West Virginia House Passes Senate Bill 237 Creating Cervid Farming Act Giving USDA Authority
Here's your sign...
Thursday, February 12, 2015 - 03:04 PM
House Passes Bill Creating Cervid Farming Act
Today marks the 30th day of the 82nd Legislature. The House met to pass the
Captive Cervid Farming Act and House Bill 2247. Senate Bill 237 will create a
Captive Cervid Farming Act.
WV House of Delegates passed Captive Cervid Farming Act
Legislative Session: 2015(RS) LAST ACTION: H Communicated to Senate
02/12/15 SUMMARY: Creating Captive Cervid Farming Act LEAD SPONSOR: D. Hall
SPONSORS: Romano, Snyder, Facemire, Williams BILL TEXT: Bill Definitions ? [PDF]
BILLS - FINAL ? Committee Substitute File Updated - (01/27/2015) BILL DRAFTING
BILLS ? Committee Substitute (1) - html | pdf | wpd Introduced Version - html |
pdf | wpd
WV House of Delegates passed Captive Cervid Farming Act
Posted: Feb 12, 2015 2:23 PM CST
Updated: Feb 12, 2015 2:43 PM CST
By Erin Timony etimony@statejournal.com
In an 88-12 vote, the House of Delegates passed Senate Bill 237, the
Captive Cervid Farming Act on the House floor Feb. 12.
Under the proposed bill, the Department of Agriculture, rather than the
West Virginia Division of Natural Resources, would oversee the Cervid, or deer,
Farming regulations.
Under an amendment by Delegate Bill Anderson, R-Wood, Delegate Larry
Williams, D-Preston and Delegate Brent Boggs, D-Braxton, potential cervid
livestock could not be have had chronic wasting disease or any other disease
five years prior.
Boggs spoke against the bill, voicing potential health issues and disease
that could be spread by the livestock. He also suggested the Division of Natural
Resources and Department of Agriculture gradually work together until full
authority is transferred to the Department of Agriculture. ...snip...see ;
Sunday, June 29, 2014
Chronic wasting disease spreads in West Virginia
Wednesday, February 15, 2012
West Virginia Deer Farming Bill backed by deer farmers advances, why ? BE
WARNED CWD
***please read this***
98 | Veterinary Record | January 24, 2015
EDITORIAL
Scrapie: a particularly persistent pathogen
Cristina Acín
Resistant prions in the environment have been the sword of Damocles for
scrapie control and eradication. Attempts to establish which physical and
chemical agents could be applied to inactivate or moderate scrapie infectivity
were initiated in the 1960s and 1970s,with the first study of this type focusing
on the effect of heat treatment in reducing prion infectivity (Hunter and
Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate
the prion protein are based on the method developed by Kimberlin and
collaborators (1983). This procedure consists of treatment with 20,000 parts per
million free chlorine solution, for a minimum of one hour, of all surfaces that
need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so
on). Despite this, veterinarians and farmers may still ask a range of questions,
such as ‘Is there an official procedure published somewhere?’ and ‘Is there an
international organisation which recommends and defines the exact method of
scrapie decontamination that must be applied?’
From a European perspective, it is difficult to find a treatment that could
be applied, especially in relation to the disinfection of surfaces in lambing
pens of affected flocks. A 999/2001 EU regulation on controlling spongiform
encephalopathies (European Parliament and Council 2001) did not specify a
particular decontamination measure to be used when an outbreak of scrapie is
diagnosed. There is only a brief recommendation in Annex VII concerning the
control and eradication of transmissible spongiform encephalopathies (TSE
s).
Chapter B of the regulation explains the measures that must be applied if
new caprine animals are to be introduced to a holding where a scrapie outbreak
has previously been diagnosed. In that case, the statement indicates that
caprine animals can be introduced ‘provided that a cleaning and disinfection of
all animal housing on the premises has been carried out following
destocking’.
Issues around cleaning and disinfection are common in prion prevention
recommendations, but relevant authorities, veterinarians and farmers may have
difficulties in finding the specific protocol which applies. The European Food
and Safety Authority (EFSA ) published a detailed report about the efficacy of
certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and
even a formulation of copper or iron metal ions in combination with hydrogen
peroxide, against prions (EFSA 2009). The report was based on scientific
evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006,
Solassol and others 2006) but unfortunately the decontamination measures were
not assessed under outbreak conditions.
The EFSA Panel on Biological Hazards recently published its conclusions on
the scrapie situation in the EU after 10 years of monitoring and control of the
disease in sheep and goats (EFSA 2014), and one of the most interesting findings
was the Icelandic experience regarding the effect of disinfection in scrapie
control. The Icelandic plan consisted of: culling scrapie-affected sheep or the
whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of
stables, sheds, barns and equipment with high pressure washing followed by
cleaning with 500 parts per million of hypochlorite; drying and treatment with
300 ppm of iodophor; and restocking was not permitted for at least two years.
Even when all of these measures were implemented, scrapie recurred on several
farms, indicating that the infectious agent survived for years in the
environment, even as many as 16 years after restocking (Georgsson and others
2006).
In the rest of the countries considered in the EFSA (2014) report,
recommendations for disinfection measures were not specifically defined at the
government level. In the report, the only recommendation that is made for sheep
is repopulation with sheep with scrapie-resistant genotypes. This reduces the
risk of scrapie recurrence but it is difficult to know its effect on the
infection.
Until the EFSA was established (in May 2003), scientific opinions about TSE
s were provided by the Scientific Steering Committee (SSC) of the EC, whose
advice regarding inactivation procedures focused on treating animal waste at
high temperatures (150°C for three hours) and high pressure alkaline hydrolysis
(SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory
Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe
working and the prevention of TSE infection. Annex C of the ACDP report
established that sodium hypochlorite was considered to be effective, but only if
20,000 ppm of available chlorine was present for at least one hour, which has
practical limitations such as the release of chlorine gas, corrosion,
incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its
active chemicals and the stability of dilutions (ACDP 2009).
In an international context, the World Organisation for Animal Health (OIE)
does not recommend a specific disinfection protocol for prion agents in its
Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General
recommendations on disinfection and disinsection (OIE 2014), focuses on
foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on
prion disinfection. Nevertheless, the last update published by the OIE on bovine
spongiform encephalopathy (OIE 2012) indicates that few effective
decontamination techniques are available to inactivate the agent on surfaces,
and recommends the removal of all organic material and the use of sodium
hydroxide, or a sodium hypochlorite solution containing 2 per cent available
chlorine, for more than one hour at 20ºC.
The World Health Organization outlines guidelines for the control of TSE s,
and also emphasises the importance of mechanically cleaning surfaces before
disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO
1999).
Finally, the relevant agencies in both Canada and the USA suggest that the
best treatments for surfaces potentially contaminated with prions are sodium
hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution,
while most commercial household bleaches contain 5.25 per cent sodium
hypochlorite. It is therefore recommended to dilute one part 5.25 per cent
bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency
2013).
So what should we do about disinfection against prions? First, it is
suggested that a single protocol be created by international authorities to
homogenise inactivation procedures and enable their application in all
scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available
chlorine seems to be the procedure used in most countries, as noted in a paper
summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015).
But are we totally sure of its effectiveness as a preventive measure in a
scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease
be needed?
What we can conclude is that, if we want to fight prion diseases, and
specifically classical scrapie, we must focus on the accuracy of diagnosis,
monitoring and surveillance; appropriate animal identification and control of
movements; and, in the end, have homogeneous and suitable protocols to
decontaminate and disinfect lambing barns, sheds and equipment available to
veterinarians and farmers. Finally, further investigations into the resistance
of prion proteins in the diversity of environmental surfaces are required.
References
snip...
98 | Veterinary Record | January 24, 2015
Persistence of ovine scrapie infectivity in a farm environment following
cleaning and decontamination
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc
MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C.
Maddison, BSc, PhD3 + Author Affiliations
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey
KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of
Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS
UK, School of Veterinary Medicine and Science, The University of Nottingham,
Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for
correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and
chronic wasting disease of deer/elk are contagious prion diseases where
environmental reservoirs are directly implicated in the transmission of disease.
In this study, the effectiveness of recommended scrapie farm decontamination
regimens was evaluated by a sheep bioassay using buildings naturally
contaminated with scrapie. Pens within a farm building were treated with either
20,000 parts per million free chorine solution for one hour or were treated with
the same but were followed by painting and full re-galvanisation or replacement
of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype
VRQ/VRQ were reared within these pens and their scrapie status was monitored by
recto-anal mucosa-associated lymphoid tissue. All animals became infected over
an 18-month period, even in the pen that had been subject to the most stringent
decontamination process. These data suggest that recommended current guidelines
for the decontamination of farm buildings following outbreaks of scrapie do
little to reduce the titre of infectious scrapie material and that environmental
recontamination could also be an issue associated with these premises.
SNIP...
Discussion
Thorough pressure washing of a pen had no effect on the amount of
bioavailable scrapie infectivity (pen B). The routine removal of prions from
surfaces within a laboratory setting is treatment for a minimum of one hour with
20,000 ppm free chlorine, a method originally based on the use of brain
macerates from infected rodents to evaluate the effectiveness of decontamination
(Kimberlin and others 1983). Further studies have also investigated the
effectiveness of hypochlorite disinfection of metal surfaces to simulate the
decontamination of surgical devices within a hospital setting. Such treatments
with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower
than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous
treatment of the pen surfaces did not effectively remove the levels of scrapie
infectivity over that of the control pens, indicating that this method of
decontamination is not effective within a farm setting. This may be due to the
high level of biological matrix that is present upon surfaces within the farm
environment, which may reduce the amount of free chlorine available to
inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had
also became scrapie positive within nine months, with all animals in this pen
being RAMALT positive by 18 months of age. Pen D was no further away from the
control pen (pen A) than any of the other pens within this barn. Localised hot
spots of infectivity may be present within scrapie-contaminated environments,
but it is unlikely that pen D area had an amount of scrapie contamination that
was significantly different than the other areas within this building.
Similarly, there were no differences in how the biosecurity of pen D was
maintained, or how this pen was ventilated compared with the other pens. This
observation, perhaps, indicates the slower kinetics of disease uptake within
this pen and is consistent with a more thorough prion removal and
recontamination. These observations may also account for the presence of
inadvertent scrapie cases within other studies, where despite stringent
biosecurity, control animals have become scrapie positive during challenge
studies using barns that also housed scrapie-affected animals (Ryder and others
2009). The bioassay data indicate that the exposure of the sheep to a farm
environment after decontamination efforts thought to be effective in removing
scrapie is sufficient for the animals to become infected with scrapie. The main
exposure routes within this scenario are likely to be via the oral route, during
feeding and drinking, and respiratory and conjunctival routes. It has been
demonstrated that scrapie infectivity can be efficiently transmitted via the
nasal route in sheep (Hamir and others 2008), as is the case for CWD in both
murine models and in white-tailed deer (Denkers and others 2010, 2013).
Recently, it has also been demonstrated that CWD prions presented as dust when
bound to the soil mineral montmorillonite can be infectious via the nasal route
(Nichols and others 2013). When considering pens C and D, the actual source of
the infectious agent in the pens is not known, it is possible that biologically
relevant levels of prion survive on surfaces during the decontamination regimen
(pen C). With the use of galvanising and painting (pen D) covering and sealing
the surface of the pen, it is possible that scrapie material recontaminated the
pens by the movement of infectious prions contained within dusts originating
from other parts of the barn that were not decontaminated or from other areas of
the farm.
Given that scrapie prions are widespread on the surfaces of affected farms
(Maddison and others 2010a), irrespective of the source of the infectious prions
in the pens, this study clearly highlights the difficulties that are faced with
the effective removal of environmentally associated scrapie infectivity. This is
likely to be paralleled in CWD which shows strong similarities to scrapie in
terms of both the dissemination of prions into the environment and the facile
mode of disease transmission. These data further contribute to the understanding
that prion diseases can be highly transmissible between susceptible individuals
not just by direct contact but through highly stable environmental reservoirs
that are refractory to decontamination.
The presence of these environmentally associated prions in farm buildings
make the control of these diseases a considerable challenge, especially in
animal species such as goats where there is lack of genetic resistance to
scrapie and, therefore, no scope to re-stock farms with animals that are
resistant to scrapie.
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE)
Accepted October 12, 2014. Published Online First 31 October 2014
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves
Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle
Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia
Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1,
Affiliations Contributions Corresponding author Journal name: Nature
Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821
Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014
Article tools Citation Reprints Rights & permissions Article metrics
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant
Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie
prions remains unknown. Mice genetically engineered to overexpress the human
prion protein (tgHu) have emerged as highly relevant models for gauging the
capacity of prions to transmit to humans. These models can propagate human
prions without any apparent transmission barrier and have been used used to
confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie
prions transmit to several tgHu mice models with an efficiency comparable to
that of cattle BSE. The serial transmission of different scrapie isolates in
these mice led to the propagation of prions that are phenotypically identical to
those causing sporadic CJD (sCJD) in humans. These results demonstrate that
scrapie prions have a zoonotic potential and raise new questions about the
possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
snip...
R. BRADLEY
Friday, January 30, 2015
Scrapie: a particularly persistent pathogen
Monday, November 3, 2014
Persistence of ovine scrapie infectivity in a farm environment following
cleaning and decontamination
Friday, January 30, 2015
*** Scrapie: a particularly persistent pathogen ***
full text and more here ;
Infectious agent of sheep scrapie may persist in the environment for at
least 16 years
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
New studies on the heat resistance of hamster-adapted scrapie agent:
Threshold survival after ashing at 600°C suggests an inorganic template of
replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel
Production
Detection of protease-resistant cervid prion protein in water from a
CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1
Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by
heat treatment in yellow grease produced in the industrial manufacturing process
of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD
$$$
CWD, spreading it around...
for the game farm industry, and their constituents, to continue to believe
that they are _NOT_, and or insinuate that they have _NEVER_ been part of the
problem, will only continue to help spread cwd. the game farming industry, from
the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet
mills, shooting pens, to large ranches, are not the only problem, but it is
painfully obvious that they have been part of the problem for decades and
decades, just spreading it around, as with transportation and or exportation and
or importation of cervids from game farming industry, and have been proven to
spread cwd. no one need to look any further than South Korea blunder ;
===========================================
spreading cwd around...
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of
farmed elk in Saskatchewan in a single epidemic. All of these herds were
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease
eradication program. Animals, primarily over 12 mo of age, were tested for the
presence CWD prions following euthanasia. Twenty-one of the herds were linked
through movements of live animals with latent CWD from a single infected source
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily
infected herds.
***The source herd is believed to have become infected via importation of
animals from a game farm in South Dakota where CWD was subsequently diagnosed
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation
of these herds was observed. Within-herd transmission was observed on some
farms, while the disease remained confined to the introduced animals on other
farms.
spreading cwd around...
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim,
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research
Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion
disease in native North America deer and Rocky mountain elks. The disease is a
unique member of the transmissible spongiform encephalopathies (TSEs), which
naturally affects only a few species. CWD had been limited to USA and Canada
until 2000.
On 28 December 2000, information from the Canadian government showed that a
total of 95 elk had been exported from farms with CWD to Korea. These consisted
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72
elk in 1997, which had been held in pre export quarantine at the “source
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD
surveillance program was initiated by the Ministry of Agriculture and Forestry
(MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994
were impossible to identify. CWD control measures included stamping out of all
animals in the affected farm, and thorough cleaning and disinfection of the
premises. In addition, nationwide clinical surveillance of Korean native
cervids, and improved measures to ensure reporting of CWD suspect cases were
implemented.
Total of 9 elks were found to be affected. CWD was designated as a
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and
2005.
Since February of 2005, when slaughtered elks were found to be positive,
all slaughtered cervid for human consumption at abattoirs were designated as
target of the CWD surveillance program. Currently, CWD laboratory testing is
only conducted by National Reference Laboratory on CWD, which is the Foreign
Animal Disease Division (FADD) of National Veterinary Research and Quarantine
Service (NVRQS).
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the
human consumption was confirmed as positive. Consequently, all cervid – 54 elks,
41 Sika deer and 5 Albino deer – were culled and one elk was found to be
positive. Epidemiological investigations were conducted by Veterinary
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary
services.
Epidemiologically related farms were found as 3 farms and all cervid at
these farms were culled and subjected to CWD diagnosis. Three elks and 5
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and
confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were
linked to the importation of elks from Canada in 1994 based on circumstantial
evidences.
In December 2010, one elk was confirmed as positive at Farm 5.
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer –
were culled and one Manchurian Sika deer and seven Sika deer were found to be
positive. This is the first report of CWD in these sub-species of deer.
Epidemiological investigations found that the owner of the Farm 2 in CWD
outbreaks in July 2010 had co-owned the Farm 5.
In addition, it was newly revealed that one positive elk was introduced
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as
negative.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration’s BSE Feed Regulation
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin)
from deer and elk is prohibited for use in feed for ruminant animals. With
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may
not be used for any animal feed or feed ingredients. For elk and deer considered
at high risk for CWD, the FDA recommends that these animals do not enter the
animal feed system. However, this recommendation is guidance and not a
requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD
eradication zones and
2) deer and elk that at some time during the 60-month period prior to
slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive
animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from
the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin
processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk
protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data
on the amount of deer and/or elk protein possibly being imported in these
products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs
of CWD in affected adults are weight loss and behavioural changes that can span
weeks or months (Williams, 2005). In addition, signs might include excessive
salivation, behavioural alterations including a fixed stare and changes in
interaction with other animals in the herd, and an altered stance (Williams,
2005). These signs are indistinguishable from cervids experimentally infected
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be
introduced into countries with BSE such as GB, for example, infected deer
populations would need to be tested to differentiate if they were infected with
CWD or BSE to minimise the risk of BSE entering the human food-chain via
affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and
can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil
and surrounding environment is contaminated with CWD prions and in a
bioavailable form. In rural areas where CWD has not been reported and deer are
present, there is a greater than negligible risk the soil is contaminated with
CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving
between GB and North America, the probability of at least one person travelling
to/from a CWD affected area and, in doing so, contaminating their clothing,
footwear and/or equipment prior to arriving in GB is greater than negligible.
For deer hunters, specifically, the risk is likely to be greater given the
increased contact with deer and their environment. However, there is significant
uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher
probability of exposure to CWD transferred to the environment than wild deer
given the restricted habitat range and higher frequency of contact with tourists
and returning GB residents.
snip...
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
BSE RUMINANT FEED BAN FOR CERVIDS AND PETS IN THE USA ?
in short, there is none, and never has been.
I am concerned with pets as well.
I strongly, strenuously, urge the FDA et al and scientist (minus the
industry, politicians, and lobbyist there from on all issues), to revisit the
foolish voluntary ban on ruminant feed to cervids, and adopt an immediate
measure to make mandatory the ban of all ruminant feed to all cervids and pets.
... TSS
price of prion poker goes up again with this study. I strongly urge the
United States FDA et al to revisit their failed ruminant mad cow feed ban, where
still to this day, the feed ban does NOT include cervids. ...
Saturday, January 31, 2015
European red deer (Cervus elaphus elaphus) are susceptible to Bovine
Spongiform Encephalopathy BSE by Oral Alimentary route
full text and more here ;
*** Singeltary reply ;
ruminant feed ban for cervids in the United States ? 31 Jan 2015 at 20:14
GMT
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan. *** This supports the theory that the importation of BSE
contaminated feedstuff is the source of C-type BSE in Canada. *** It also
suggests a similar cause or source for atypical BSE in these countries. ***
see page 176 of 201 pages...tss
*** Singeltary reply ;
Molecular, Biochemical and Genetic Characteristics of BSE in Canada
FDA WARNING LETTER (14-ATL-04) adulterated under Section 402(a)(4) [21
U.S.C. 342(a)(4)] of the Act, protein derived from mammalian tissues to feeds
that may be used for ruminants [21 C.F.R. 589.2000(e)(1)(iii)(B)]
2013
Sunday, December 15, 2013
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
Tuesday, December 23, 2014
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION
DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer
and Elk in Animal Feed; Availability
Date: Fri, 16 May 2003 11:47:37 –0500
EMC 1 Terry S. Singeltary Sr. Vol #: 1
PLEASE SEE FULL TEXT SUBMISSION ;
Sunday, December 28, 2014
CHRONIC WASTING DISEASE CWD TSE PRION DISEASE AKA MAD DEER DISIEASE USDA
USAHA INC DECEMBER 28, 2014
Wednesday, February 11, 2015
World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with
two counts of tampering with evidence
On the last Saturday of Ohio’s shotgun season, 17-year-old Alex Wright
killed a 30-point monster that had escaped from a nearby high-fence hunting
outfitter. Wright had heard rumors about the escape, and after seeing a trail
camera image of this buck wandering the property he hunts, the Ulrichsville teen
took down the non-typical that would have cost him more than $19,900 to shoot
behind Stillwater Trophy Outfitters’ fence.
Thursday, October 23, 2014
*** FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE
PRESERVE
Tuesday, October 21, 2014
*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer
Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE
Tuesday, October 07, 2014
*** Wisconsin white-tailed deer tested positive for CWD on a Richland
County breeding farm, and a case of CWD has been discovered on a Marathon County
hunting preserve
Thursday, October 02, 2014
*** IOWA TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE
RELEASED 79.8 percent of the deer tested positive for the disease
Tuesday, November 04, 2014
N.C. Wildlife Resources Commission Revisions Made to Captive Cervid
Licenses and Permits
Saturday, September 20, 2014
*** North Carolina Captive cervid licenses and permits Senate Bill 744
Singeltary Submission
Friday, October 21, 2011
Chronic Wasting Disease Found in Captive Deer Missouri
The Missouri Department of Agriculture discovers the state's first case of
CWD in a captive white-tailed deer.
Thursday, July 03, 2014
*** How Chronic Wasting Disease is affecting deer population and what’s the
risk to humans and pets?
Tuesday, July 01, 2014
*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND
POTENTIAL RISK FACTORS THERE FROM
Saturday, June 29, 2013
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN
***INDIANA***, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN
LOUISIANA
Tuesday, October 21, 2014
*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer
Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE
”The occurrence of CWD must be viewed against the contest of the locations
in which it occurred. It was an incidental and unwelcome complication of the
respective wildlife research programmes. Despite it’s subsequent recognition as
a new disease of cervids, therefore justifying direct investigation, no specific
research funding was forthcoming. The USDA veiwed it as a wildlife problem and
consequently not their province!” ...page 26.
Sunday, January 06, 2013
USDA TO PGC ONCE CAPTIVES ESCAPE "it‘s no longer its business.”
Tuesday, December 20, 2011
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats)
FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever
in a North American captive herd. RECOMMENDATION: That the Board approve the
purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat
Program inPortage County and approve the restrictions on public use of the
site.SUMMARY:
For Immediate Release Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or
Dustin.VandeHoef@IowaAgriculture.gov
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED
79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today
announced that the test results from the depopulation of a quarantined captive
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the
herd, tested positive for Chronic Wasting Disease (CWD). The owners of the
quarantined herd have entered into a fence maintenance agreement with the Iowa
Department of Agriculture and Land Stewardship,which requires the owners to
maintain the 8’ foot perimeter fence around the herd premises for five years
after the depopulation was complete and the premises had been cleaned and
disinfected CWD is a progressive, fatal, degenerative neurological disease of
farmed and free-ranging deer, elk, and moose. There is no known treatment or
vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA
Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services
Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting
preserve in southeast IA was positive for CWD. An investigation revealed that
this animal had just been introduced into the hunting preserve from the
above-referenced captive deer herd in north-central Iowa.The captive deer herd
was immediately quarantined to prevent the spread of CWD. The herd has remained
in quarantine until its depopulation on August 25 to 27, 2014.The Iowa
Department of Agriculture and Land Stewardship participated in a joint operation
to depopulate the infected herd with USDA Veterinary Services, which was the
lead agency, and USDA Wildlife Services.Federal indemnity funding became
available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at
that time, which was before depopulation and testing, at $1,354,250. At that
time a herd plan was developed with the owners and officials from USDA and the
Iowa Department of Agriculture and Land Stewardship.Once the depopulation was
complete and the premises had been cleaned and disinfected, indemnity of
$917,100.00 from the USDA has been or will be paid to the owners as compensation
for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land
Stewardship operates a voluntary CWD program for farms that sell live animals.
Currently 145 Iowa farms participate in the voluntary program. The
above-referenced captive deer facility left the voluntary CWD program prior to
the discovery of the disease as they had stopped selling live animals. All deer
harvested in a hunting preserve must be tested for CWD. -30-
*** see history of this CWD blunder here ;
On June 5, 2013, DNR conducted a fence inspection, after gaining approval
from surrounding landowners, and confirmed that the fenced had beencut or
removed in at least four separate locations; that the fence had degraded and was
failing to maintain the enclosure around the Quarantined Premises in at least
one area; that at least three gates had been opened;and that deer tracks were
visible in and around one of the open areas in the sand on both sides of the
fence, evidencing movement of deer into the Quarantined Premises.
Tuesday, January 06, 2015
APHIS Provides Additional Information on Chronic Wasting Disease (CWD)
Indemnity Requests January 5, 2015 05:26 PM EST
TSS
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home