Saturday, October 25, 2014
Detailed Events Schedule – 118th USAHA Annual Meeting Click on event for
detailed agenda (as available) Skip to Day: Sunday Monday Tuesday Wednesday
Committee on Committee on Captive Wildlife and Alternative Livestock
October 21, 2014, 8:00 AM – 12:00 PM Room: Empire B Sheraton Hotel at Crown
Center Kansas City, Missouri
Dr. Peregrine Wolff, Chair and Dr. Julie Napier, Vice Chair
08:00 – 08:10 Introductory Comments – Peregrine Wolff and Julie Napier
Presentations
08:10 – 08:30 ABADRU EHDV Update – Scott McVey
08:30 – 08:50 Update on Mycoplasma Bovis in Ranched Bison – Jack
Rhyan
08:50 – 09:15 Research Update on Volatile Organic Compound Sampling in
Wildlife / Livestock for Bovine TB and Brucella – Jack Rhyan
09:15 – 09:35 Updates From the Field – Dave Hunter
09:35 – 10:00 Impacts of CWD on Captive and Free-Ranging Cervids" – Brent
Schumaker
10:00 - 10:20 Ante mortem CWD Testing: Where We Are, and Where We Are
Going” - Tracy Nichols 10:20 – 10:40 USDA-APHIS-VS CWD Program Standards and
Updates – Patrice Klein
Farmed Cervid Subcommittee Report
10:40-11:15 Report From the Farmed Cervid Subcommittee – Charley
Seale
Committee Business
11:15 – 12:00 Resolutions and Other Committee Business – Peregrine Wolff
& Julie Napier
USAHA Subcommittee on Farmed Cervidae AGENDA Monday, October 20 1:00 pm to
5:00 pm Chouteau A
Co-Chair: Charly Seale-Exotic Wildlife Association Co-Chair: Dr. Paul
Anderson-Minnesota Board of Animal Health Co-Chair: Dr. Bret Marsh-Indiana State
Board of Animal Health
Time Topic/Title Presenter(s)
1:00 pm Introductions
Why does the subcommittee exist?
What is its importance to the Cervid industry?
What is the Mission of the subcommittee?
How does the subcommittee work? Committee members
2:00 pm Chronic Wasting Disease
Update on CWD live tests research
Dr. Nicholas Haley,
Kansas State University
3:00 pm Discussion on CWD Program Standards
Protocols for trace back and trace forward
Protocols for CWD testing
Other topics
Recommendations for changes Committee members
4:00 pm Discussion Recommendations to the Committee on Captive Wildlife and
Alternative Livestock Committee members
5:00 pm Adjourn
Committee on Scrapie AGENDA
Tuesday, October 21 9 am - Noon Chouteau A
Updated:10/9/2014
Chair: Kris Petrini, MN Vice Chair: Cheryl Miller, IN
Time Topic/Title Presenter(s) 9:00 Welcome and Announcements Kris Petrini,
DVM
Minnesota Board of Animal Health
9:05 Scrapie Program Update Diane Sutton, DVM
National Scrapie Program Coordinator
Veterinary Services, USDA, Riverdale
9:45 Scrapie research at the National Animal Disease Center Justin
Greenlee, DVM, PhD
Virus and Prion Research Unit
National Animal Disease Center
Agricultural Research Service, USDA 10:30 Detection of Scrapie in Goats,
Sheep, and the Environment
David Schneider, DVM, PhD
Animal Disease Research Unit
Agricultural Research Service, USDA 11:15 Discussion of Additional
Surveillance Methods Cheryl Miller, DVM
Indiana Board of Animal Health 11:30 Business session
Discussion of USDA Sheep and Goat Health Business Plan Resolutions and
recommendations Kris Petrini, DVM
Minnesota Board of Animal Health
Lord I can hear the coins dropping now, don’t ya know that these shooten
pens, captive game farms, breeders, urine mills, antler mills, velvet mills, and
all their lobbyist, are working overtime this week at the 118th USAHA Annual
Meeting.
no matter, you can change all the policies you want, you can’t change the
science though. ...
Conclusions. During the pre-symptomatic stage of CWD infection and
throughout the course of disease deer may be shedding multiple LD50 doses per
day in their saliva. CWD prion shedding through saliva and excreta may account
for the unprecedented spread of this prion disease in nature. Acknowledgments.
Supported by NIH grant RO1-NS-061902 and grant D12ZO-045 from the Morris Animal
Foundation.
*** We conclude that TSE infectivity is likely to survive burial for long
time periods with minimal loss of infectivity and limited movement from the
original burial site. However PMCA results have shown that there is the
potential for rainwater to elute TSE related material from soil which could lead
to the contamination of a wider area. These experiments reinforce the importance
of risk assessment when disposing of TSE risk materials.
*** The results show that even highly diluted PrPSc can bind efficiently to
polypropylene, stainless steel, glass, wood and stone and propagate the
conversion of normal prion protein. For in vivo experiments, hamsters were ic
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters,
inoculated with 263K-contaminated implants of all groups, developed typical
signs of prion disease, whereas control animals inoculated with non-contaminated
materials did not.
PRION 2014 CONFERENCE
CHRONIC WASTING DISEASE CWD
A FEW FINDINGS ;
Conclusions. To our knowledge, this is the first established experimental
model of CWD in TgSB3985. We found evidence for co-existence or divergence of
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice.
Finally, we observed phenotypic differences between cervid-derived CWD and
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway
to characterize these strains.
We conclude that TSE infectivity is likely to survive burial for long time
periods with minimal loss of infectivity and limited movement from the original
burial site. However PMCA results have shown that there is the potential for
rainwater to elute TSE related material from soil which could lead to the
contamination of a wider area. These experiments reinforce the importance of
risk assessment when disposing of TSE risk materials.
The results show that even highly diluted PrPSc can bind efficiently to
polypropylene, stainless steel, glass, wood and stone and propagate the
conversion of normal prion protein. For in vivo experiments, hamsters were ic
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters,
inoculated with 263K-contaminated implants of all groups, developed typical
signs of prion disease, whereas control animals inoculated with non-contaminated
materials did not.
Our data establish that meadow voles are permissive to CWD via peripheral
exposure route, suggesting they could serve as an environmental reservoir for
CWD. Additionally, our data are consistent with the hypothesis that at least two
strains of CWD circulate in naturally-infected cervid populations and provide
evidence that meadow voles are a useful tool for CWD strain typing.
Conclusion. CWD prions are shed in saliva and urine of infected deer as
early as 3 months post infection and throughout the subsequent >1.5 year
course of infection. In current work we are examining the relationship of
prionemia to excretion and the impact of excreted prion binding to surfaces and
particulates in the environment.
Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC)
are shed in urine of infected deer as early as 6 months post inoculation and
throughout the subsequent disease course. Further studies are in progress
refining the real-time urinary prion assay sensitivity and we are examining more
closely the excretion time frame, magnitude, and sample variables in
relationship to inoculation route and prionemia in naturally and experimentally
CWD-infected cervids.
Conclusions. Our results suggested that the odds of infection for CWD is
likely controlled by areas that congregate deer thus increasing direct
transmission (deer-to-deer interactions) or indirect transmission
(deer-to-environment) by sharing or depositing infectious prion proteins in
these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely
controlled by separate factors than found in the Midwestern and endemic areas
for CWD and can assist in performing more efficient surveillance efforts for the
region.
Conclusions. During the pre-symptomatic stage of CWD infection and
throughout the course of disease deer may be shedding multiple LD50 doses per
day in their saliva. CWD prion shedding through saliva and excreta may account
for the unprecedented spread of this prion disease in nature.
see full text and more ;
Monday, June 23, 2014
*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD
*** Infectious agent of sheep scrapie may persist in the environment for at
least 16 years***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
New studies on the heat resistance of hamster-adapted scrapie agent:
Threshold survival after ashing at 600°C suggests an inorganic template of
replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel
Production
Detection of protease-resistant cervid prion protein in water from a
CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1
Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by
heat treatment in yellow grease produced in the industrial manufacturing process
of meat and bone meals
Sunday, November 3, 2013 Environmental Impact Statements; Availability,
etc.: Animal Carcass Management [Docket No. APHIS-2013-0044]
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed
deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture;
Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the
manifestation of CWD and scrapie in WTD after IC inoculation including early and
widespread presence of PrPSc in lymphoid tissues, clinical signs of depression
and weight loss progressing to wasting, and an incubation time of 21-23 months.
Moreover, western blots (WB) done on brain material from the obex region have a
molecular profile similar to CWD and distinct from tissues of the cerebrum or
the scrapie inoculum. However, results of microscopic and IHC examination
indicate that there are differences between the lesions expected in CWD and
those that occur in deer with scrapie: amyloid plaques were not noted in any
sections of brain examined from these deer and the pattern of immunoreactivity
by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to
scrapie.
Deer developed clinical signs of wasting and mental depression and were
necropsied from 28 to 33 months PI. Tissues from these deer were positive for
PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer
exhibited two different molecular profiles: samples from obex resembled CWD
whereas those from cerebrum were similar to the original scrapie inoculum. On
further examination by WB using a panel of antibodies, the tissues from deer
with scrapie exhibit properties differing from tissues either from sheep with
scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are
strongly immunoreactive when probed with mAb P4, however, samples from WTD with
scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4
or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly
immunoreactive and samples from WTD with scrapie are strongly positive. This
work demonstrates that WTD are highly susceptible to sheep scrapie, but on first
passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were
susceptible to scrapie.
Scrapie in Deer: Comparisons and Contrasts to Chronic Wasting Disease (CWD)
Justin J. Greenlee of the Virus and Prion Diseases Research Unit, National
Animal Disease Center, ARS, USDA, Ames, IA
snip...
This highlights the facts that
1) prior to the onset of clinical signs PrPSc is widely distributed in the
CNS and lymphoid tissues and
2) currently used diagnostic methods are sufficient to detect PrPSc prior
to the onset of clinical signs.
The results of this study suggest that there are many similarities in the
manifestation of CWD and scrapie in white-tailed deer after IC inoculation
including early and widespread presence of PrPSc in lymphoid tissues, clinical
signs of depression and weight loss progressing to wasting, and an incubation
time of 21-23 months. Moreover, western blots (WB) done on brain material from
the obex region have a molecular profile consistent with CWD and distinct from
tissues of the cerebrum or the scrapie inoculum. However, results of microscopic
and IHC examination indicate that there are differences between the lesions
expected in CWD and those that occur in deer with scrapie: amyloid plaques were
not noted in any sections of brain examined from these deer and the pattern of
immunoreactivity by IHC was diffuse rather than plaque-like. After a natural
route of exposure, 100% of white-tailed deer were susceptible to scrapie. Deer
developed clinical signs of wasting and mental depression and were necropsied
from 28 to 33 months PI. Tissues from these deer were positive for scrapie by
IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil,
retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and
spleen. While two WB patterns have been detected in brain regions of deer
inoculated by the natural route, unlike the IC inoculated deer, the pattern
similar to the scrapie inoculum predominates.
2011 Annual Report
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Unit
2011 Annual Report
In Objective 1, Assess cross-species transmissibility of transmissible
spongiform encephalopathies (TSEs) in livestock and wildlife, numerous
experiments assessing the susceptibility of various TSEs in different host
species were conducted. Most notable is deer inoculated with scrapie, which
exhibits similarities to chronic wasting disease (CWD) in deer suggestive of
sheep scrapie as an origin of CWD.
snip...
4. Accomplishments
1. Deer inoculated with domestic isolates of sheep scrapie.
Scrapie-affected deer exhibit 2 different patterns of disease associated prion
protein. In some regions of the brain the pattern is much like that observed for
scrapie, while in others it is more like chronic wasting disease (CWD), the
transmissible spongiform encephalopathy typically associated with deer.
his work conducted by ARS scientists at the National Animal Disease Center,
Ames, IA suggests that an interspecies transmission of sheep scrapie to deer may
have been the origin of CWD. This is important for husbandry practices with both
captive deer, elk and sheep for farmers and ranchers attempting to keep their
herds and flocks free of CWD and scrapie.
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion
Research Unit, National Animal Disease Center, USDA-ARS
snip...
This work demonstrates for the first time that white-tailed deer are
susceptible to sheep scrapie by potential natural routes of inoculation.
In-depth analysis of tissues will be done to determine similarities between
scrapie in deer after intracranial and oral/intranasal inoculation and chronic
wasting disease resulting from similar routes of inoculation.
see full text ;
SEE MORE USAHA REPORTS HERE, 2012 NOT PUBLISHED YET...TSS
Thursday, June 20, 2013
atypical, BSE, CWD, Scrapie, Captive Farmed shooting pens (livestock), Wild
Cervids, Rectal Mucosa Biopsy 2012 USAHA Proceedings, and CJD TSE prion Update
*** We conclude that TSE infectivity is likely to survive burial for long
time periods with minimal loss of infectivity and limited movement from the
original burial site. However PMCA results have shown that there is the
potential for rainwater to elute TSE related material from soil which could lead
to the contamination of a wider area. These experiments reinforce the importance
of risk assessment when disposing of TSE risk materials.
*** The results show that even highly diluted PrPSc can bind efficiently to
polypropylene, stainless steel, glass, wood and stone and propagate the
conversion of normal prion protein. For in vivo experiments, hamsters were ic
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters,
inoculated with 263K-contaminated implants of all groups, developed typical
signs of prion disease, whereas control animals inoculated with non-contaminated
materials did not.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration’s BSE Feed Regulation
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin)
from deer and elk is prohibited for use in feed for ruminant animals. With
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may
not be used for any animal feed or feed ingredients. For elk and deer considered
at high risk for CWD, the FDA recommends that these animals do not enter the
animal feed system. However, this recommendation is guidance and not a
requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD
eradication zones and
2) deer and elk that at some time during the 60-month period prior to
slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive
animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from
the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin
processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk
protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data
on the amount of deer and/or elk protein possibly being imported in these
products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs
of CWD in affected adults are weight loss and behavioural changes that can span
weeks or months (Williams, 2005). In addition, signs might include excessive
salivation, behavioural alterations including a fixed stare and changes in
interaction with other animals in the herd, and an altered stance (Williams,
2005). These signs are indistinguishable from cervids experimentally infected
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be
introduced into countries with BSE such as GB, for example, infected deer
populations would need to be tested to differentiate if they were infected with
CWD or BSE to minimise the risk of BSE entering the human food-chain via
affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and
can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil
and surrounding environment is contaminated with CWD prions and in a
bioavailable form. In rural areas where CWD has not been reported and deer are
present, there is a greater than negligible risk the soil is contaminated with
CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving
between GB and North America, the probability of at least one person travelling
to/from a CWD affected area and, in doing so, contaminating their clothing,
footwear and/or equipment prior to arriving in GB is greater than negligible.
For deer hunters, specifically, the risk is likely to be greater given the
increased contact with deer and their environment. However, there is significant
uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher
probability of exposure to CWD transferred to the environment than wild deer
given the restricted habitat range and higher frequency of contact with tourists
and returning GB residents.
snip...
SNIP...SEE ;
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
spreading cwd around...tss
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of
farmed elk in Saskatchewan in a single epidemic. All of these herds were
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease
eradication program. Animals, primarily over 12 mo of age, were tested for the
presence CWD prions following euthanasia. Twenty-one of the herds were linked
through movements of live animals with latent CWD from a single infected source
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily
infected herds.
***The source herd is believed to have become infected via importation of
animals from a game farm in South Dakota where CWD was subsequently diagnosed
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation
of these herds was observed. Within-herd transmission was observed on some
farms, while the disease remained confined to the introduced animals on other
farms.
spreading cwd around...tss
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea Chronic Wasting Disease (CWD) outbreaks and surveillance
program in the Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim,
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research
Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion
disease in native North America deer and Rocky mountain elks. The disease is a
unique member of the transmissible spongiform encephalopathies (TSEs), which
naturally affects only a few species. CWD had been limited to USA and Canada
until 2000.
On 28 December 2000, information from the Canadian government showed that a
total of 95 elk had been exported from farms with CWD to Korea. These consisted
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72
elk in 1997, which had been held in pre export quarantine at the “source
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD
surveillance program was initiated by the Ministry of Agriculture and Forestry
(MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994
were impossible to identify. CWD control measures included stamping out of all
animals in the affected farm, and thorough cleaning and disinfection of the
premises. In addition, nationwide clinical surveillance of Korean native
cervids, and improved measures to ensure reporting of CWD suspect cases were
implemented.
Total of 9 elks were found to be affected. CWD was designated as a
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and
2005.
Since February of 2005, when slaughtered elks were found to be positive,
all slaughtered cervid for human consumption at abattoirs were designated as
target of the CWD surveillance program. Currently, CWD laboratory testing is
only conducted by National Reference Laboratory on CWD, which is the Foreign
Animal Disease Division (FADD) of National Veterinary Research and Quarantine
Service (NVRQS).
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the
human consumption was confirmed as positive. Consequently, all cervid – 54 elks,
41 Sika deer and 5 Albino deer – were culled and one elk was found to be
positive. Epidemiological investigations were conducted by Veterinary
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary
services.
Epidemiologically related farms were found as 3 farms and all cervid at
these farms were culled and subjected to CWD diagnosis. Three elks and 5
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and
confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were
linked to the importation of elks from Canada in 1994 based on circumstantial
evidences.
In December 2010, one elk was confirmed as positive at Farm 5.
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer –
were culled and one Manchurian Sika deer and seven Sika deer were found to be
positive. This is the first report of CWD in these sub-species of deer.
Epidemiological investigations found that the owner of the Farm 2 in CWD
outbreaks in July 2010 had co-owned the Farm 5.
In addition, it was newly revealed that one positive elk was introduced
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as
negative.
: Corresponding author: Dr. Hyun-Joo Sohn (+82-31-467-1867, E-mail:
shonhj@korea.kr) 2011 Pre-congress Workshop: TSEs in animals and their
environment 5
***raising the possibility that deer may be susceptible to multiple scrapie
strains. ***
Saturday, August 02, 2014
Structural effects of PrP polymorphisms on intra- and inter-species prion
transmission
*** Finally, our findings showing that Tg(DeerPrP), but not Tg(ElkPrP) are
sensitive to infection with SSBP/1 belie previously published results showing
that SSBP/1 of the same provenance caused disease in two lines of Tg mice
expressing elk PrP (13). However, our results appear to be consistent with the
reported susceptibilities of elk and deer to sheep prions. In previous studies,
of six elk inoculated with scrapie, three presented with neurological signs and
neuropathology, but only after long and variable times to disease onset ranging
from 25 to 46 months (29). In contrast, our results with SSBP/1 demonstrate
relatively facile transmission of scrapie to deer, with all inoculated animals
developing within 19 to 20 months, which is in accordance with susceptibility of
deer to a US scrapie isolate with a similar time to disease onset (24).
Polymorphisms ovine PrP add a further level of complexity, since they control
the propagation scrapie strains. Occupancy of residue 136 by A or V is of
particular importance. Our previous results indicated that SSBP/1 is comprised
of a dominant strain that is preferentially propagated by sheep PrP encoding V
at 136 (12). In contrast, the scrapie prions used in the deer transmission
studies of Greenlee and colleagues were isolated from a sheep encoding A136,
***raising the possibility that deer may be susceptible to multiple scrapie
strains. ***
Significance
The unpredictable recurrences of prion epidemics, their incurable
lethality, and the capacity of animal prions to infect humans, provide
significant motivation to ascertain the parameters governing disease
transmission. The unprecedented spread, and uncertain zoonotic potential of
chronic wasting disease (CWD), a contagious epidemic among deer, elk, and other
cervids, is of particular concern. Here we demonstrate that naturally occurring
primary structural differences in cervid PrPs differentially impact the
efficiency of intra- and interspecies prion transmission. Our results not only
deliver new information about the role of primary structural variation on prion
susceptibility, but also provide functional support to a mechanism in which
plasticity of a tertiary structural epitope governs prion protein conversion and
intra- and inter-species susceptibility to prions.-
snip...
Saturday, August 02, 2014
Structural effects of PrP polymorphisms on intra- and inter-species prion
transmission
never say never as far as cwd transmission to humans, and second hand
friendly fire there from i.e. iatrogenic. see ;
as I said, what if ?
*** our results raise the possibility that CJD cases classified as VV1 may
include cases caused by iatrogenic transmission of sCJD-MM1 prions or food-borne
infection by type 1 prions from animals, e.g., chronic wasting disease prions in
cervid. In fact, two CJD-VV1 patients who hunted deer or consumed venison have
been reported (40, 41). The results of the present study emphasize the need for
traceback studies and careful re-examination of the biochemical properties of
sCJD-VV1 prions. ***
===========================================
Thursday, January 2, 2014
*** CWD TSE Prion in cervids to hTGmice, Heidenhain Variant
Creutzfeldt-Jacob Disease MM1 genotype, and iatrogenic CJD ??? ***
WHAT IF ?
Saturday, April 19, 2014
Exploring the zoonotic potential of animal prion diseases: In vivo and in
vitro approaches
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
HD.13: CWD infection in the spleen of humanized transgenic mice
***These results indicate that the CWD prion may have the potential to
infect human peripheral lymphoid tissues.
Oral.15: Molecular barriers to zoonotic prion transmission: Comparison of
the ability of sheep, cattle and deer prion disease isolates to convert normal
human prion protein to its pathological isoform in a cell-free system
***However, they also show that there is no absolute barrier ro conversion of
human prion protein in the case of chronic wasting disease.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
***Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood,
and mother to offspring transmission
>>> There is no evidence that humans or livestock can get the
disease, according to the Centers for Disease Control and Prevention.
hang on now, what do you call this ;
> First transmission of CWD to transgenic mice over-expressing bovine
prion protein gene (TgSB3985)
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping
up the future of prion research
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First
transmission of CWD to transgenic mice over-expressing bovine prion protein gene
(TgSB3985)
FORGOT TO ADD THIS ONE...
P.126: Successful transmission of chronic wasting disease (CWD) into mice
over-expressing bovine prion protein (TgSB3985)
Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana
Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1
1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of
California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA
Keywords: chronic wasting disease, transmission, transgenic mouse, bovine
prion protein
Background. CWD is a disease affecting wild and farmraised cervids in North
America. Epidemiological studies provide no evidence of CWD transmission to
humans. Multiple attempts have failed to infect transgenic mice expressing human
PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal
human PrPC in vitro provides additional evidence that transmission of CWD to
humans cannot be easily achieved. However, a concern about the risk of CWD
transmission to humans still exists. This study aimed to establish and
characterize an experimental model of CWD in TgSB3985 mice with the following
attempt of transmission to TgHu mice.
Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were
intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse
(CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly
injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD)
or elk (CWD/Elk). Animals were observed for clinical signs of neurological
disease and were euthanized when moribund. Brains and spleens were removed from
all mice for PrPCWD detection by Western blotting (WB). A histological analysis
of brains from selected animals was performed: brains were scored for the
severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain
regions.
Results. Clinical presentation was consistent with TSE. More than 90% of
TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres
in the brain but only mice in the latter group carried PrPCWD in their spleens.
We found evidence for co-existence or divergence of two CWD/ Tga20 strains based
on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk
or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen
by WB. However, on neuropathological examination we found presence of amyloid
plaques that stained positive for PrPCWD in three CWD/WTD- and two
CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and
CWD/Elkinfected mice were similar but unique as compared to profiles of BSE,
BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM
mice tested positive for PrPCWD by WB or by immunohistochemical detection.
Conclusions. To our knowledge, this is the first established experimental
model of CWD in TgSB3985. We found evidence for co-existence or divergence of
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice.
Finally, we observed phenotypic differences between cervid-derived CWD and
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway
to characterize these strains.
TSS
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF
THE STUDIES ON CWD TRANSMISSION TO CATTLE ;
CWD to cattle figures CORRECTION
Greetings,
I believe the statement and quote below is incorrect ;
"CWD has been transmitted to cattle after intracerebral inoculation,
although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This
finding raised concerns that CWD prions might be transmitted to cattle grazing
in contaminated pastures."
Please see ;
Within 26 months post inoculation, 12 inoculated animals had lost weight,
revealed abnormal clinical signs, and were euthanatized. Laboratory tests
revealed the presence of a unique pattern of the disease agent in tissues of
these animals. These findings demonstrate that when CWD is directly inoculated
into the brain of cattle, 86% of inoculated cattle develop clinical signs of the
disease.
" although the infection rate was low (4 of 13 animals [Hamir et al.
2001]). "
shouldn't this be corrected, 86% is NOT a low rate. ...
kindest regards,
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518
Thank you!
Thanks so much for your updates/comments. We intend to publish as rapidly
as possible all updates/comments that contribute substantially to the topic
under discussion.
re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author
Affiliations
1Institute for Neurodegenerative Diseases, University of California, San
Francisco, San Francisco, California 94143 2Department of Neurology, University
of California, San Francisco, San Francisco, California 94143 Correspondence:
stanley@ind.ucsf.edu
Mule deer, white-tailed deer, and elk have been reported to develop CWD. As
the only prion disease identified in free-ranging animals, CWD appears to be far
more communicable than other forms of prion disease. CWD was first described in
1967 and was reported to be a spongiform encephalopathy in 1978 on the basis of
histopathology of the brain. Originally detected in the American West, CWD has
spread across much of North America and has been reported also in South Korea.
In captive populations, up to 90% of mule deer have been reported to be positive
for prions (Williams and Young 1980). The incidence of CWD in cervids living in
the wild has been estimated to be as high as 15% (Miller et al. 2000). The
development of transgenic (Tg) mice expressing cervid PrP, and thus susceptible
to CWD, has enhanced detection of CWD and the estimation of prion titers
(Browning et al. 2004; Tamgüney et al. 2006). Shedding of prions in the feces,
even in presymptomatic deer, has been identified as a likely source of infection
for these grazing animals (Williams and Miller 2002; Tamgüney et al. 2009b). CWD
has been transmitted to cattle after intracerebral inoculation, although the
infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding
raised concerns that CWD prions might be transmitted to cattle grazing in
contaminated pastures.
snip...
----- Original Message -----
From: David Colby To: flounder9@verizon.net
Cc: stanley@XXXXXXXX
Sent: Tuesday, March 01, 2011 8:25 AM
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 +
Author Affiliations
Dear Terry Singeltary,
Thank you for your correspondence regarding the review article Stanley
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner
asked that I reply to your message due to his busy schedule. We agree that the
transmission of CWD prions to beef livestock would be a troubling development
and assessing that risk is important. In our article, we cite a peer-reviewed
publication reporting confirmed cases of laboratory transmission based on
stringent criteria. The less stringent criteria for transmission described in
the abstract you refer to lead to the discrepancy between your numbers and ours
and thus the interpretation of the transmission rate. We stand by our assessment
of the literature--namely that the transmission rate of CWD to bovines appears
relatively low, but we recognize that even a low transmission rate could have
important implications for public health and we thank you for bringing attention
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor
Department of Chemical Engineering University of Delaware
===========END...TSS==============
SNIP...SEE FULL TEXT ;
UPDATED DATA ON 2ND CWD STRAIN Wednesday, September 08, 2010 CWD PRION
CONGRESS SEPTEMBER 8-11 2010
Sunday, August 19, 2012
Susceptibility of cattle to the agent of chronic wasting disease from elk
after intracranial inoculation 2012
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Unit
Thursday, November 21, 2013
*** Assessing the susceptibility of transgenic mice over-expressing deer
prion protein to bovine spongiform encephalopathy
The present study was designed to assess the susceptibility of the
prototypic mouse line, Tg(CerPrP)1536+/- to bovine spongiform encephalopathy
(BSE) prions, which have the ability to overcome species barriers.
Tg(CerPrP)1536+/- mice challenged with red deer-adapted BSE resulted in a
90-100% attack rates, BSE from cattle failed to transmit, indicating agent
adaptation in the deer.
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
NOW, what is the latest on human risk factors to CWD strains ???
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
HD.13: CWD infection in the spleen of humanized transgenic mice
***These results indicate that the CWD prion may have the potential to
infect human peripheral lymphoid tissues.
Oral.15: Molecular barriers to zoonotic prion transmission: Comparison of
the ability of sheep, cattle and deer prion disease isolates to convert normal
human prion protein to its pathological isoform in a cell-free system
***However, they also show that there is no absolute barrier to conversion of
human prion protein in the case of chronic wasting disease.
PRION2013 CONGRESSIONAL ABSTRACTS CWD
Sunday, August 25, 2013
***Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood,
and mother to offspring transmission
there is in fact evidence that the potential for cwd transmission to humans
can NOT be ruled out.
I thought your readers and hunters and those that consume the venison,
should have all the scientific facts, personally, I don’t care what you eat, but
if it effects me and my family down the road, it should then concern everyone,
and the potential of iatrogenic transmission of the TSE prion is real i.e.
‘friendly fire’, medical, surgical, dental, blood, tissue, and or products there
from...like deer antler velvet and TSE prions and nutritional supplements there
from, all a potential risk factor that should not be ignored or silenced. ...
the prion gods at the cdc state that there is ;
''no strong evidence''
but let's see exactly what the authors of this cwd to human at the cdc
state ;
now, let’s see what the authors said about this casual link, personal
communications years ago. see where it is stated NO STRONG evidence. so, does
this mean there IS casual evidence ????
“Our conclusion stating that we found no strong evidence of CWD
transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To:
Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached
to your email), we did not say CWD in humans will present like variant CJD.
That assumption would be wrong. I encourage you to read the whole article
and call me if you have questions or need more clarification (phone:
404-639-3091). Also, we do not claim that "no-one has ever been infected with
prion disease from eating venison." Our conclusion stating that we found no
strong evidence of CWD transmission to humans in the article you quoted or in
any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From:
Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease
2008 1: Vet Res. 2008 Apr 3;39(4):41
A prion disease of cervids: Chronic wasting disease
Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported
to the Surveillance Center***,
snip...
full text ;
***********CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb***********
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL
REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases
and controls. For both of these meats there was evidence of a trend with
increasing frequency of consumption being associated with increasing risk of
CJD. (not nvCJD, but sporadic CJD...tss)
These associations were largely unchanged when attention was restricted to
pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating
and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to
be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate.
There is no strong evidence that eating veal less than once per year is
associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY
OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker
(p = 0.14). When only controls for whom a relative was interviewed are included,
this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another
exposure, the association between veal and CJD remained statistically
significant (p = < 0.05 for all exposures), while the other exposures ceased
to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical
associations between various meats/animal products and INCREASED RISK OF CJD.
When some account was taken of possible confounding, the association between
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS
STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an
increased risk of CJD, including liver consumption which was associated with an
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3
studies in relation to this particular dietary factor, the risk of liver
consumption became non-significant with an odds ratio of 1.2 (PERSONAL
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
Thursday, October 10, 2013
*************CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb**************
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge
Spencers Lane BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third
annual report from the CJD Surveillance Unit. I am sorry that you are
dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the
Department of Health is committed to publishing their reports as soon as they
become available. In the circumstances it is not the practice to circulate the
report for comment since the findings of the report would not be amended. In
future we can ensure that the British Deer Farmers Association receives a copy
of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed
of the results of any research in respect of CJD. This report was entirely the
work of the unit and was produced completely independantly of the the
Department.
The statistical results reqarding the consumption of venison was put into
perspective in the body of the report and was not mentioned at all in the press
release. Media attention regarding this report was low key but gave a realistic
presentation of the statistical findings of the Unit. This approach to
publication was successful in that consumption of venison was highlighted only
once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical
links between CJD and consumption of venison, would increase, and quite possibly
give damaging credence, to the whole issue. From the low key media reports of
which I am aware it seems unlikely that venison consumption will suffer
adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** our results raise the possibility that CJD cases classified as VV1 may
include cases caused by iatrogenic transmission of sCJD-MM1 prions or food-borne
infection by type 1 prions from animals, e.g., chronic wasting disease prions in
cervid. In fact, two CJD-VV1 patients who hunted deer or consumed venison have
been reported (40, 41). The results of the present study emphasize the need for
traceback studies and careful re-examination of the biochemical properties of
sCJD-VV1 prions. ***
snip...see full text ;
Thursday, January 2, 2014
*** CWD TSE Prion in cervids to hTGmice, Heidenhain Variant
Creutzfeldt-Jacob Disease MM1 genotype, and iatrogenic CJD ??? ***
*** We hypothesize that both BSE prions and CWD prions passaged through
felines will seed human recPrP more efficiently than BSE or CWD from the
original hosts, evidence that the new host will dampen the species barrier
between humans and BSE or CWD. The new host effect is particularly relevant as
we investigate potential means of trans-species transmission of prion disease.
Monday, August 8, 2011
*** Susceptibility of Domestic Cats to CWD Infection ***
Oral.29: Susceptibility of Domestic Cats to CWD Infection
Amy Nalls, Nicholas J. Haley, Jeanette Hayes-Klug, Kelly Anderson, Davis M.
Seelig, Dan S. Bucy, Susan L. Kraft, Edward A. Hoover and Candace K.
Mathiason†
Colorado State University; Fort Collins, CO USA†Presenting author; Email:
ckm@lamar.colostate.edu
Domestic and non-domestic cats have been shown to be susceptible to one
prion disease, feline spongiform encephalopathy (FSE), thought to be transmitted
through consumption of bovine spongiform encephalopathy (BSE) contaminated meat.
Because domestic and free ranging felids scavenge cervid carcasses, including
those in CWD affected areas, we evaluated the susceptibility of domestic cats to
CWD infection experimentally. Groups of n = 5 cats each were inoculated either
intracerebrally (IC) or orally (PO) with CWD deer brain homogenate. Between
40–43 months following IC inoculation, two cats developed mild but progressive
symptoms including weight loss, anorexia, polydipsia, patterned motor behaviors
and ataxia—ultimately mandating euthanasia. Magnetic resonance imaging (MRI) on
the brain of one of these animals (vs. two age-matched controls) performed just
before euthanasia revealed increased ventricular system volume, more prominent
sulci, and T2 hyperintensity deep in the white matter of the frontal hemisphere
and in cortical grey distributed through the brain, likely representing
inflammation or gliosis. PrPRES and widely distributed peri-neuronal vacuoles
were demonstrated in the brains of both animals by immunodetection assays. No
clinical signs of TSE have been detected in the remaining primary passage cats
after 80 months pi. Feline-adapted CWD was sub-passaged into groups (n=4 or 5)
of cats by IC, PO, and IP/SQ routes. Currently, at 22 months pi, all five IC
inoculated cats are demonstrating abnormal behavior including increasing
aggressiveness, pacing, and hyper responsiveness.
*** Two of these cats have developed rear limb ataxia. Although the limited
data from this ongoing study must be considered preliminary, they raise the
potential for cervid-to-feline transmission in nature.
AD.63:
Susceptibility of domestic cats to chronic wasting disease
Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin
Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1 1Colorado
State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN
USA
Domestic and nondomestic cats have been shown to be susceptible to feline
spongiform encephalopathy (FSE), almost certainly caused by consumption of
bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and
free-ranging nondomestic felids scavenge cervid carcasses, including those in
areas affected by chronic wasting disease (CWD), we evaluated the susceptibility
of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5
cats each were inoculated either intracerebrally (IC) or orally (PO) with
CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated
cats developed signs consistent with prion disease, including a stilted gait,
weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail
tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from
these two cats were pooled and inoculated into cohorts of cats by IC, PO, and
intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted
CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased
incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the
symptomatic cats by western blotting and immunohistochemistry and abnormalities
were seen in magnetic resonance imaging, including multifocal T2 fluid
attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size
increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4
IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns
consistent with the early stage of feline CWD.
*** These results demonstrate that CWD can be transmitted and adapted to
the domestic cat, thus raising the issue of potential cervid-to- feline
transmission in nature.
www.landesbioscience.com
PO-081: Chronic wasting disease in the cat— Similarities to feline
spongiform encephalopathy (FSE)
FELINE SPONGIFORM ENCEPHALOPATHY FSE
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and
Interstate Movement of Farmed or Captive Deer, Elk, and Moose
DOCUMENT ID: APHIS-2006-0118-0411
***Singeltary submission
Docket No. 00-108-10 Chronic Wasting Disease Herd Certification Program and
Interstate Movement of Farmed or Captive Deer, Elk, and Moose; Program
Standards
>>>The CWD herd certification program is a voluntary, cooperative
program that establishes minimum requirements for the interstate movement of
farmed or captive cervids, provisions for participating States to administer
Approved State CWD Herd Certification Programs, and provisions for participating
herds to become certified as having a low risk of being infected with
CWD<<<
Greetings USDA/APHIS et al,
I kindly would like to comment on Docket No. 00-108-10 Chronic Wasting
Disease Herd Certification Program and Interstate Movement of Farmed or Captive
Deer, Elk, and Moose; Program Standards.
I believe, and in my opinion, and this has been proven by scientific facts,
that without a validated and certified test for chronic wasting disease cwd,
that is 100% sensitive, and in use, any voluntary effort will be futile. the
voluntary ban on mad cow feed and SRMs have failed terribly, the bse mad cow
surveillance program has failed terribly, as well as the testing for bse tse
prion in cattle, this too has failed terrible. all this has been proven time and
time again via OIG reports and GOA reports.
I believe that until this happens, 100% cwd testing with validated test,
ALL MOVEMENT OF CERVIDS BETWEEN STATES MUST BE BANNED, AND THE BORDERS CLOSED TO
INTERSTATE MOVEMENT OF CERVIDS. there is simply to much at risk.
In my opinion, and the opinions of many scientists and DNR officials, that
these so called game farms are the cause of the spreading of chronic wasting
disease cwd through much negligence. the game farms in my opinion are not the
only cause, but a big factor. I kindly wish to submit the following to show what
these factors are, and why interstate movement of cervids must be banned.
...
snip...see full text and PDF ATTACHMENT HERE ;
Sunday, June 23, 2013
National Animal Health Laboratory Network Reorganization Concept Paper
(Document ID APHIS-2012-0105-0001)
***Terry S. Singeltary Sr. submission
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population CWD TSE PRION
disease in cervids
***SINGELTARY SUBMISSION
The Scottish Parliament’s Rural Affairs, Climate Change and Environment
Committee has been looking into deer management, as you can see from the
following press release,
***and your email has been forwarded to the committee for information:
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population
Sunday, July 21, 2013
Welsh Government and Food Standards Agency Wales Joint Public Consultation
on the Proposed Transmissible Spongiform Encephalopathies (Wales) Regulations
2013
*** Singeltary Submission WG18417
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
Tuesday, October 07, 2014
Wisconsin white-tailed deer tested positive for CWD on a Richland County
breeding farm, and a case of CWD has been discovered on a Marathon County
hunting preserve
Thursday, October 02, 2014
IOWA TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE
RELEASED 79.8 percent of the deer tested positive for the disease
Tuesday, October 21, 2014
Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer
Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE
Friday, October 17, 2014
Missouri Final action on Orders of Rule making Breeders and Big Game
Hunting Preserves
Saturday, October 18, 2014
Chronic wasting disease threatens Canadian agriculture, Alberta MLA
says
Thursday, October 23, 2014
FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE PRESERVE
IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF INDIANA
SOUTH BEND DIVISION UNITED STATES OF AMERICA, vs. RUSSELL G. BELLAR, Defendant.
___________________________
)))))))))
Cause No.: 3:04cr00068-AS South Bend, Indiana January 4, 2005 9:30 a.m.
TRANSCRIPT EXCERPT OF JURY TRIAL (TESTIMONY OF: RONNIE DUNN AND RUSTY CAMP)
BEFORE THE HONORABLE ALLEN SHARP
snip...
Ronnie Dunn Cross Examination
Q. Mr. Dunn, at one point I believe you told the federal agents that Mr.
Bellar told you that this was a private deer farm and shooting deer on that farm
was like slaughtering cattle; is that correct?
A. I don't know if I used the word "slaughter," but it was, yeah, like
that.
Q. You don't know if that was your word, "slaughtering cattle"?
A. I don't know that.
Q. Well, did he give you the idea of killing cattle?
A. Yes, it was the same principle.
snip...
see full text ;
BUCK FEVER
Thursday, July 03, 2014
*** How Chronic Wasting Disease is affecting deer population and what’s the
risk to humans and pets?
Tuesday, July 01, 2014
*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND
POTENTIAL RISK FACTORS THERE FROM
TSS
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home