission.

Conclusions

PrP plaques occur much more frequently for iatrogenic CJD-MM cases compared to sporadic CJDMM cases. Plaques may indicate iatrogenic transmission for CJD-MM cases without a type 2 Western blot fragment. The study results suggest the absence of significant misclassifications of iatrogenic CJD as sporadic. To our knowledge, this study is the first to describe grey matter kuru plaques in apparently sporadic CJD-MM patients with a type 2 Western blot fragment.

=====

P180 Clinico-pathological analysis of human prion diseases in a brain bank series

Ximelis T (1), Aldecoa I (1,2), Molina-Porcel L (1,3), Grau-Rivera O (4), Ferrer I (5), Nos C (6), Gelpi E (1,7), Sánchez-Valle R (1,4)

(1) Neurological Tissue Bank of the Biobanc-Hospital ClÃnic-IDIBAPS, Barcelona, Spain (2) Pathological Service of Hospital ClÃnic de Barcelona, Barcelona, Spain (3) EAIA Trastorns Cognitius, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain (4) Department of Neurology of Hospital ClÃnic de Barcelona, Barcelona, Spain (5) Institute of Neuropathology, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona (6) General subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain (7) Institute of Neurology, Medical University of Vienna, Vienna, Austria.

Background and objective:

The Neurological Tissue Bank (NTB) of the Hospital Clínic-Institut d‘Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain is the reference center in Catalonia for the neuropathological study of prion diseases in the region since 2001. The aim of this study is to analyse the characteristics of the confirmed prion diseases registered at the NTB during the last 15 years.

Methods:

We reviewed retrospectively all neuropathologically confirmed cases registered during the period January 2001 to December 2016.

Results:

176 cases (54,3% female, mean age: 67,5 years and age range: 25-86 years) of neuropathological confirmed prion diseases have been studied at the NTB. 152 cases corresponded to sporadic Creutzfeldt-Jakob disease (sCJD), 10 to genetic CJD, 10 to Fatal Familial Insomnia, 2 to GerstmannSträussler-Scheinker disease, and 2 cases to variably protease-sensitive prionopathy (VPSPr). Within sCJD subtypes the MM1 subtype was the most frequent, followed by the VV2 histotype.

Clinical and neuropathological diagnoses agreed in 166 cases (94%). The clinical diagnosis was not accurate in 10 patients with definite prion disease: 1 had a clinical diagnosis of Fronto-temporal dementia (FTD), 1 Niemann-Pick‘s disease, 1 Lewy Body‘s Disease, 2 Alzheimer‘s disease, 1 Cortico-basal syndrome and 2 undetermined dementia. Among patients with VPSPr, 1 had a clinical diagnosis of Amyotrophic lateral sclerosis (ALS) and the other one with FTD.

Concomitant pathologies are frequent in older age groups, mainly AD neuropathological changes were observed in these subjects.

Discussion:

A wide spectrum of human prion diseases have been identified in the NTB being the relative frequencies and main characteristics like other published series. There is a high rate of agreement between clinical and neuropathological diagnoses with prion diseases. These findings show the importance that public health has given to prion diseases during the past 15 years. Continuous surveillance of human prion disease allows identification of new emerging phenotypes. Brain tissue samples from these donors are available to the scientific community. For more information please visit:


=====

P192 Prion amplification techniques for the rapid evaluation of surface decontamination procedures

Bruyere-Ostells L (1), Mayran C (1), Belondrade M (1), Boublik Y (2), Haïk S (3), Fournier-Wirth C (1), Nicot S (1), Bougard D (1)

(1) Pathogenesis and control of chronic infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France. (2) Centre de Recherche en Biologie cellulaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France. (3) Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.

Aims:

Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a group of incurable and always fatal neurodegenerative disorders including Creutzfeldt-Jakob diseases (CJD) in humans. These pathologies include sporadic (sCJD), genetic and acquired (variant CJD) forms. By the past, sCJD and vCJD were transmitted by different prion contaminated biological materials to patients resulting in more than 400 iatrogenic cases (iCJD). The atypical nature and the biochemical properties of the infectious agent, formed by abnormal prion protein or PrPTSE, make it particularly resistant to conventional decontamination procedures. In addition, PrPTSE is widely distributed throughout the organism before clinical onset in vCJD and can also be detected in some peripheral tissues in sporadic CJD. Risk of iatrogenic transmission of CJD by contaminated medical device remains thus a concern for healthcare facilities. Bioassay is the gold standard method to evaluate the efficacy of prion decontamination procedures but is time-consuming and expensive. Here, we propose to compare in vitro prion amplification techniques: Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking Induced Conversion (RT-QuIC) for the detection of residual prions on surface after decontamination.

Methods:

Stainless steel wires, by mimicking the surface of surgical instruments, were proposed as a carrier model of prions for inactivation studies. To determine the sensitivity of the two amplification techniques on wires (Surf-PMCA and Surf-QuIC), steel wires were therefore contaminated with serial dilutions of brain homogenates (BH) from a 263k infected hamster and from a patient with sCJD (MM1 subtype). We then compared the different standard decontamination procedures including partially and fully efficient treatments by detecting the residual seeding activity on 263K and sCJD contaminated wires. We completed our study by the evaluation of marketed reagents endorsed for prion decontamination.

Results:

The two amplification techniques can detect minute quantities of PrPTSE adsorbed onto a single wire. 8/8 wires contaminated with a 10-6 dilution of 263k BH and 1/6 with the 10-8 dilution are positive with Surf-PMCA. Similar performances were obtained with Surf-QuIC on 263K: 10/16 wires contaminated with 10-6 dilution and 1/8 wires contaminated with 10-8 dilution are positive. Regarding the human sCJD-MM1 prion, Surf-QuIC allows us to detect 16/16 wires contaminated with 10-6 dilutions and 14/16 with 10-7 . Results obtained after decontamination treatments are very similar between 263K and sCJD prions. Efficiency of marketed treatments to remove prions is lower than expected.

Conclusions:

Surf-PMCA and Surf-QuIC are very sensitive methods for the detection of prions on wires and could be applied to prion decontamination studies for rapid evaluation of new treatments. Sodium hypochlorite is the only product to efficiently remove seeding activity of both 263K and sCJD prions.

=====

WA2 Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice

Schatzl HM (1, 2), Hannaoui S (1, 2), Cheng Y-C (1, 2), Gilch S (1, 2), Beekes M (3), SchulzSchaeffer W (4), Stahl-Hennig C (5) and Czub S (2, 6)

(1) University of Calgary, Calgary Prion Research Unit, Calgary, Canada (2) University of Calgary, Faculty of Veterinary Medicine, Calgary, Canada, (3) Robert Koch Institute, Berlin, Germany, (4) University of Homburg/Saar, Homburg, Germany, (5) German Primate Center, Goettingen, Germany, (6) Canadian Food Inspection Agency (CFIA), Lethbridge, Canada.

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were found in spinal cord and brain of euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and preclinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

See also poster P103

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

=====

WA16 Monitoring Potential CWD Transmission to Humans

Belay ED

Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA.

The spread of chronic wasting disease (CWD) in animals has raised concerns about increasing human exposure to the CWD agent via hunting and venison consumption, potentially facilitating CWD transmission to humans. Several studies have explored this possibility, including limited epidemiologic studies, in vitro experiments, and laboratory studies using various types of animal models. Most human exposures to the CWD agent in the United States would be expected to occur in association with deer and elk hunting in CWD-endemic areas. The Centers for Disease Control and Prevention (CDC) collaborated with state health departments in Colorado, Wisconsin, and Wyoming to identify persons at risk of CWD exposure and to monitor their vital status over time. Databases were established of persons who hunted in Colorado and Wyoming and those who reported consumption of venison from deer that later tested positive in Wisconsin. Information from the databases is periodically cross-checked with mortality data to determine the vital status and causes of death for deceased persons. Long-term follow-up of these hunters is needed to assess their risk of development of a prion disease linked to CWD exposure.

=====

P166 Characterization of CJD strain profiles in venison consumers and non-consumers from Alberta and Saskatchewan

Stephanie Booth (1,2), Lise Lamoureux (1), Debra Sorensen (1), Jennifer L. Myskiw (1,2), Megan Klassen (1,2), Michael Coulthart (3), Valerie Sim (4)

(1) Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg (2) Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg (3) Canadian CJD Surveillance System, Public Health Agency of Canada, Ottawa (4) Division of Neurology, Department of Medicine Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton.

Chronic wasting disease (CWD) is spreading rapidly through wild cervid populations in the Canadian provinces of Alberta and Saskatchewan. While this has implications for tourism and hunting, there is also concern over possible zoonotic transmission to humans who eat venison from infected deer. Whilst there is no evidence of any human cases of CWD to date, the Canadian CJD Surveillance System (CJDSS) in Canada is staying vigilant. When variant CJD occurred following exposure to BSE, the unique biochemical fingerprint of the pathologic PrP enabled a causal link to be confirmed. However, we cannot be sure what phenotype human CWD prions would present with, or indeed, whether this would be distinct from that see in sporadic CJD. Therefore we are undertaking a systematic analysis of the molecular diversity of CJD cases of individuals who resided in Alberta and Saskatchewan at their time of death comparing venison consumers and non-consumers, using a variety of clinical, imaging, pathological and biochemical markers. Our initial objective is to develop novel biochemical methodologies that will extend the baseline glycoform and genetic polymorphism typing that is already completed by the CJDSS. Firstly, we are reviewing MRI, EEG and pathology information from over 40 cases of CJD to select clinically affected areas for further investigation. Biochemical analysis will include assessment of the levels of protease sensitive and resistant prion protein, glycoform typing using 2D gel electrophoresis, testing seeding capabilities and kinetics of aggregation by quaking-induced conversion, and determining prion oligomer size distributions with asymmetric flow field fractionation with in-line light scattering. Progress and preliminary data will be presented. Ultimately, we intend to further define the relationship between PrP structure and disease phenotype and establish a baseline for the identification of future atypical CJD cases that may arise as a result of exposure to CWD.

=====

Source Prion Conference 2018 Abstracts




Volume 24, Number 8—August 2018 Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions

Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)

Abstract Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.

snip...

Discussion Characterization of the transmission properties of CWD and evaluation of their zoonotic potential are important for public health purposes. Given that CWD affects several members of the family Cervidae, it seems reasonable to consider whether the zoonotic potential of CWD prions could be affected by factors such as CWD strain, cervid species, geographic location, and Prnp–PRNP polymorphic variation. We have previously used an in vitro conversion assay (PMCA) to investigate the susceptibility of the human PrP to conversion to its disease-associated form by several animal prion diseases, including CWD (15,16,22). The sensitivity of our molecular model for the detection of zoonotic conversion depends on the combination of 1) the action of proteinase K to degrade the abundant human PrPC that constitutes the substrate while only N terminally truncating any human PrPres produced and 2) the presence of the 3F4 epitope on human but not cervid PrP. In effect, this degree of sensitivity means that any human PrPres formed during the PMCA reaction can be detected down to the limit of Western blot sensitivity. In contrast, if other antibodies that detect both cervid and human PrP are used, such as 6H4, then newly formed human PrPres must be detected as a measurable increase in PrPres over the amount remaining in the reaction product from the cervid seed. Although best known for the efficient amplification of prions in research and diagnostic contexts, the variation of the PMCA method employed in our study is optimized for the definitive detection of zoonotic reaction products of inherently inefficient conversion reactions conducted across species barriers. By using this system, we previously made and reported the novel observation that elk CWD prions could convert human PrPC from human brain and could also convert recombinant human PrPC expressed in transgenic mice and eukaryotic cell cultures (15).

A previous publication suggested that mule deer PrPSc was unable to convert humanized transgenic substrate in PMCA assays (23) and required a further step of in vitro conditioning in deer substrate PMCA before it was able to cross the deer–human molecular barrier (24). However, prions from other species, such as elk (15) and reindeer affected by CWD, appear to be compatible with the human protein in a single round of amplification (as shown in our study). These observations suggest that different deer species affected by CWD could present differing degrees of the olecular compatibility with the normal form of human PrP.

The contribution of the polymorphism at codon 129 of the human PrP gene has been extensively studied and is recognized as a risk factor for Creutzfeldt-Jakob disease (4). In cervids, the equivalent codon corresponds to the position 132 encoding methionine or leucine. This polymorphism in the elk gene has been shown to play an important role in CWD susceptibility (25,26). We have investigated the effect of this cervid Prnp polymorphism on the conversion of the humanized transgenic substrate according to the variation in the equivalent PRNP codon 129 polymorphism. Interestingly, only the homologs methionine homozygous seed–substrate reactions could readily convert the human PrP, whereas the heterozygous elk PrPSc was unable to do so, even though comparable amounts of PrPres were used to seed the reaction. In addition, we observed only low levels of human PrPres formation in the reactions seeded with the homozygous methionine (132 MM) and the heterozygous (132 ML) seeds incubated with the other 2 human polymorphic substrates (129 MV and 129 VV). The presence of the amino acid leucine at position 132 of the elk Prnp gene has been attributed to a lower degree of prion conversion compared with methionine on the basis of experiments in mice made transgenic for these polymorphic variants (26). Considering the differences observed for the amplification of the homozygous human methionine substrate by the 2 polymorphic elk seeds (MM and ML), reappraisal of the susceptibility of human PrPC by the full range of cervid polymorphic variants affected by CWD would be warranted.

In light of the recent identification of the first cases of CWD in Europe in a free-ranging reindeer (R. tarandus) in Norway (2), we also decided to evaluate the in vitro conversion potential of CWD in 2 experimentally infected reindeer (18). Formation of human PrPres was readily detectable after a single round of PMCA, and in all 3 humanized polymorphic substrates (MM, MV, and VV). This finding suggests that CWD prions from reindeer could be more compatible with human PrPC generally and might therefore present a greater risk for zoonosis than, for example, CWD prions from white-tailed deer. A more comprehensive comparison of CWD in the affected species, coupled with the polymorphic variations in the human and deer PRNP–Prnp genes, in vivo and in vitro, will be required before firm conclusions can be drawn. Analysis of the Prnp sequence of the CWD reindeer in Norway was reported to be identical to the specimens used in our study (2). This finding raises the possibility of a direct comparison of zoonotic potential between CWD acquired in the wild and that produced in a controlled laboratory setting. (Table).

The prion hypothesis proposes that direct molecular interaction between PrPSc and PrPC is necessary for conversion and prion replication. Accordingly, polymorphic variants of the PrP of host and agent might play a role in determining compatibility and potential zoonotic risk. In this study, we have examined the capacity of the human PrPC to support in vitro conversion by elk, white-tailed deer, and reindeer CWD PrPSc. Our data confirm that elk CWD prions can convert the human PrPC, at least in vitro, and show that the homologous PRNP polymorphisms at codon 129 and 132 in humans and cervids affect conversion efficiency. Other species affected by CWD, particularly caribou or reindeer, also seem able to convert the human PrP. It will be important to determine whether other polymorphic variants found in other CWD-affected Cervidae or perhaps other factors (17) exert similar effects on the ability to convert human PrP and thus affect their zoonotic potential.

Dr. Barria is a research scientist working at the National CJD Research and Surveillance Unit, University of Edinburgh. His research has focused on understanding the molecular basis of a group of fatal neurologic disorders called prion diseases.

Acknowledgments We thank Aru Balachandran for originally providing cervid brain tissues, Abigail Diack and Jean Manson for providing mouse brain tissue, and James Ironside for his critical reading of the manuscript at an early stage.

This report is independent research commissioned and funded by the United Kingdom’s Department of Health Policy Research Programme and the Government of Scotland. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or the Government of Scotland.

Author contributions: The study was conceived and designed by M.A.B. and M.W.H. The experiments were conducted by M.A.B. and A.L. Chronic wasting disease brain specimens were provided by G.M. The manuscript was written by M.A.B. and M.W.H. All authors contributed to the editing and revision of the manuscript.



Prion 2017 Conference Abstracts
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 
21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS ABSTRACTS REFERENCE
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.


SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994

Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...

Table 9 presents the results of an analysis of these data.

There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).

Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.

There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;




Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


Jeff Schwan was 26 years old when he died from CJD.

***> I urge everyone to watch this video closely...terry

*** You can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***

***> ''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


 ***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the scrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

reference...

RB3.20

TRANSMISSION TO CHIMPANZEES

1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.

2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :

3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.

4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.

5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.

R. Bradley

23 September 1990

CVO (+Mr Wells' comments)

Dr T W A Little

Dr B J Shreeve

90/9.23/1.1.


IN CONFIDENCE CHIMPANZEES

CODE 18-77 Reference RB3.46

Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.

She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.

Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.

We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists or­media. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.

The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.

I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.

Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.

CVO cc Dr T Dr B W A Little Dr B J Shreeve

R Bradley

26 September 1990

90/9.26/3.2


this is tse prion political theater here, i.e. what i call TSE PRION POKER...tss



3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.

snip...

PAGE 26

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province! ...page 26. 

snip...see;

IN CONFIDENCE

PERCEPTIONS OF UNCONVENTIONAL SLOW VIRUS DISEASE OF ANIMALS IN THE USA

GAH WELLS

REPORT OF A VISIT TO THE USA

APRIL-MAY 1989


TUESDAY, MAY 11, 2021

A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

https://creutzfeldt-jakob-disease.blogspot.com/2021/05/a-unique-presentation-of-creutzfeldt.html

Saturday, May 1, 2021 

Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease


America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


3.2.1.2 Non‐cervid domestic species

The remarkably high rate of natural CWD transmission in the ongoing NA epidemics raises the question of the risk to livestock grazing on CWD‐contaminated shared rangeland and subsequently developing a novel CWD‐related prion disease. This issue has been investigated by transmitting CWD via experimental challenge to cattle, sheep and pigs and to tg mouse lines expressing the relevant species PrP.

For cattle challenged with CWD, PrPSc was detected in approximately 40% of intracerebrally inoculated animals (Hamir et al., 2005, 2006a, 2007). Tg mice expressing bovine PrP have also been challenged with CWD and while published studies have negative outcomes (Tamguney et al., 2009b), unpublished data provided for the purposes of this Opinion indicate that some transmission of individual isolates to bovinised mice is possible (Table 1).

In small ruminant recipients, a low rate of transmission was reported between 35 and 72 months post‐infection (mpi) in ARQ/ARQ and ARQ/VRQ sheep intracerebrally challenged with mule deer CWD (Hamir et al., 2006b), while two out of two ARQ/ARQ sheep intracerebrally inoculated with elk CWD developed clinical disease after 28 mpi (Madsen‐Bouterse et al., 2016). However, tg mice expressing ARQ sheep PrP were resistant (Tamguney et al., 2006) and tg mice expressing the VRQ PrP allele were poorly susceptible to clinical disease (Beringue et al., 2012; Madsen‐Bouterse et al., 2016). In contrast, tg mice expressing VRQ sheep PrP challenged with CWD have resulted in highly efficient, life‐long asymptomatic replication of these prions in the spleen tissue (Beringue et al., 2012).

A recent study investigated the potential for swine to serve as hosts of the CWD agent(s) by intracerebral or oral challenge of crossbred piglets (Moore et al., 2016b, 2017). Pigs sacrificed at 6 mpi, approximately the age at which pigs reach market weight, were clinically healthy and negative by diagnostic tests, although low‐level CWD agent replication could be detected in the CNS by bioassay in tg cervinised mice. Among pigs that were incubated for up to 73 mpi, some gave diagnostic evidence of CWD replication in the brain between 42 and 72 mpi. Importantly, this was observed also in one orally challenged pig at 64 mpi and the presence of low‐level CWD replication was confirmed by mouse bioassay. The authors of this study argued that pigs can support low‐level amplification of CWD prions, although the species barrier to CWD infection is relatively high and that the detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.




MONDAY, JULY 27, 2020 

BSE Inquiry DFA's a review




''PrPCWD has been detected in one fawn by IHC as early as 40 days of age. Moreover, sPMCA performed on rectal lymphoid tissue has yielded positive results on another fawn at ten days of age.''

Envt.18: Mother to Offspring Transmission of Chronic Wasting Disease

Candace K. Mathiason,† Amy Nalls, Kelly Anderson, Jeanette Hayes-Klug, Jenny G. Powers, Nicholas J. Haley and Edward A. Hoover

Colorado State University; Fort Collins, CO USA †

Presenting author; Email: ckm@lamar.colostate.edu

We have developed a new cervid model in small Asian muntjac deer (Muntiacus reevesi) to study potential modes of vertical transmission of chronic wasting disease (CWD) from mother to offspring. Eight of eight (8/8) muntjac doe orally infected with CWD tested PrPCWD lymphoid positive by four months post infection. Ten fawns were born to these CWD-infected doe— four of the fawns were viable, five were non-viable and one was a first trimester fetus harvested from a CWD-infected doe euthanized at end-stage disease. The viable fawns have been monitored for CWD infection by immunohistochemistry and sPMCA performed on serial tonsil and rectal lymphoid tissue biopsies. PrPCWD has been detected in one fawn by IHC as early as 40 days of age. Moreover, sPMCA performed on rectal lymphoid tissue has yielded positive results on another fawn at ten days of age. In addition, sPMCA assays have demonstrated amplifiable prions in fetal placental or spleen tissue of three non-viable fawns and mammary tissue of the dams. Additional pregnancy related fluids and tissues from the doe as well as tissue from the nonviable fawns are currently being probed for the presence of CWD. In summary, we have employed the muntjac deer model, to demonstrate for the first time the transmission of CWD from mother to offspring. These studies provide the foundation to investigate the mechanisms and pathways of maternal prion transfer.


SATURDAY, FEBRUARY 04, 2012 

Wisconsin 16 MONTH age limit on testing dead deer Game Farm CWD Testing Protocol Needs To Be Revised 


Emergency Order Issued to Restrict Movement of Deer from Breeding Facilities Where CWD has Been Detected 

June 22, 2021 


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission
TUESDAY, JUNE 22, 2021 

***> Texas Emergency Order Issued to Restrict Movement of Deer from Breeding Facilities Where CWD has Been Detected


WEDNESDAY, JUNE 23, 2021 
***> TEXAS CHRONIC WASTIND DISEASE CWD TSE PRION CASES JUMPS TO 228 CONFIRMED TO DATE
how to legislate cwd tse prion, just follow the money $$$

Texas Trophy Cloning Hunting HB 1781

Texas wants a new kind of hunting, Trophy Cloning Farmed Cervid...you pick em, we’ll grow em, you shootem...


“Regrettably, the gravity of this situation continues to mount with these new CWD positive discoveries, as well as with the full understanding of just how many other facilities and release sites across Texas were connected to the CWD positive sites in Uvalde and Hunt Counties,” said Carter Smith, Executive Director of TPWD.
 
TUESDAY, DECEMBER 31, 2019 
In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226560

SUNDAY, AUGUST 02, 2015  
TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 

SUNDAY, FEBRUARY 16, 2020

***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion?

Talk about big bucks: Deer semen donations are fueling South Texas campaign Each deer semen straw — from bucks with names like Gladiator Sunset, Sweet Dreams and Bandit — was assigned a $1,000 value, according to her campaign finance report.
AUSTIN — Donations of deer semen, one of Texas deer breeders’ most precious commodities, account for more than half of the contributions to a South Texan’s state House campaign.
Politicians and ANIMAL FREAK SHOWS IN TEXAS AND CWD
 
ALSO, IT'S ALWAYS A FREAK SHOW IN TEXAS, IF POLITICIANS ARE NOW JERKING DEER OFF FOR CAMPAIGN MONEY, THEY ARE NOW CLONING DEER, WHAT NEXT;
 
WEDNESDAY, APRIL 21, 2021 
 
***> A Texas Rancher Cloned Deer For Years. Some Lawmakers Want To Legalize It (what about cwd tse prion)? <***
  
POLITICS 04/21/2021 05:45 am ET Updated 1 hour ago
A Texas Rancher Cloned Deer For Years. Some Lawmakers Want To Legalize It.
The Lone Star State has long muddled the line between hunting and farming. Now cloning may help game ranches breed big bucks. headshot
By Roque Planas
AUSTIN, Texas — A Republican legislator wants to legalize deer cloning, and is accusing Texas wildlife officials of using the COVID-19 pandemic to undermine a breeder’s attempts to spawn big bucks.
In a state that often blurs the distinction between hunting and farming, many game ranches have looked to science ― from supplemental protein to artificial insemination ― to grow bigger game for the deep-pocketed customers willing to pay well over $10,000 to shoot them. The proposed law, from state Rep. Matt Krause of Fort Worth, would legalize cloning to help in that endeavor.
But the prospect of commercial deer cloning has raised concern from wildlife officials, who say a rancher cloned and sold deer for years without the state’s knowledge or authorization.
WHAT COULD GO WRONG, ASK BAMBI;


expand this to see all breeder cwd, and then think of what they have released at release sites...


“Regrettably, the gravity of this situation continues to mount with these new CWD positive discoveries, as well as with the full understanding of just how many other facilities and release sites across Texas were connected to the CWD positive sites in Uvalde and Hunt Counties,” said Carter Smith, Executive Director of TPWD.

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land ?

Scrapie, CWD, TSE PRION Environmental Contamination

***> For what it's worth, Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth on CJD and Nutritional Supplements and BSE here in the USA, and some officials from here inside USDA aphis FSIS et al, in fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” as i called them, I never knew who they were, but I never forgot what i was told decades ago, amongst them was ;

Some unofficial information from a source on the inside looking out -

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss

and so it seems ;

***> This is very likely to have parallels with control efforts for CWD in cervids.

Paper

Rapid recontamination of a farm building occurs after attempted prion removal

Kevin Christopher Gough BSc (Hons), PhD Claire Alison Baker BSc (Hons) Steve Hawkins MIBiol Hugh Simmons BVSc, MRCVS, MBA, MA Timm Konold DrMedVet, PhD, MRCVS … See all authors 

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

Abstract

The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. Post‐decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. Twenty‐four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie‐positive during the bioassay, samples of dust collected within the barn were positive by month 3. The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.


***>This is very likely to have parallels with control efforts for CWD in cervids.







***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3


Saturday, January 5, 2019 

Rapid recontamination of a farm building occurs after attempted prion removal 


The effectiveness of on-farm decontamination methods for scrapie - SE1865

Description

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/ replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie-contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Objective

Phase 1

• Determine the presence and relative levels of airborne prions on a scrapie infected farm.

• Evaluate different pen surface decontamination procedures.

Phase 2

• Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

• Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

Time-Scale and Cost

From: 2012 

To: 2016 

Cost: £326,784

Contractor / Funded Organisations

A D A S UK Ltd (ADAS)

Keywords Animals Fields of Study Animal Health


The Effectiveness of on-Farm Decontamination Methods for Scrapie

Institutions ADAS

Start date 2012

End date 2016

Objective Phase 1

Determine the presence and relative levels of airborne prions on a scrapie infected farm. Evaluate different pen surface decontamination procedures.

Phase 2

Determine the presence of any airborne prions in a barn after a full decontamination.

Phase 3

Further assess the efficacy of the decontamination procedure investigated in phase 2 by sheep bioassay.

More information

Scrapie infectivity persists on farms where infected animals have been removed1. Recently we have demonstrated that it is possible to detect environmental scrapie contamination biochemically using serial Protein Misfolding Cyclic Amplification (sPMCA)2, allowing the monitoring of scrapie infectivity on farm premises. Ongoing Defra study SE1863 has compared pen decontamination regimes on a scrapie-infected farm by both sheep bioassay and sPMCA. For bioassay, scrapie-free genetically susceptible lambs were introduced into pens decontaminated using distinct methodologies, all pens contained scrapie-positive lambs within 1 year. Remarkably this included lambs housed within a pen which had been jet washed/chloros treated, followed by regalvanisation/replacement of all metalwork and painting of all other surfaces.

We have recently demonstrated using sPMCA, that material collected on swabs from vertical surfaces at heights inaccessible to sheep within a barn on the same scrapie affected farm contained scrapie prions (unpublished observations). We hypothesise that scrapie prions are most likely to have been deposited in these areas by bioaerosol movement. We propose that this bioaerosol movement contributes to scrapie transmission within the barn, and could account for the sheep that became positive within the pen containing re-galvanised/new metalwork and repainted surfaces (project SE1863). It is proposed that a thorough decontamination that would minimise prion-contaminated dust, both within the building and its immediate vicinity, is likely to increase the effectiveness of current methods for decontaminating farm buildings following outbreaks of scrapie. The proposed study builds on our previous data and will thoroughly investigate the potential for farm building scrapie contamination via the bioaerosol route, a previously unrecognised route for dissemination of scrapie infectivity. This route could lead to the direct infection of healthy animals and/or indirect transmission of disease via contamination of surfaces within animal pens. The proposed study would analyse material collected using air samplers set up within “scrapie-infected” barns and their immediate vicinity, to confirm that prion containing material can be airborne within a scrapie infected farm environment. The study would incorporate a biochemical assessment of different surface decontamination methods, in order to demonstrate the best methodology and then the analysis of air and surface samples after a complete building decontamination to remove sources of dust and surface bound prions from both the building and its immediate vicinity. Analysis of such surface and air samples collected before and after treatment would measure the reduction in levels of infectivity. It is envisaged that the biochemical demonstration of airborne prions and the effective reduction in such prion dissemination would lead to a sheep bioassay experiment that would be conducted after a full farm decontamination. This would fully assess the effectiveness of an optimised scrapie decontamination strategy.

This study will contribute directly to Defra policy on best practice for on-farm decontamination after outbreaks of scrapie; a situation particularly relevant to decontamination after scrapie cases on goat farms where no genetic resistance to scrapie has currently been identified, and where complete decontamination is essential in order to stop recurrence of scrapie after restocking.

Funding Source

Department for Environment, Food and Rural Affairs

Project source

View this project

Project number

SE1865

Categories

Foodborne Disease

Policy and Planning 


Circulation of prions within dust on a scrapie affected farm

Kevin C Gough1 , Claire A Baker2 , Hugh A Simmons3 , Steve A Hawkins3 and Ben C Maddison2*

Abstract

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

snip... 

Discussion We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

Author 

 item Greenlee, Justin item Moore, S - Orise Fellow item Smith, Jodi - Iowa State University item Kunkle, Robert item West Greenlee, M - Iowa State University Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: 8/12/2015 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


MONDAY, APRIL 19, 2021

Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat® process, AT) ???


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread



***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018

P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer 

Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1) 

(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada. 

Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer. 

Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection. 

Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD. 

SOURCE REFERENCE 2018 PRION CONFERENCE ABSTRACT

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Horizontal transmission of chronic wasting disease in reindeer

Author

item MOORE, SARAH - ORISE FELLOW item KUNKLE, ROBERT item WEST GREENLEE, MARY - IOWA STATE UNIVERSITY item Nicholson, Eric item RICHT, JUERGEN item HAMIR, AMIRALI item WATERS, WADE item Greenlee, Justin

Submitted to: Emerging Infectious Diseases

Publication Type: Peer Reviewed Journal

Publication Acceptance Date: 8/29/2016

Publication Date: 12/1/2016

Citation: Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.

Interpretive Summary: Chronic wasting disease (CWD) is a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America and was recently diagnosed in a single free-ranging reindeer (Rangifer tarandus tarandus) in Norway. CWD is a transmissible spongiform encephalopathy (TSE) that is caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Little is known about the susceptibility of or potential for transmission amongst reindeer. In this experiment, we tested the susceptibility of reindeer to CWD from various sources (elk, mule deer, or white-tailed deer) after intracranial inoculation and tested the potential for infected reindeer to transmit to non-inoculated animals by co-housing or housing in adjacent pens. Reindeer were susceptible to CWD from elk, mule deer, or white-tailed deer sources after experimental inoculation. Most importantly, non-inoculated reindeer that were co-housed with infected reindeer or housed in pens adjacent to infected reindeer but without the potential for nose-to-nose contact also developed evidence of CWD infection. This is a major new finding that may have a great impact on the recently diagnosed case of CWD in the only remaining free-ranging reindeer population in Europe as our findings imply that horizontal transmission to other reindeer within that herd has already occurred. Further, this information will help regulatory and wildlife officials developing plans to reduce or eliminate CWD and cervid farmers that want to ensure that their herd remains CWD-free, but were previously unsure of the potential for reindeer to transmit CWD.

Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal prion disease of cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, and CWD was recently reported in a free-ranging reindeer of Norway. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWDwtd), mule deer (Odocoileus hemionus; CWDmd), or elk (Cervus elaphus nelsoni; CWDelk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWDwtd, CWDmd, or CWDelk. Two years after challenge of inoculated reindeer, non-inoculated negative control reindeer were introduced into the same pen as the CWDwtd inoculated reindeer (direct contact; n=4) or into a pen adjacent to the CWDmd inoculated reindeer (indirect contact; n=2). Experimentally inoculated reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrPcwd). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (months PI). PrPcwd was detected in 5 out of 6 sentinel reindeer although only 2 out of 6 developed clinical disease during the study period (< 57 months PI). We have shown that reindeer are susceptible to CWD from various cervid sources and can transmit CWD to naïve reindeer both directly and indirectly.


Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).


Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document


Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission. 

Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston. 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

=========================

***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 

source reference Prion Conference 2015 abstract book

Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

Sandra Pritzkow,1 Rodrigo Morales,1 Fabio Moda,1,3 Uffaf Khan,1 Glenn C. Telling,2 Edward Hoover,2 and Claudio Soto1, * 1Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA

2Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA

3Present address: IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy *Correspondence: claudio.soto@uth.tmc.edu http://dx.doi.org/10.1016/j.celrep.2015.04.036

SUMMARY

Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc) to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

INTRODUCTION

snip...

DISCUSSION

This study shows that plants can efficiently bind prions contained in brain extracts from diverse prion infected animals, including CWD-affected cervids. PrPSc attached to leaves and roots from wheat grass plants remains capable of seeding prion replication in vitro. Surprisingly, the small quantity of PrPSc naturally excreted in urine and feces from sick hamster or cervids was enough to efficiently contaminate plant tissue. Indeed, our results suggest that the majority of excreted PrPSc is efficiently captured by plants’ leaves and roots. Moreover, leaves can be contaminated by spraying them with a prion-containing extract, and PrPSc remains detectable in living plants for as long as the study was performed (several weeks). Remarkably, prion contaminated plants transmit prion disease to animals upon ingestion, producing a 100% attack rate and incubation periods not substantially longer than direct oral administration of sick brain homogenates.

Finally, an unexpected but exciting result was that plants were able to uptake prions from contaminated soil and transport them to aerial parts of the plant tissue. Although it may seem farfetched that plants can uptake proteins from the soil and transport it to the parts above the ground, there are already published reports of this phenomenon (McLaren et al., 1960; Jensen and McLaren, 1960;Paungfoo-Lonhienne et al., 2008). The high resistance of prions to degradation and their ability to efficiently cross biological barriers may play a role in this process. The mechanism by which plants bind, retain, uptake, and transport prions is unknown. We are currently studying the way in which prions interact with plants using purified, radioactively labeled PrPSc to determine specificity of the interaction, association constant, reversibility, saturation, movement, etc.

Epidemiological studies have shown numerous instances of scrapie or CWD recurrence upon reintroduction of animals on pastures previously exposed to prion-infected animals. Indeed, reappearance of scrapie has been documented following fallow periods of up to 16 years (Georgsson et al., 2006), and pastures were shown to retain infectious CWD prions for at least 2 years after exposure (Miller et al., 2004). It is likely that the environmentally mediated transmission of prion diseases depends upon the interaction of prions with diverse elements, including soil, water, environmental surfaces, various invertebrate animals, and plants.

However, since plants are such an important component of the environment and also a major source of food for many animal species, including humans, our results may have far-reaching implications for animal and human health. Currently, the perception of the riskfor animal-to-human prion transmission has beenmostly limited to consumption or exposure to contaminated meat; our results indicate that plants might also be an important vector of transmission that needs to be considered in risk assessment. 


RIGINAL RESEARCH ARTICLE

Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

1Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK

2Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK

3Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK

4ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

5School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie-affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). 

Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). 

Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23). 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. 

Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. 

Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). 

The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. 

When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier. 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. 

Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. 

It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. 

Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. 

Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. 

Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions. 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. 

In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. 

In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). 

As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. 

False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). 

This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. 

This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. 

In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. 

Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. 

The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. 

In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). 

A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). 

This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. 

Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions. 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 

These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes. 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification 


Chemical Inactivation of Prions Is Altered by Binding to the Soil Mineral Montmorillonite

Clarissa J. Booth, Stuart Siegfried Lichtenberg, Richard J. Chappell, and Joel A. Pedersen* Cite this: ACS Infect. Dis. 2021, XXXX, XXX, XXX-XXX Publication Date:March 31, 2021 https://doi.org/10.1021/acsinfecdis.0c00860 © 2021 American Chemical Society

Abstract

Environmental routes of transmission contribute to the spread of the prion diseases chronic wasting disease of deer and elk and scrapie of sheep and goats. Prions can persist in soils and other environmental matrices and remain infectious for years. Prions bind avidly to the common soil mineral montmorillonite, and such binding can dramatically increase oral disease transmission. Decontamination of soil in captive facilities and natural habitats requires inactivation agents that are effective when prions are bound to soil microparticles. Here, we investigate the inactivation of free and montmorillonite-bound prions with sodium hydroxide, acidic pH, Environ LpH, and sodium hypochlorite. Immunoblotting and bioassays confirm that sodium hydroxide and sodium hypochlorite are effective for prion deactivation, although montmorillonite appears to reduce the efficacy of hypochlorite. Acidic conditions slightly reduce prion infectivity, and the acidic phenolic disinfectant Environ LpH produces slight reductions in infectivity and immunoreactivity. The extent to which the association with montmorillonite protects prions from chemical inactivation appears influenced by the effect of chemical agents on the clay structure and surface pH. When clay morphology remains relatively unaltered, as when exposed to hypochlorite, montmorillonite-bound prions appear to be protected from inactivation. In contrast, when the clay structure is substantially transformed, as when exposed to high concentrations of sodium hydroxide, the attachment to montmorillonite does not slow degradation. A reduction in surface pH appears to cause slight disruptions in clay structure, which enhances degradation under these conditions. We expect our findings will aid the development of remediation approaches for successful decontamination of prion-contaminated sites.


Front. Vet. Sci., 04 March 2021 | https://doi.org/10.3389/fvets.2021.643754

Real-Time Quaking-Induced Conversion Detection of PrPSc in Fecal Samples From Chronic Wasting Disease Infected White-Tailed Deer Using Bank Vole Substrate

Soyoun Hwang, Justin J. Greenlee and Eric M. Nicholson*

Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that is fatal to free-range and captive cervids. CWD has been reported in the United States, Canada, South Korea, Norway, Finland, and Sweden, and the case numbers in both wild and farmed cervids are increasing rapidly. Studies indicate that lateral transmission of cervids likely occurs through the shedding of infectious prions in saliva, feces, urine, and blood into the environment. Therefore, the detection of CWD early in the incubation time is advantageous for disease management. In this study, we adapt real-time quacking-induced conversion (RT-QuIC) assays to detect the seeding activity of CWD prions in feces samples from clinical and preclinical white-tailed deer. By optimizing reaction conditions for temperature as well as the salt and salt concentration, prion seeding activity from both clinical and preclinical animals were detected by RT-QuIC. More specifically, all fecal samples collected from 6 to 30 months post inoculation showed seeding activity under the conditions of study. The combination of a highly sensitive detection tool paired with a sample type that may be collected non-invasively allows a useful tool to support CWD surveillance in wild and captive cervids.

snip...

Altogether, we confirm again that RT-QuIC is a powerful tool to detect infectious fecal prions from CWD infected white-tailed deer. Use of feces is a non-invasive and non-stressing approach to sampling of animals, of particular importance for non-domesticated animals that may be less tolerant to the handling required for sampling by other means. This is of importance to the management of both wild and farmed cervids and is also of use in experimental settings where repeated sampling of an individual animal would be otherwise difficult. Ultimately, fecal sampling may prove useful in the determination of disease prevalence in a geographic region or within a herd.

CONCERNING!

SATURDAY, MAY 29, 2021

Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie

''Given the results of this study, current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally.''


FRIDAY, JUNE 04, 2021 

Texas Breeder Deer May Have Spread Brain Disease CWD TSE Prion Into The Wild 


terry

THE FULL MONTY!

mad deer disease aka cwd tse prion disease is getting extremely serious down here in Texas and other states. thought ya'll should see this.

i have followed the mad cow follies daily, every day, and cwd, scrapie, and now we have camel prion disease spreading in Africa. 

i cannot urge enough just how serious this ongoing nightmare is.

lost my mom back in 1997 to hvCJD confirmed, officials told me it wasn't here.

well, 23 some odd years, i beg to differ...

Texas Breeder Deer May Have Spread Brain Disease Into The Wild

ENVIRONMENT 06/01/2021 10:36 am ET Updated 1 day ago

Texas Breeder Deer May Have Spread Brain Disease Into The Wild

Officials are struggling to locate deer sold from facilities infected with chronic wasting disease.

headshot

By Roque Planas

AUSTIN, Texas — State wildlife officials are struggling to trace and halt the spread of deer infected with a contagious brain disease after breeders sold potentially infected animals to hundreds of buyers and released them on game ranches across the state. 

Deer at three breeding facilities tested positive for chronic wasting disease in March. Two sites are in the county of Uvalde, west of San Antonio, and owned by the same breeder, while the third is in Hunt County, outside Dallas. Two more facilities that received deer from the Uvalde sites have had positive cases since then, bringing the total of known infected deer to 10 so far. 

Officials don’t know how many infected animals the breeders might have sold. Deer breeding is a major business in Texas, where customers will often pay private ranches enclosed by high fencing $10,000 or more to hunt bucks created with the help of artificial insemination, captive rearing and supplemental feed.

The spread of CWD could have severe implications for the state’s wildlife. The disease causes fatal neurodegeneration in cervids like deer, elk and moose. 

The state’s tracing effort has identified 267 sites that received deer from what have grown to five facilities with positive results — including 101 sites where deer bred in captivity were released. 

High fences block movements in and out of the game ranches that normally buy and release deer. But it’s not uncommon for deer to escape, either by making it over the high fencing or getting past it when damaged. Severe weather, like the February winter storm, can bring down fencing. 

That raises the possibility that the disease could have spread from captive deer to wild ones across the state, said Mitch Lockwood, big game program director for the Texas Parks and Wildlife Department. 

“That’s what keeps me up at night,” Lockwood told HuffPost. “We hope and pray that didn’t happen. But we can’t find those deer.” 

More than half of the animals traced back to the original CWD outbreaks remain untested, Lockwood said. In some cases, state officials are waiting for pending test results before asking the breeder to test suspect deer. In a few cases, breeders have refused to test them, hoping to buy enough time for their fawns to drop first. 

Testing for CWD usually requires extracting lymph nodes or brain stem tissue from a carcass. In most cases, buyers have to kill the animals they bought to check for the disease, though live testing is becoming increasingly available. 

Those delays could make it easier for CWD to spread. The state requires quarantine for deer exposed to the disease. But if infected animals moved from any of the sites that have yet to submit their tests, they could expose deer that can still legally move around the state. 

One reason for the delay is that the state used to let deer breeders batch tissue samples and send them all in ahead of renewing their breeding licenses at the end of the year. The Texas Parks and Wildlife Commission changed that last year, instead requiring samples be sent in within two weeks of a deer’s death. 

But the change only took effect in March, shortly before the first positive tests came back. By then, hundreds of potentially exposed deer had already spent months moving across the states and onto game ranches. 

Some say officials’ efforts haven’t gone far enough. Rancher Brian Treadwell petitioned the Texas Parks and Wildlife Department last week, demanding a special commission meeting to consider stopping all deer movements. 

“You can’t put up a containment zone around these sites anymore,” Treadwell told HuffPost. “I don’t think moving them around is such a good idea anymore.”

An Incurable Disease That Tends To Spread

Like mad cow disease in cattle or Creutzfeldt-Jakob disease in humans, chronic wasting disease causes brain proteins called prions to misfold, leading to a slow, painful death.

It’s unclear whether the disease can jump to humans, like mad cow can. The Centers for Disease Control and Prevention recommends against eating CWD-positive deer meat. 

Wildlife biologists consider the disease one of the most severe threats to the country’s deer herds. Once it takes root in a population, wildlife agencies have no method for removing it. Instead, they hope to contain it — a strategy that usually involves reducing herd size and killing off more of the older bucks, among whom the illness usually concentrates. 

CWD first appeared in Texas back in 2012 in free-ranging mule deer near the New Mexico border. Since then, the state has identified 66 wild deer infected with the disease in seven counties across the state. 

More than 70% of the state’s 224 positive tests over the last nine years occurred either among captive deer or at release sites. CWD was identified in breeder deer at release sites in Medina County, west of San Antonio, a year before free-ranging deer first tested positive there in 2017. Genetic testing later showed that the infected free-ranging deer appeared more closely related to nearby captive animals than wild ones. 

The recent spate of CWD cases and possible spread to the wild has fueled long-standing concerns about the controversial deer breeder business in Texas. 

Texas is one of a dozen states that allows private citizens to breed deer, but classify them as state-managed wildlife, according to a 2018 report from the Quality Deer Management Association (now the National Deer Association). Most states classify captive deer as livestock. Nearly 1,000 Texans are licensed to breed deer.

Selectively breeding deer and raising them in captivity allows breeders to create bucks with bigger bodies and antlers, driving higher prices at private hunting operations that use them.

The expansion of privatized hunting of artificially bred deer over the last two decades has given many ranches an opportunity to stay intact and economically viable — an ecological win in a state where around 95% of land is privately held and large holdings tend to get subdivided over time. The acreage of many game ranches far exceeds a typical whitetail deer’s range.

But most conservation groups oppose the artificial manipulation of deer herds and view the high fences blocking their movements as an effective privatization of wildlife, which is managed in the United States as a public resource. 

Concentrating Animals

While captive deer are no more or less susceptible to CWD than wild ones, critics have long contended that deer breeders spread disease by concentrating animals together, then moving them across distances far greater than they would range if left to wander freely. 

What remains unclear is how CWD entered breeder facilities in the first place. None of the breeder facilities had received deer from out of state for six years, according to Lockwood. 

It’s unlikely that CWD spread from free-ranging deer into the breeder pens. A wild deer would first have to jump a high fence to get onto the breeder’s property, and then jump a second one to get into the pen. 

One possibility is that CWD spread to the facilities through dead deer instead of live ones. Diseased prions can travel on the carcass of a cervid killed elsewhere, like when a hunter travels to an area where the disease is present and brings meat home.

Raising awareness among any individuals who move deer and their carcasses ― whether breeders, live trappers or hunters ― is the best way to check CWD’s spread, according to Lockwood. 

“It is unquestionably the biggest threat facing North American deer,” Lockwood said. “And it will only get worse if it spreads.”


Thank You Roque Planas Huffington Post et al for this article!

hear me now, please, all partisan politics aside, WE NEED TO BAN THE MOVEMENT OF CERVID NOW, until you get a handle on this, this is the number one thing you must do now, Minnesota just did it. 

FRIDAY, APRIL 30, 2021 

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss


WEDNESDAY, DECEMBER 04, 2013 

Chronic Wasting Disease CWD and Land Value concerns? 

Implications of farmed-cervid movements on the transmission of chronic wasting disease

                 

Abstract

Chronic wasting disease is a transmissible spongiform encephalopathy that affects cervids with a clinical picture of muscle wasting in infected animals. The objective of this study was to quantify movement patterns of farmed cervids in the state of Minnesota as a model for identifying potential disease mitigation points. Time aggregated network analysis was performed on data consisting of 1221 intra-state cervid movements from farms located within Minnesota (n = 432 farms). Intra-state movements accounted for 48.2 % of all documented movements (2578) in Minnesota from 2013 to 2018; the remaining movements were inter-state. Annual networks were sparse in nature with low graph densities (6.9 × 10−4 - 1.4 × 10-3) and transitivity (0.06−0.12). Frequency of movements increased significantly (p < 0.05) in the months of September and October before decreasing in November, which coincided with the breeding and hunting seasons. Some of these contacts were as far as 500 km apart. The median length of infection chains for CWD positive farms was estimated to be 5.0 and 6.0 farms in-and out-going infection chains, respectively. A k-test analysis demonstrated that the observed median number of infected farms directly connected to other infected farms was 2.0, which was significantly higher than a fortuitous event (p = 0.002). Movements of cervids between farms were largely unpredictable with very low edge overlap (mean 0.02 %) from year to year, suggesting that persistent commercial relationships among farms were rare. 
In conclusion, long distance trade movements present a risk for spread of chronic wasting disease in Minnesota. The sparse networks and unpredictable farm contacts could be because cervid production is not as vertically integrated as other species-differentiated and established industries, such as swine or poultry. Our analytical approach can be used to understand chronic wasting disease in other states in the U.S. and North America in general.




snip...

see full text;


For Immediate Release 

Thursday, October 2, 2014 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected

CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.

On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.

The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.

The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.

Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.

Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.

The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.

-30-


Wisconsin Buckhorn Flats CWD

SUBJECT: Almond Deer Farm Update

The first case of Chronic Wasting Disease (CWD) among Wisconsin's farm-raised deer occurred in a white-tailed deer buck shot by a hunter at the property (formerly known as Buckhorn Flats) in September 2002. This situation prompted the eventual depopulation of the entire farm. 

The deer, a mix of does and yearlings, were destroyed on January 17, 2006- 4 years later- by U.S. Department of Agriculture shooters under a USDA agreement with the farm owner. 

Sixty of the 76 animals tested positive for CWD. The 76 deer constituted the breeding herd in the breeding facility on the farm. The property also had a hunting preserve until 2005. Four deer, two does and two fawns, the only deer remaining in the former preserve, were killed and tested as well. CWD was not detected in those animals. 

The total number of deer to test positive from this farm from the initial discovery to final depopulation is 82. The nearly 80% prevalence rate discovered on Buckhorn Flats is the highest prevalence recorded in any captive cervid operation in North America.

Tuesday, December 20, 2011

Chronic Wasting Disease CWD WISCONSIN Almond Deer

(Buckhorn Flats) Farm Update DECEMBER 2011 The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approves the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

Form 1100-001 (R 2/11) NATURAL RESOURCES BOARD AGENDA ITEM SUBJECT: Information Item: Almond Deer Farm Update FOR:

DECEMBER 2011 BOARD MEETING

TUESDAY TO BE PRESENTED BY TITLE: Tami Ryan, Wildlife Health Section Chief SUMMARY:





“Regrettably, the gravity of this situation continues to mount with these new CWD positive discoveries, as well as with the full understanding of just how many other facilities and release sites across Texas were connected to the CWD positive sites in Uvalde and Hunt Counties,” said Carter Smith, Executive Director of TPWD.

For Immediate Release

May 14, 2021

Chronic Wasting Disease Discovered at Deer Breeding Facilities in Matagorda and Mason Counties

AUSTIN, TX – Chronic Wasting Disease (CWD) has been discovered in deer breeding facilities in both Matagorda and Mason counties. This marks the first positive detection of the disease in each county. 

An epidemiological investigation found that both deer breeding facilities had received deer from the Uvalde County premises confirmed positive with CWD on March 29, 2021. Postmortem tissue samples were submitted by the permitted deer breeders to assist Texas Parks and Wildlife Department (TPWD) and Texas Animal Health Commission (TAHC) with the epidemiological investigation. The National Veterinary Services Laboratory (NVSL) in Ames, Iowa, has since confirmed CWD in those tissue samples.

TPWD and TAHC officials have taken immediate action to secure all cervids at the Matagorda County and Mason County deer breeding facilities and plan to conduct additional investigations for CWD. In addition, other breeding facilities and release sites that have received deer from these facilities or shipped deer to these facilities during the last five years have been contacted by TPWD and cannot move or release deer at this time.

On March 31, 2021, TPWD and TAHC reported two CWD confirmations at breeding facilities in both Hunt and Uvalde counties. The Hunt facility underwent further DNA testing to confirm animal identification and origin, and on May 12 the DNA test results confirmed the deer’s connection to the premises.

TPWD and TAHC continue to work together to determine the extent of the disease within all the affected facilities and evaluate risks to Texas’ free ranging deer populations. Quick detection of CWD can help mitigate the disease’s spread. 

“Regrettably, the gravity of this situation continues to mount with these new CWD positive discoveries, as well as with the full understanding of just how many other facilities and release sites across Texas were connected to the CWD positive sites in Uvalde and Hunt Counties,” said Carter Smith, Executive Director of TPWD. “Along with our partners at the Texas Animal Health Commission, we will continue to exercise great diligence and urgency with this ongoing investigation. Accelerating the testing at other exposed facilities will be critical in ensuring we are doing all we can to arrest the further spread of this disease, which poses great risks to our native deer populations, both captive and free-ranging alike.”

CWD was first recognized in the U.S. in 1967 and has since been documented in captive and/or free-ranging deer in 26 states and 3 Canadian provinces. 

In Texas, the disease was first discovered in 2012 in free-ranging mule deer along a remote area of the Hueco Mountains near the Texas-New Mexico border and has since been detected in 228 captive or free-ranging cervids, including white-tailed deer, mule deer, red deer and elk in 13 Texas counties. For more information on previous detections visit the CWD page on the TPWD website. CWD is a fatal neurological disease found in certain cervids, including deer, elk, moose and other members of the deer family. CWD is a slow and progressive disease. Due to a long incubation, cervids infected with CWD may not produce any visible signs for a number of years after becoming infected. As the disease progresses, animals with CWD show changes in behavior and appearance. Clinical signs may include, progressive weight loss, stumbling or tremors with a lack of coordination, excessive thirst, salivation or urination, loss of appetite, teeth grinding, abnormal head posture, and/or drooping ears. To date there is no evidence that CWD poses a risk to humans or non-cervids. However, as a precaution, the U.S. Centers for Disease Control and the World Health Organization recommend not to consume meat from infected animals. For more information about CWD, visit the TPWD web site or the TAHC web site.

###


“Regrettably, the gravity of this situation continues to mount with these new CWD positive discoveries, as well as with the full understanding of just how many other facilities and release sites across Texas were connected to the CWD positive sites in Uvalde and Hunt Counties,” said Carter Smith, Executive Director of TPWD.

Texas Chronic Wasting Disease CWD TSE Prion Positives Mounting 224 To Date

see the latest positives;

2021-04-27 Breeder Deer Mason Facility #10 White-tailed Deer M 2.482191781

2021-04-27 Breeder Deer Uvalde Facility #7 White-tailed Deer M 1.5

2021-04-27 Breeder Deer Uvalde Facility #7 White-tailed Deer M 1.5

2021-04-20 Breeder Deer Matagorda Facility #9 White-tailed Deer F 1.5

2021-03-29 Breeder Deer Uvalde Facility #7 White-tailed Deer F 3.536986301

2021-03-29 Breeder Deer Uvalde Facility #7 White-tailed Deer M 2.178082192

2021-03-29 Breeder Deer Uvalde Facility #7 White-tailed Deer M 3.5

2021-03-29 Breeder Deer Uvalde Facility #7 White-tailed Deer M 1.545205479

2021-03-29 Breeder Deer Uvalde Facility #7 White-tailed Deer M 2.482191781

2021-03-29 Breeder Deer Hunt Facility #8 White-tailed Deer F 2.482191781


THURSDAY, MAY 06, 2021 

Texas Chronic Wasting Disease CWD TSE Prion Positives Mounting 224 To Date


WEDNESDAY, JUNE 23, 2021 
TEXAS CHRONIC WASTIND DISEASE CWD TSE PRION CASES JUMPS TO 228 CONFIRMED TO DATE
FRIDAY, JUNE 25, 2021 

Minnesota Legislature a Threat For Wild Cervid, Fumbles Football Again With Farmed CWD TSE Prion

JOHN CORNYN TEXAS UNITED STATES SENATE WASHINGTON, DC 20510-4305 April 26,2005

Mr. Terry Singeltary

P.O. Box 

Bacliff, Texas 77518

Dear Mr. Singeltary:

In response to your recent request for my assistance, I have contacted the National Institutes of Health. I will write you again as soon as I receive a reply. I appreciate having the opportunity to represent you in the United States Senate and to be of service in this matter.

Sincerely,

JOHN CORNYN United States Senator JC:djl 

=============== 

JOHN CORNYN TEXAS UNITED STATES SENATE WASHINGTON, DC 20510-4305

May 18,2005

Mr. Terry Singeltary

P.O. Box 

Bacliff, Texas 77518

Dear Mr. Singeltary:

Enclosed is the reply I received from the Department of Health and Human Services in response to my earlier inquiry on your behalf. I hope this will be useful to you. I appreciate having the opportunity to represent you in the United States Senate. Thank you for taking time to contact me. Sincerely,

JOHN CORNYN United States Senate JC:djl Enclosure

DEPARTMENT OF HEALTH & HUMAN SERVICES National Institutes of Health National Institute of Neurological Disorders and Stroke NINDS Building 31, Room 8A52 31 Center Dr., MSC 2540 Bethesda, Maryland 20892-2540 Phone: 301-496-9746 Fax: 301-496-0296 Email: [log in to unmask]

May 10, 2005

The Honorable John Cornyn United States Senator Occidental Tower5005 LBJ Freeway, Suite 1150Dallas, Texas 75244-6199

Dear Senator Cornyn:

Your letter to the National Institutes of Health (NIH) forwarding correspondence from Mr. Terry S. Singeltary, Sr., has been forwarded to me for reply. Mr. Singeltary is concerned about the preservation of Creutzfeldt-Jakob disease (CJD) brain samples that have been maintained by the National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research program for many years. I am sorry to learn that Mr. Singeltary's mother died of CJD and can certainly understand his desire that any tissues that could help investigators unravel the puzzle of this deadly disease are preserved. I hope he will be pleased to learn that all the brains and other tissues with potential to help scientists learn about CJD are, and will continue to be, conserved. (The tissues that are discarded are those that have either decayed to an extent that renders them no longer appropriate for research or those for which we do not have sufficient identification.) The purpose of gathering these brains and tissues is to help scientists learn about CJD. To that end, some of the NINDS-held samples are distributed to investigators who can demonstrate that they have a compelling research or public health need for such materials. For example, samples have been transferred to NIH grantee Dr. Pierluigi Gambetti, who heads the National Prion Diseases Pathology Surveillance Center at Case Western Reserve University in Ohio and works with the Centers for Disease Control and Prevention to monitor all cases of CJD in the United States. Dr. Gambetti studies the tissues to learn about the formation, physical and chemical properties, and pathogenic mechanisms of prion proteins, which are believed to be involved inthe cause of CJD. Samples have also been transferred to Dr. David Asher, at the U.S. Food and Drug Administration, for use in assessing a potential diagnostic test for CJD.

Page 2 - The Honorable John Cornyn

in closing, we know that donating organs and tissue from loved ones is a very difficult and personal choice that must often be made at the most stressful of times. We at the NINDS are grateful to those stalwart family members who make this choice in the selfless hope that it will help others afflicted with CJD. We also know the invaluable contribution such donations make to the advancement of medical science, and we are dedicated to the preservation of all of the tissue samples that can help in our efforts to overcome CJD.

I hope this information is helpful to you in responding to Mr. Singeltary. Sincerely,

Story C. Landis, Ph.D. Director, National Institute of Neurological Disorders and Stroke

snip...see full text;



Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. 

JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.. 

Terry S. Singeltary, Sr Bacliff, Tex 1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 


doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk

Tracking spongiform encephalopathies in North America

Xavier Bosch

Available online 29 July 2003. 

Volume 3, Issue 8, August 2003, Page 463 

“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem..” 



January 28, 2003; 60 (2) VIEWS & REVIEWS

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States Terry S. Singeltary, retired (medically) 

Published March 26, 2003

26 March 2003

Terry S. Singeltary, retired (medically) CJD WATCH

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?


SPORADIC CJD LAYING ODDS


In brief

BMJ 2000; 320 doi: https://doi.org/10.1136/bmj.320.7226.8/b (Published 01 January 2000)

Cite this as: BMJ 2000;320:8

Rapid Response:

02 January 2000

Terry S Singeltary

retired

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well... In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.

The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;

"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."

Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.

Something else I find odd, page 16;

"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."

A few more factors to consider, page 15;

"Figure 26 compares animal protein production for the two countries. The calculations are based on slaughter numbers, fallen stock estimates, and product yield coefficients. This approach is used due to variation of up to 80 percent from different reported sources. At 3.6 million tons, the United States produces 8 times more animal rendered product than the United Kingdom."

"The risk of introducing the BSE agent through sheep meat and bone meal is more acute in both relative and absolute terms in the United Kingdom (Figures 27 and 28). Note that sheep meat and bone meal accounts for 14 percent, or 61 thousand tons, in the United Kingdom versus 0.6 percent or 22 thousand tons in the United States. For sheep greater than 1 year, this is less than one-tenth of one percent of the United States supply."

"The potential risk of amplification of the BSE agent through cattle meat and bone meal is much greater in the United States where it accounts for 59 percent of total product or almost 5 times more than the total amount of rendered product in the United Kingdom."

Considering, it would only take _one_ scrapie infected sheep to contaminate the feed. Considering Scrapie has run rampant in the U.S. for years, as of Aug. 1999, 950 scrapie infected flocks. Also, Considering only one quarter spoonful of scrapie infected material is lethal to a cow.

Considering all this, the sheep to cow ration is meaningless. As I said, it's 24 pages of B.S.e.

To be continued...

Terry S. Singeltary Sr.

Bacliff, Texas USA

Competing interests: No competing interests


Rapid response to:

US scientists develop a possible test for BSE

15 November 1999

Terry S Singeltary

NA

BMJ 1999; 319 doi: https://doi.org/10.1136/bmj.319.7220.1312b (Published 13 November 1999)

Cite this as: BMJ 1999;319:1312

Article Related content Article metrics 

Rapid responses 

Response Rapid Response: Re: vCJD in the USA * BSE in U.S. In reading the recent article in the BMJ about the potential BSE tests being developed in the U.S. and Bart Van Everbroeck reply. It does not surprize me, that the U.S. has been concealing vCJD. There have been people dying from CJD, with all the symptoms and pathological findings that resemble U.K. vCJD for some time. It just seems that when there is one found, they seem to change the clarical classification of the disease, to fit their agenda. I have several autopsies, stating kuru type amyloid plaques, one of the victims was 41 years of age. Also, my Mom died a most hideous death, Heidenhain Variant Creutzfeldt Jakob disease. Her symptoms resemble that of all the U.K. vCJD victims. She would jerk so bad at times, it would take 3 of us to hold her down, while she screamed "God, what's wrong with me, why can't I stop this." 1st of symptoms to death, 10 weeks, she went blind in the first few weeks. But, then they told me that this was just another strain of sporadic CJD. They can call it what ever they want, but I know what I saw, and what she went through. Sporadic, simply means, they do not know. My neighbors Mom also died from CJD. She had been taking a nutritional supplement which contained the following; vacuum dried bovine BRAIN, bone meal, bovine EYE, veal bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. As I said, this woman taking these nutritional supplements, died from CJD. The particular batch of pills that was located, in which she was taking, was tested. From what I have heard, they came up negative, for the prion protein. But, in the same breath, they said their testing, may not have been strong enough to pick up the infectivity. Plus, she had been taking these type pills for years, so, could it have come from another batch?

CWD is just a small piece of a very big puzzle. I have seen while deer hunting, deer, squirrels and birds, eating from cattle feed troughs where they feed cattle, the high protein cattle by products, at least up until Aug. 4, 1997.

So why would it be so hard to believe that this is how they might become infected with a TSE. Or, even by potentially infected land. It's been well documented that it could be possible, from scrapie. Cats becoming infected with a TSE. Have you ever read the ingredients on the labels of cat and dog food? But, they do not put these tissues from these animals in pharmaceuticals, cosmetics, nutritional supplements, hGH, hPG, blood products, heart valves, and the many more products that come from bovine, ovine, or porcine tissues and organs. So, as I said, this CWD would be a small piece of a very big puzzle. But, it is here, and it most likely has killed. You see, greed is what caused this catastrophe, rendering and feeding practices. But, once Pandora's box was opened, the potential routes of infection became endless.

No BSE in the U.S.A.? I would not be so sure of that considering that since 1990;

Since 1990 the U.S. has raised 1,250,880,700 cattle;

Since 1990 the U.S. has ONLY checked 8,881 cattle brains for BSE, as of Oct. 4, 1999;

There are apprx. 100,000 DOWNER cattle annually in the U.S., that up until Aug. 4, 1997 went to the renders for feed;

Scrapie running rampant for years in the U.S., 950 infected FLOCKS, as of Aug. 1999;

Our feeding and rendering practices have mirrored that of the U.K. for years, some say it was worse. Everything from the downer cattle, to those scrapie infected sheep, to any roadkill, including the city police horse and the circus elephant went to the renders for feed and other products for consumption. Then they only implemented a partial feed ban on Aug. 4, 1997, but pigs, chickens, dogs, and cats, and humans were exempt from that ban. So they can still feed pigs and chickens those potentially TSE tainted by-products, and then they can still feed those by-products back to the cows. I believe it was Dr. Joe Gibbs, that said, the prion protein, can survive the digestinal track. So you have stopped nothing. It was proven in Oprah Winfrey's trial, that Cactus Cattle feeders, sent neurologically ill cattle, some with encephalopathy stamped on the dead slips, were picked up and sent to the renders, along with sheep carcasses. Speaking of autopsies, I have a stack of them, from CJD victims. You would be surprised of the number of them, who ate cow brains, elk brains, deer brains, or hog brains.

I believe all these TSE's are going to be related, and originally caused by the same greedy Industries, and they will be many. Not just the Renders, but you now see, that they are re-using medical devices that were meant for disposal. Some medical institutions do not follow proper auto- claving procedures (even Olympus has put out a medical warning on their endescopes about CJD, and the fact you cannot properly clean these instruments from TSE's), and this is just one product. Another route of infection.

Regardless what the Federal Government in the U.S. says. It's here, I have seen it, and the longer they keep sweeping it under the rug and denying the fact that we have a serious problem, one that could surpass aids (not now, but in the years to come, due to the incubation period), they will be responsible for the continued spreading of this deadly disease.

It's their move, it's CHECK, but once CHECKMATE has been called, how many thousands or millions, will be at risk or infected or even dead. You can't play around with these TSE's. I cannot stress that enough. They are only looking at body bags, and the fact the count is so low. But, then you have to look at the fact it is not a reportable disease in most states, mis-diagnosis, no autopsies performed. The fact that their one-in-a- million theory is a crude survey done about 5 years ago, that's a joke, under the above circumstances. A bad joke indeed........

The truth will come, but how many more have to die such a hideous death. It's the Government's call, and they need to make a serious move, soon. This problem, potential epidemic, is not going away, by itself.

Terry S. Singeltary Sr.

Bacliff, Texas 77518 USA


Competing interests: No competing interests


Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.