Friday, January 16, 2015

Indiana SENATE BILL No. 442 Miller Pete Hunting wildlife Removes exotic mammals from the animals that may be propagated or offered for hunting at a shooting preserve Makes it a Class C misdemeanor

SENATE BILL No. 442

 _____

 
DIGEST OF INTRODUCED BILL

 

Citations Affected: IC 14-8-2; IC 14-22.

 

Synopsis: Hunting wildlife. Removes exotic mammals from the animals that may be propagated or offered for hunting at a shooting preserve. Makes it a Class C misdemeanor to:

 

(1) engage in computer assisted remote hunting or provide or operate a computer assisted remote hunting facility;

 

(2) use an unmanned aerial vehicle to search for, scout, locate, or detect wildlife as an aid to hunt or take wildlife;

 

(3) release from confinement a wild mammal for the purpose of taking the wild mammal; or

 

(4) offer for sale the taking of a wild mammal that is kept or confined on private property. Removes references to exotic mammal from laws regulating game birds and exotic mammals.

 

Effective: Upon passage.

 

Miller Pete

 

January 12, 2015, read first time and referred to Committee on Natural Resources.

 

2015 IN 442—LS 6965/DI 77

 

Introduced

 

First Regular Session 119th General Assembly (2015)

 

PRINTING CODE. Amendments: Whenever an existing statute (or a section of the Indiana Constitution) is being amended, the text of the existing provision will appear in this style type, additions will appear in this style type, and deletions will appear in this style type. Additions: Whenever a new statutory provision is being enacted (or a new constitutional provision adopted), the text of the new provision will appear in this style type. Also, the word NEW will appear in that style type in the introductory clause of each SECTION that adds a new provision to the Indiana Code or the Indiana Constitution.

 

Conflict reconciliation: Text in a statute in this style type or this style type reconciles conflicts between statutes enacted by the 2014 Regular Session and 2014 Second Regular Technical Session of the General Assembly.

 

SENATE BILL No. 442

 

A BILL FOR AN ACT to amend the Indiana Code concerning natural and cultural resources.

 

Be it enacted by the General Assembly of the State of Indiana:

 

 

1 SECTION 1. IC 14-8-2-50.4 IS ADDED TO THE INDIANA CODE

2 AS A NEW SECTION TO READ AS FOLLOWS [EFFECTIVE

3 UPON PASSAGE]: Sec. 50.4. "Computer assisted remote hunting",

4 for purposes of IC 14-22-6-15, has the meaning set forth in

5 IC 14-22-6-15(a).

6 SECTION 2. IC 14-8-2-50.6 IS ADDED TO THE INDIANA CODE

7 AS A NEW SECTION TO READ AS FOLLOWS [EFFECTIVE

8 UPON PASSAGE]: Sec. 50.6. "Computer assisted remote hunting

9 facility", for purposes of IC 14-22-6-15, has the meaning set forth

10 in IC 14-22-6-15(b).

11 SECTION 3. IC 14-8-2-278 IS AMENDED TO READ AS

12 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 278. "Take" has the

13 following meaning:

14 (1) For purposes of IC 14-22, except as provided in subdivision

15 subdivisions (2) and (3):

16 (A) to kill, shoot, spear, gig, catch, trap, harm, harass, or

2015 IN 442—LS 6965/DI 77

 

2

 

1 pursue a wild animal; or

2 (B) to attempt to engage in such conduct.

3 (2) For purposes of IC 14-22-6-16, the meaning set forth in

4 IC 14-22-6-16(b).

5 (2) (3) For purposes of IC 14-22-34, the meaning set forth in

6 IC 14-22-34-5.

7 SECTION 4. IC 14-8-2-320.5 IS ADDED TO THE INDIANA

8 CODE AS A NEW SECTION TO READ AS FOLLOWS

9 [EFFECTIVE UPON PASSAGE]: Sec. 320.5. "Wild mammal", for

10 purposes of IC 14-22-6-17, has the meaning set forth in

11 IC 14-22-6-17(c).

12 SECTION 5. IC 14-22-6-15 IS ADDED TO THE INDIANA CODE

13 AS A NEW SECTION TO READ AS FOLLOWS [EFFECTIVE

14 UPON PASSAGE]: Sec. 15. (a) As used in this section, "computer

15 assisted remote hunting" means the use of a computer or any other

16 device, equipment, or software to remotely control the aiming and

17 discharge of a bow, crossbow, or firearm for the purpose of taking

18 wildlife.

19 (b) As used in this section, "computer assisted remote hunting

20 facility" means the real property and improvements on the

21 property associated with computer assisted remote hunting,

22 including hunting blinds, offices, and rooms equipped to facilitate

23 computer assisted remote hunting.

24 (c) A person may not knowingly:

25 (1) engage in computer assisted remote hunting; or

26 (2) provide or operate a computer assisted remote hunting

27 facility.

28 SECTION 6. IC 14-22-6-16 IS ADDED TO THE INDIANA CODE

29 AS A NEW SECTION TO READ AS FOLLOWS [EFFECTIVE

30 UPON PASSAGE]: Sec. 16. (a) This section does not apply to the

31 following:

32 (1) Employees or agents of a governmental entity while

33 performing official duties.

34 (2) Employees or agents of an educational or research

35 institution acting for bona fide educational or scientific

36 purposes.

37 (3) Use of an unmanned aerial vehicle to assist, provide care

38 for, or provide veterinary treatment to specific wildlife.

39 (b) As used in this section, "take" means to:

40 (1) kill, shoot, spear, harm, catch for the purpose of killing,

41 trap for the purpose of killing, or pursue for the purpose of

42 killing wildlife; or

2015 IN 442—LS 6965/DI 77

 

3

 

1 (2) attempt to engage in conduct under subdivision (1).

2 (c) A person may not knowingly use an unmanned aerial vehicle

3 (as defined by IC 35-33-5-0.5(7)) to search for, scout, locate, or

4 detect wildlife as an aid to take the wildlife.

5 SECTION 7. IC 14-22-6-17 IS ADDED TO THE INDIANA CODE

6 AS A NEW SECTION TO READ AS FOLLOWS [EFFECTIVE

7 UPON PASSAGE]: Sec. 17. (a) This section does not prohibit a

8 person from taking a wild mammal under IC 14-22-2, IC 14-22-28,

9 or any other law that allows the taking of a wild mammal.

10 (b) This section does not prohibit an activity expressly

11 authorized by federal law.

12 (c) As used in this section, "wild mammal" means a species of

13 mammal that is wild or feral, whether captive bred or wild born.

14 The term does not include feral cats.

15 (d) A person may not knowingly or intentionally do any of the

16 following:

17 (1) Release from confinement a wild mammal for the purpose

18 of taking the wild mammal.

19 (2) Offer for sale the taking of a wild mammal that is kept or

20 confined on private property.

21 SECTION 8. IC 14-22-31-4 IS AMENDED TO READ AS

22 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 4. Upon receipt of

23 an application, the department shall do the following:

24 (1) Inspect the following:

25 (A) The proposed shooting preserve.

26 (B) The facilities for propagating the game birds. or exotic

27 mammals.

28 (C) The cover.

29 (D) The capability of the applicant to maintain such an

30 operation.

31 (2) If found feasible, approve the application and issue a license

32 to the applicant.

33 SECTION 9. IC 14-22-31-7 IS AMENDED TO READ AS

34 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 7. A person issued

35 a license under section 4 of this chapter may propagate and offer for

36 hunting the following animals that are captive reared and released

37 (1) pheasant, quail, chukar partridges, properly marked mallard

38 ducks, and other game bird species that the department

39 determines by rule.

40 (2) Species of exotic mammals that the department determines by

41 rule.

42 SECTION 10. IC 14-22-31-8, AS AMENDED BY P.L.289-2013,

2015 IN 442—LS 6965/DI 77

 

4

 

1 SECTION 15, IS AMENDED TO READ AS FOLLOWS [EFFECTIVE

2 UPON PASSAGE]: Sec. 8. (a) An individual may not take game birds

3 and exotic mammals on a shooting preserve unless the individual has

4 a hunting license required under this article, except nonresidents of

5 Indiana, who must possess a special license issued by the department

6 under this section to shoot on licensed shooting preserves.

7 (b) The department:

8 (1) shall issue special licenses described in subsection (a); and

9 (2) may appoint owners or managers of shooting preserves as

10 agents to sell the special licenses.

11 (c) A special license expires April 30 immediately following the

12 date the license is effective.

13 (d) The fee for a special license issued under this section is equal to

14 the fee for a resident annual hunting license under IC 14-22-12-1(a)(2).

15 All fees collected under this section shall be deposited in the fish and

16 wildlife fund.

17 SECTION 11. IC 14-22-31-10 IS AMENDED TO READ AS

18 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 10. The licensee of

19 a shooting preserve shall issue a bill of sale designating game birds or

20 exotic mammals lawfully taken upon the shooting preserve. The bill of

21 sale must accompany all game birds and exotic mammals removed

22 from the shooting preserve. The licensee shall retain a copy of all bills

23 of sale issued to persons removing game birds or exotic mammals from

24 the shooting preserve. The bills of sale are subject to inspection by the

25 fish and wildlife division department at any time.

26 SECTION 12. IC 14-22-32-1 IS AMENDED TO READ AS

27 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 1. This chapter

28 does not apply to the following:

29 (1) Conservation officers or other law enforcement officers.

30 (2) Game birds or exotic mammals in shooting preserves licensed

31 under IC 14-22-31.

32 (3) A person who takes a feral exotic mammal when the feral

33 exotic mammal is causing damage to property that is owned or

34 leased by the person.

35 (4) A person who is authorized by the department under

36 extraordinary circumstances to take an exotic mammal.

37 SECTION 13. IC 14-22-32-2 IS AMENDED TO READ AS

38 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 2. A person may

39 not do any of the following:

40 (1) Offer a game bird or an exotic mammal for hunting, trapping,

41 or chasing by a person using a weapon or device that is not a

42 shotgun, muzzle loading gun, handgun, or bow and arrow.

2015 IN 442—LS 6965/DI 77

 

5

 

1 (2) Hunt, trap, or chase a game bird or an exotic mammal with a

2 weapon or device that is not a shotgun, muzzle loading gun,

3 handgun, or bow and arrow.

4 SECTION 14. IC 14-22-32-5 IS AMENDED TO READ AS

5 FOLLOWS [EFFECTIVE UPON PASSAGE]: Sec. 5. If a person

6 violates section 2(1) of this chapter, the department shall enter a

7 recommended order to dispose of any game bird or exotic mammal the

8 person owns, keeps, harbors, or otherwise possesses. Before the order

9 becomes a final determination of the department, a hearing must be

10 held under IC 4-21.5-3. The hearing shall be conducted by an

11 administrative law judge for the commission. The determination of the

12 administrative law judge is a final agency action under IC 4-21.5-1-6.

13 SECTION 15. An emergency is declared for this act.

2015 IN 442—LS 6965/DI 77

 


 

 

for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;

 

===========================================

 

spreading cwd around...

 

Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.

 

***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.

 


 

spreading cwd around...

 

Friday, May 13, 2011

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea

 

Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.

 

On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.

 

All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.

 

Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.

 

Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.

 

Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).

 

In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.

 

Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.

 

All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.

 

Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.

 

In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.

 

In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.

 


 


 


 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 

snip...

 

In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

 

Animals considered at high risk for CWD include:

 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

 

snip...

 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

 

snip...

 

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

 

snip...

 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

 

snip...

 

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

 

snip...

 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

 

snip...

 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

 

Thursday, January 15, 2015

 

*** INDIANA HB1453 - high fence hunting preserve bill has been introduced by Rep. Sean Eberhart and he received monetary contribution from Indiana Deer and Elk Farmers Advocates INC.

 


 

 

Wednesday, December 31, 2014

 

NASDA BSE, CWD, SCRAPIE, TSE, PRION, Policy Statements updated with amendments passed during the NASDA Annual Meeting Updated September 18, 2014

 


 

 

Sunday, December 28, 2014

 

CHRONIC WASTING DISEASE CWD TSE PRION DISEASE AKA MAD DEER DISIEASE USDA USAHA INC DECEMBER 28, 2014

 


 

 

Saturday, October 25, 2014

 

118th USAHA Annual Meeting CWD and Captive Cerivds

 


 

how much is it worth to find cwd on a game farm, and how much does it cost the state and or tax payers to clean it up ?

 

 

Tuesday, December 20, 2011

 

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011

 

The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

 

SUMMARY:

 


 

For Immediate Release

 

Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected

 

CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.

 

On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.

 

The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.

 

The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.

 

Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.

 

Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.

 

The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.

 

-30-

 


 

*** see history of this CWD blunder here ;

 


 

18. On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had been cut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened; and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.

 


 

Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip...

 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

*** We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

*** The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

PRION 2014 CONFERENCE

 

CHRONIC WASTING DISEASE CWD

 

A FEW FINDINGS ;

 

Conclusions. To our knowledge, this is the first established experimental model of CWD in TgSB3985. We found evidence for co-existence or divergence of two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. Finally, we observed phenotypic differences between cervid-derived CWD and CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway to characterize these strains.

 

We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

Our data establish that meadow voles are permissive to CWD via peripheral exposure route, suggesting they could serve as an environmental reservoir for CWD. Additionally, our data are consistent with the hypothesis that at least two strains of CWD circulate in naturally-infected cervid populations and provide evidence that meadow voles are a useful tool for CWD strain typing.

 

Conclusion. CWD prions are shed in saliva and urine of infected deer as early as 3 months post infection and throughout the subsequent >1.5 year course of infection. In current work we are examining the relationship of prionemia to excretion and the impact of excreted prion binding to surfaces and particulates in the environment.

 

Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) are shed in urine of infected deer as early as 6 months post inoculation and throughout the subsequent disease course. Further studies are in progress refining the real-time urinary prion assay sensitivity and we are examining more closely the excretion time frame, magnitude, and sample variables in relationship to inoculation route and prionemia in naturally and experimentally CWD-infected cervids.

 

Conclusions. Our results suggested that the odds of infection for CWD is likely controlled by areas that congregate deer thus increasing direct transmission (deer-to-deer interactions) or indirect transmission (deer-to-environment) by sharing or depositing infectious prion proteins in these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely controlled by separate factors than found in the Midwestern and endemic areas for CWD and can assist in performing more efficient surveillance efforts for the region.

 

Conclusions. During the pre-symptomatic stage of CWD infection and throughout the course of disease deer may be shedding multiple LD50 doses per day in their saliva. CWD prion shedding through saliva and excreta may account for the unprecedented spread of this prion disease in nature.

 

see full text and more ;

 

Monday, June 23, 2014

 

*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD

 


 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

 


 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

 


 

Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

 


 

A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing

 


 

Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

 


 

PPo4-4:

 

Survival and Limited Spread of TSE Infectivity after Burial

 

PPo4-4:

 

Survival and Limited Spread of TSE Infectivity after Burial

 

Karen Fernie, Allister Smith and Robert A. Somerville The Roslin Institute and R(D)SVS; University of Edinburgh; Roslin, Scotland UK

 

Scrapie and chronic wasting disease probably spread via environmental routes, and there are also concerns about BSE infection remaining in the environment after carcass burial or waste 3disposal. In two demonstration experiments we are determining survival and migration of TSE infectivity when buried for up to five years, as an uncontained point source or within bovine heads. Firstly boluses of TSE infected mouse brain were buried in lysimeters containing either sandy or clay soil. Migration from the boluses is being assessed from soil cores taken over time. With the exception of a very small amount of infectivity found 25 cm from the bolus in sandy soil after 12 months, no other infectivity has been detected up to three years. Secondly, ten bovine heads were spiked with TSE infected mouse brain and buried in the two soil types. Pairs of heads have been exhumed annually and assessed for infectivity within and around them. After one year and after two years, infectivity was detected in most intracranial samples and in some of the soil samples taken from immediately surrounding the heads. The infectivity assays for the samples in and around the heads exhumed at years three and four are underway. These data show that TSE infectivity can survive burial for long periods but migrates slowly. Risk assessments should take into account the likely long survival rate when infected material has been buried.

 

The authors gratefully acknowledge funding from DEFRA.

 


 


 

 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

 

when an industry is catering to the public, with products which can risk human and animal health, in my opinion, you should have NO property rights. you should not be able to hide behind property rights when you are clearly risking human and animal health from your product, or the way you handle that product. if you are going to raise, grow, produce a product for the consumer, you have an obligation NOT to risk the public domain, public property, and or the wild animal populations. just my opinion, I still have that right in 2015. ...

 

 

TSS

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home