West Virginia House Passes Senate Bill 237 Creating Cervid Farming Act Giving USDA Authority
Here's your sign...
Thursday, February 12, 2015 - 03:04 PM 
 
House Passes Bill Creating Cervid Farming Act 
 
Today marks the 30th day of the 82nd Legislature. The House met to pass the 
Captive Cervid Farming Act and House Bill 2247. Senate Bill 237 will create a 
Captive Cervid Farming Act. 
 
WV House of Delegates passed Captive Cervid Farming Act 
 
 
Legislative Session: 2015(RS) LAST ACTION: H Communicated to Senate 
02/12/15 SUMMARY: Creating Captive Cervid Farming Act LEAD SPONSOR: D. Hall 
SPONSORS: Romano, Snyder, Facemire, Williams BILL TEXT: Bill Definitions ? [PDF] 
BILLS - FINAL ? Committee Substitute File Updated - (01/27/2015) BILL DRAFTING 
BILLS ? Committee Substitute (1) - html | pdf | wpd Introduced Version - html | 
pdf | wpd 
 
 
WV House of Delegates passed Captive Cervid Farming Act
 
Posted: Feb 12, 2015 2:23 PM CST 
 
Updated: Feb 12, 2015 2:43 PM CST
 
 
By Erin Timony etimony@statejournal.com 
 
In an 88-12 vote, the House of Delegates passed Senate Bill 237, the 
Captive Cervid Farming Act on the House floor Feb. 12. 
 
Under the proposed bill, the Department of Agriculture, rather than the 
West Virginia Division of Natural Resources, would oversee the Cervid, or deer, 
Farming regulations.
 
Under an amendment by Delegate Bill Anderson, R-Wood, Delegate Larry 
Williams, D-Preston and Delegate Brent Boggs, D-Braxton, potential cervid 
livestock could not be have had chronic wasting disease or any other disease 
five years prior. 
 
Boggs spoke against the bill, voicing potential health issues and disease 
that could be spread by the livestock. He also suggested the Division of Natural 
Resources and Department of Agriculture gradually work together until full 
authority is transferred to the Department of Agriculture. ...snip...see ;
 
 
Sunday, June 29, 2014 
 
Chronic wasting disease spreads in West Virginia 
 
 
Wednesday, February 15, 2012 
 
West Virginia Deer Farming Bill backed by deer farmers advances, why ? BE 
WARNED CWD 
 
 
***please read this*** 
 
98 | Veterinary Record | January 24, 2015
 
EDITORIAL
 
Scrapie: a particularly persistent pathogen
 
Cristina Acín
 
Resistant prions in the environment have been the sword of Damocles for 
scrapie control and eradication. Attempts to establish which physical and 
chemical agents could be applied to inactivate or moderate scrapie infectivity 
were initiated in the 1960s and 1970s,with the first study of this type focusing 
on the effect of heat treatment in reducing prion infectivity (Hunter and 
Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate 
the prion protein are based on the method developed by Kimberlin and 
collaborators (1983). This procedure consists of treatment with 20,000 parts per 
million free chlorine solution, for a minimum of one hour, of all surfaces that 
need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so 
on). Despite this, veterinarians and farmers may still ask a range of questions, 
such as ‘Is there an official procedure published somewhere?’ and ‘Is there an 
international organisation which recommends and defines the exact method of 
scrapie decontamination that must be applied?’
 
From a European perspective, it is difficult to find a treatment that could 
be applied, especially in relation to the disinfection of surfaces in lambing 
pens of affected flocks. A 999/2001 EU regulation on controlling spongiform 
encephalopathies (European Parliament and Council 2001) did not specify a 
particular decontamination measure to be used when an outbreak of scrapie is 
diagnosed. There is only a brief recommendation in Annex VII concerning the 
control and eradication of transmissible spongiform encephalopathies (TSE 
s).
 
Chapter B of the regulation explains the measures that must be applied if 
new caprine animals are to be introduced to a holding where a scrapie outbreak 
has previously been diagnosed. In that case, the statement indicates that 
caprine animals can be introduced ‘provided that a cleaning and disinfection of 
all animal housing on the premises has been carried out following 
destocking’.
 
Issues around cleaning and disinfection are common in prion prevention 
recommendations, but relevant authorities, veterinarians and farmers may have 
difficulties in finding the specific protocol which applies. The European Food 
and Safety Authority (EFSA ) published a detailed report about the efficacy of 
certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and 
even a formulation of copper or iron metal ions in combination with hydrogen 
peroxide, against prions (EFSA 2009). The report was based on scientific 
evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, 
Solassol and others 2006) but unfortunately the decontamination measures were 
not assessed under outbreak conditions.
 
The EFSA Panel on Biological Hazards recently published its conclusions on 
the scrapie situation in the EU after 10 years of monitoring and control of the 
disease in sheep and goats (EFSA 2014), and one of the most interesting findings 
was the Icelandic experience regarding the effect of disinfection in scrapie 
control. The Icelandic plan consisted of: culling scrapie-affected sheep or the 
whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of 
stables, sheds, barns and equipment with high pressure washing followed by 
cleaning with 500 parts per million of hypochlorite; drying and treatment with 
300 ppm of iodophor; and restocking was not permitted for at least two years. 
Even when all of these measures were implemented, scrapie recurred on several 
farms, indicating that the infectious agent survived for years in the 
environment, even as many as 16 years after restocking (Georgsson and others 
2006).
 
In the rest of the countries considered in the EFSA (2014) report, 
recommendations for disinfection measures were not specifically defined at the 
government level. In the report, the only recommendation that is made for sheep 
is repopulation with sheep with scrapie-resistant genotypes. This reduces the 
risk of scrapie recurrence but it is difficult to know its effect on the 
infection.
 
Until the EFSA was established (in May 2003), scientific opinions about TSE 
s were provided by the Scientific Steering Committee (SSC) of the EC, whose 
advice regarding inactivation procedures focused on treating animal waste at 
high temperatures (150°C for three hours) and high pressure alkaline hydrolysis 
(SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory 
Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe 
working and the prevention of TSE infection. Annex C of the ACDP report 
established that sodium hypochlorite was considered to be effective, but only if 
20,000 ppm of available chlorine was present for at least one hour, which has 
practical limitations such as the release of chlorine gas, corrosion, 
incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its 
active chemicals and the stability of dilutions (ACDP 2009).
 
In an international context, the World Organisation for Animal Health (OIE) 
does not recommend a specific disinfection protocol for prion agents in its 
Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General 
recommendations on disinfection and disinsection (OIE 2014), focuses on 
foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on 
prion disinfection. Nevertheless, the last update published by the OIE on bovine 
spongiform encephalopathy (OIE 2012) indicates that few effective 
decontamination techniques are available to inactivate the agent on surfaces, 
and recommends the removal of all organic material and the use of sodium 
hydroxide, or a sodium hypochlorite solution containing 2 per cent available 
chlorine, for more than one hour at 20ºC.
 
The World Health Organization outlines guidelines for the control of TSE s, 
and also emphasises the importance of mechanically cleaning surfaces before 
disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 
1999).
 
Finally, the relevant agencies in both Canada and the USA suggest that the 
best treatments for surfaces potentially contaminated with prions are sodium 
hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, 
while most commercial household bleaches contain 5.25 per cent sodium 
hypochlorite. It is therefore recommended to dilute one part 5.25 per cent 
bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 
2013).
 
So what should we do about disinfection against prions? First, it is 
suggested that a single protocol be created by international authorities to 
homogenise inactivation procedures and enable their application in all 
scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available 
chlorine seems to be the procedure used in most countries, as noted in a paper 
summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). 
But are we totally sure of its effectiveness as a preventive measure in a 
scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease 
be needed?
 
What we can conclude is that, if we want to fight prion diseases, and 
specifically classical scrapie, we must focus on the accuracy of diagnosis, 
monitoring and surveillance; appropriate animal identification and control of 
movements; and, in the end, have homogeneous and suitable protocols to 
decontaminate and disinfect lambing barns, sheds and equipment available to 
veterinarians and farmers. Finally, further investigations into the resistance 
of prion proteins in the diversity of environmental surfaces are required.
 
References
 
snip...
 
98 | Veterinary Record | January 24, 2015
 
 
Persistence of ovine scrapie infectivity in a farm environment following 
cleaning and decontamination 
 
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc 
MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. 
Maddison, BSc, PhD3 + Author Affiliations
 
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey 
KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of 
Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS 
UK, School of Veterinary Medicine and Science, The University of Nottingham, 
Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for 
correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and 
chronic wasting disease of deer/elk are contagious prion diseases where 
environmental reservoirs are directly implicated in the transmission of disease. 
In this study, the effectiveness of recommended scrapie farm decontamination 
regimens was evaluated by a sheep bioassay using buildings naturally 
contaminated with scrapie. Pens within a farm building were treated with either 
20,000 parts per million free chorine solution for one hour or were treated with 
the same but were followed by painting and full re-galvanisation or replacement 
of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype 
VRQ/VRQ were reared within these pens and their scrapie status was monitored by 
recto-anal mucosa-associated lymphoid tissue. All animals became infected over 
an 18-month period, even in the pen that had been subject to the most stringent 
decontamination process. These data suggest that recommended current guidelines 
for the decontamination of farm buildings following outbreaks of scrapie do 
little to reduce the titre of infectious scrapie material and that environmental 
recontamination could also be an issue associated with these premises. 
 
SNIP...
 
Discussion
 
Thorough pressure washing of a pen had no effect on the amount of 
bioavailable scrapie infectivity (pen B). The routine removal of prions from 
surfaces within a laboratory setting is treatment for a minimum of one hour with 
20,000 ppm free chlorine, a method originally based on the use of brain 
macerates from infected rodents to evaluate the effectiveness of decontamination 
(Kimberlin and others 1983). Further studies have also investigated the 
effectiveness of hypochlorite disinfection of metal surfaces to simulate the 
decontamination of surgical devices within a hospital setting. Such treatments 
with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower 
than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous 
treatment of the pen surfaces did not effectively remove the levels of scrapie 
infectivity over that of the control pens, indicating that this method of 
decontamination is not effective within a farm setting. This may be due to the 
high level of biological matrix that is present upon surfaces within the farm 
environment, which may reduce the amount of free chlorine available to 
inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had 
also became scrapie positive within nine months, with all animals in this pen 
being RAMALT positive by 18 months of age. Pen D was no further away from the 
control pen (pen A) than any of the other pens within this barn. Localised hot 
spots of infectivity may be present within scrapie-contaminated environments, 
but it is unlikely that pen D area had an amount of scrapie contamination that 
was significantly different than the other areas within this building. 
Similarly, there were no differences in how the biosecurity of pen D was 
maintained, or how this pen was ventilated compared with the other pens. This 
observation, perhaps, indicates the slower kinetics of disease uptake within 
this pen and is consistent with a more thorough prion removal and 
recontamination. These observations may also account for the presence of 
inadvertent scrapie cases within other studies, where despite stringent 
biosecurity, control animals have become scrapie positive during challenge 
studies using barns that also housed scrapie-affected animals (Ryder and others 
2009). The bioassay data indicate that the exposure of the sheep to a farm 
environment after decontamination efforts thought to be effective in removing 
scrapie is sufficient for the animals to become infected with scrapie. The main 
exposure routes within this scenario are likely to be via the oral route, during 
feeding and drinking, and respiratory and conjunctival routes. It has been 
demonstrated that scrapie infectivity can be efficiently transmitted via the 
nasal route in sheep (Hamir and others 2008), as is the case for CWD in both 
murine models and in white-tailed deer (Denkers and others 2010, 2013). 
Recently, it has also been demonstrated that CWD prions presented as dust when 
bound to the soil mineral montmorillonite can be infectious via the nasal route 
(Nichols and others 2013). When considering pens C and D, the actual source of 
the infectious agent in the pens is not known, it is possible that biologically 
relevant levels of prion survive on surfaces during the decontamination regimen 
(pen C). With the use of galvanising and painting (pen D) covering and sealing 
the surface of the pen, it is possible that scrapie material recontaminated the 
pens by the movement of infectious prions contained within dusts originating 
from other parts of the barn that were not decontaminated or from other areas of 
the farm.
 
Given that scrapie prions are widespread on the surfaces of affected farms 
(Maddison and others 2010a), irrespective of the source of the infectious prions 
in the pens, this study clearly highlights the difficulties that are faced with 
the effective removal of environmentally associated scrapie infectivity. This is 
likely to be paralleled in CWD which shows strong similarities to scrapie in 
terms of both the dissemination of prions into the environment and the facile 
mode of disease transmission. These data further contribute to the understanding 
that prion diseases can be highly transmissible between susceptible individuals 
not just by direct contact but through highly stable environmental reservoirs 
that are refractory to decontamination.
 
The presence of these environmentally associated prions in farm buildings 
make the control of these diseases a considerable challenge, especially in 
animal species such as goats where there is lack of genetic resistance to 
scrapie and, therefore, no scope to re-stock farms with animals that are 
resistant to scrapie.
 
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) 
Accepted October 12, 2014. Published Online First 31 October 2014 
 
 
Tuesday, December 16, 2014 
 
Evidence for zoonotic potential of ovine scrapie prions 
 
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves 
Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle 
Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia 
Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, 
Affiliations Contributions Corresponding author Journal name: Nature 
Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 
Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 
Article tools Citation Reprints Rights & permissions Article metrics 
 
Abstract 
 
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant 
Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie 
prions remains unknown. Mice genetically engineered to overexpress the human 
prion protein (tgHu) have emerged as highly relevant models for gauging the 
capacity of prions to transmit to humans. These models can propagate human 
prions without any apparent transmission barrier and have been used used to 
confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie 
prions transmit to several tgHu mice models with an efficiency comparable to 
that of cattle BSE. The serial transmission of different scrapie isolates in 
these mice led to the propagation of prions that are phenotypically identical to 
those causing sporadic CJD (sCJD) in humans. These results demonstrate that 
scrapie prions have a zoonotic potential and raise new questions about the 
possible link between animal and human prions.
 
Subject terms: Biological sciences• Medical research At a glance
 
 
why do we not want to do TSE transmission studies on chimpanzees $ 
 
5. A positive result from a chimpanzee challenged severly would likely 
create alarm in some circles even if the result could not be interpreted for 
man. I have a view that all these agents could be transmitted provided a large 
enough dose by appropriate routes was given and the animals kept long enough. 
Until the mechanisms of the species barrier are more clearly understood it might 
be best to retain that hypothesis. 
 
snip... 
 
R. BRADLEY 
 
 
Friday, January 30, 2015
 
Scrapie: a particularly persistent pathogen
 
 
Monday, November 3, 2014 
 
Persistence of ovine scrapie infectivity in a farm environment following 
cleaning and decontamination
 
 
Friday, January 30, 2015
 
*** Scrapie: a particularly persistent pathogen ***
 
 
full text and more here ;
 
 
Infectious agent of sheep scrapie may persist in the environment for at 
least 16 years
 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3 
 
 
New studies on the heat resistance of hamster-adapted scrapie agent: 
Threshold survival after ashing at 600°C suggests an inorganic template of 
replication 
 
 
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel 
Production 
 
 
Detection of protease-resistant cervid prion protein in water from a 
CWD-endemic area 
 
 
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 
Materials and Wastewater During Processing 
 
 
Rapid assessment of bovine spongiform encephalopathy prion inactivation by 
heat treatment in yellow grease produced in the industrial manufacturing process 
of meat and bone meals 
 
 
PPo4-4: 
 
Survival and Limited Spread of TSE Infectivity after Burial 
 
 
CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD 
$$$
 
CWD, spreading it around...
 
for the game farm industry, and their constituents, to continue to believe 
that they are _NOT_, and or insinuate that they have _NEVER_ been part of the 
problem, will only continue to help spread cwd. the game farming industry, from 
the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet 
mills, shooting pens, to large ranches, are not the only problem, but it is 
painfully obvious that they have been part of the problem for decades and 
decades, just spreading it around, as with transportation and or exportation and 
or importation of cervids from game farming industry, and have been proven to 
spread cwd. no one need to look any further than South Korea blunder ; 
 
=========================================== 
 
spreading cwd around...
 
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of 
farmed elk in Saskatchewan in a single epidemic. All of these herds were 
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease 
eradication program. Animals, primarily over 12 mo of age, were tested for the 
presence CWD prions following euthanasia. Twenty-one of the herds were linked 
through movements of live animals with latent CWD from a single infected source 
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily 
infected herds. 
 
***The source herd is believed to have become infected via importation of 
animals from a game farm in South Dakota where CWD was subsequently diagnosed 
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation 
of these herds was observed. Within-herd transmission was observed on some 
farms, while the disease remained confined to the introduced animals on other 
farms. 
 
 
spreading cwd around...
 
Friday, May 13, 2011 
 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the 
Republic of Korea 
 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the 
Republic of Korea 
 
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, 
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research 
Division, National Veterinary Research and Quarantine Service, Republic of Korea 
 
Chronic wasting disease (CWD) has been recognized as an important prion 
disease in native North America deer and Rocky mountain elks. The disease is a 
unique member of the transmissible spongiform encephalopathies (TSEs), which 
naturally affects only a few species. CWD had been limited to USA and Canada 
until 2000. 
 
On 28 December 2000, information from the Canadian government showed that a 
total of 95 elk had been exported from farms with CWD to Korea. These consisted 
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 
elk in 1997, which had been held in pre export quarantine at the “source 
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD 
surveillance program was initiated by the Ministry of Agriculture and Forestry 
(MAF) in 2001. 
 
All elks imported in 1997 were traced back, however elks imported in 1994 
were impossible to identify. CWD control measures included stamping out of all 
animals in the affected farm, and thorough cleaning and disinfection of the 
premises. In addition, nationwide clinical surveillance of Korean native 
cervids, and improved measures to ensure reporting of CWD suspect cases were 
implemented. 
 
Total of 9 elks were found to be affected. CWD was designated as a 
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002. 
 
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 
2005. 
 
Since February of 2005, when slaughtered elks were found to be positive, 
all slaughtered cervid for human consumption at abattoirs were designated as 
target of the CWD surveillance program. Currently, CWD laboratory testing is 
only conducted by National Reference Laboratory on CWD, which is the Foreign 
Animal Disease Division (FADD) of National Veterinary Research and Quarantine 
Service (NVRQS). 
 
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the 
human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 
41 Sika deer and 5 Albino deer – were culled and one elk was found to be 
positive. Epidemiological investigations were conducted by Veterinary 
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary 
services. 
 
Epidemiologically related farms were found as 3 farms and all cervid at 
these farms were culled and subjected to CWD diagnosis. Three elks and 5 
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2. 
 
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and 
confirmed as negative. 
 
Further epidemiological investigations showed that these CWD outbreaks were 
linked to the importation of elks from Canada in 1994 based on circumstantial 
evidences. 
 
In December 2010, one elk was confirmed as positive at Farm 5. 
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – 
were culled and one Manchurian Sika deer and seven Sika deer were found to be 
positive. This is the first report of CWD in these sub-species of deer. 
Epidemiological investigations found that the owner of the Farm 2 in CWD 
outbreaks in July 2010 had co-owned the Farm 5. 
 
In addition, it was newly revealed that one positive elk was introduced 
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed 
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as 
negative. 
 
 
 
 
 
Friday, December 14, 2012 
 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
 
snip... 
 
In the USA, under the Food and Drug Administration’s BSE Feed Regulation 
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) 
from deer and elk is prohibited for use in feed for ruminant animals. With 
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may 
not be used for any animal feed or feed ingredients. For elk and deer considered 
at high risk for CWD, the FDA recommends that these animals do not enter the 
animal feed system. However, this recommendation is guidance and not a 
requirement by law. 
 
Animals considered at high risk for CWD include: 
 
1) animals from areas declared to be endemic for CWD and/or to be CWD 
eradication zones and 
 
2) deer and elk that at some time during the 60-month period prior to 
slaughter were in a captive herd that contained a CWD-positive animal. 
 
Therefore, in the USA, materials from cervids other than CWD positive 
animals may be used in animal feed and feed ingredients for non-ruminants. 
 
The amount of animal PAP that is of deer and/or elk origin imported from 
the USA to GB can not be determined, however, as it is not specified in TRACES. 
It may constitute a small percentage of the 8412 kilos of non-fish origin 
processed animal proteins that were imported from US into GB in 2011. 
 
Overall, therefore, it is considered there is a __greater than negligible 
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk 
protein is imported into GB. 
 
There is uncertainty associated with this estimate given the lack of data 
on the amount of deer and/or elk protein possibly being imported in these 
products. 
 
snip... 
 
36% in 2007 (Almberg et al., 2011). In such areas, population declines of 
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of 
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs 
of CWD in affected adults are weight loss and behavioural changes that can span 
weeks or months (Williams, 2005). In addition, signs might include excessive 
salivation, behavioural alterations including a fixed stare and changes in 
interaction with other animals in the herd, and an altered stance (Williams, 
2005). These signs are indistinguishable from cervids experimentally infected 
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be 
introduced into countries with BSE such as GB, for example, infected deer 
populations would need to be tested to differentiate if they were infected with 
CWD or BSE to minimise the risk of BSE entering the human food-chain via 
affected venison. 
 
snip... 
 
The rate of transmission of CWD has been reported to be as high as 30% and 
can approach 100% among captive animals in endemic areas (Safar et al., 2008). 
 
snip... 
 
In summary, in endemic areas, there is a medium probability that the soil 
and surrounding environment is contaminated with CWD prions and in a 
bioavailable form. In rural areas where CWD has not been reported and deer are 
present, there is a greater than negligible risk the soil is contaminated with 
CWD prion. 
 
snip... 
 
In summary, given the volume of tourists, hunters and servicemen moving 
between GB and North America, the probability of at least one person travelling 
to/from a CWD affected area and, in doing so, contaminating their clothing, 
footwear and/or equipment prior to arriving in GB is greater than negligible. 
For deer hunters, specifically, the risk is likely to be greater given the 
increased contact with deer and their environment. However, there is significant 
uncertainty associated with these estimates. 
 
snip... 
 
Therefore, it is considered that farmed and park deer may have a higher 
probability of exposure to CWD transferred to the environment than wild deer 
given the restricted habitat range and higher frequency of contact with tourists 
and returning GB residents. 
 
snip... 
 
 
Friday, December 14, 2012 
 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
 
 
BSE RUMINANT FEED BAN FOR CERVIDS AND PETS IN THE USA ?
 
in short, there is none, and never has been. 
 
I am concerned with pets as well.
 
I strongly, strenuously, urge the FDA et al and scientist (minus the 
industry, politicians, and lobbyist there from on all issues), to revisit the 
foolish voluntary ban on ruminant feed to cervids, and adopt an immediate 
measure to make mandatory the ban of all ruminant feed to all cervids and pets. 
... TSS 
 
price of prion poker goes up again with this study. I strongly urge the 
United States FDA et al to revisit their failed ruminant mad cow feed ban, where 
still to this day, the feed ban does NOT include cervids. ...
 
Saturday, January 31, 2015 
 
European red deer (Cervus elaphus elaphus) are susceptible to Bovine 
Spongiform Encephalopathy BSE by Oral Alimentary route
 
 
full text and more here ;
 
 
*** Singeltary reply ; 
 
ruminant feed ban for cervids in the United States ? 31 Jan 2015 at 20:14 
GMT 
 
 
Discussion: The C, L and H type BSE cases in Canada exhibit molecular 
characteristics similar to those described for classical and atypical BSE cases 
from Europe and Japan. *** This supports the theory that the importation of BSE 
contaminated feedstuff is the source of C-type BSE in Canada. *** It also 
suggests a similar cause or source for atypical BSE in these countries. *** 
 
see page 176 of 201 pages...tss 
 
 
*** Singeltary reply ; 
 
Molecular, Biochemical and Genetic Characteristics of BSE in Canada 
 
 
FDA WARNING LETTER (14-ATL-04) adulterated under Section 402(a)(4) [21 
U.S.C. 342(a)(4)] of the Act, protein derived from mammalian tissues to feeds 
that may be used for ruminants [21 C.F.R. 589.2000(e)(1)(iii)(B)] 
 
2013
 
Sunday, December 15, 2013 
 
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED 
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
 
 
Tuesday, December 23, 2014 
 
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED 
VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION 
 
 
DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer 
and Elk in Animal Feed; Availability 
 
Date: Fri, 16 May 2003 11:47:37 –0500 
 
EMC 1 Terry S. Singeltary Sr. Vol #: 1 
 
 
 
PLEASE SEE FULL TEXT SUBMISSION ; 
 
 
Sunday, December 28, 2014 
 
CHRONIC WASTING DISEASE CWD TSE PRION DISEASE AKA MAD DEER DISIEASE USDA 
USAHA INC DECEMBER 28, 2014 
 
 
Wednesday, February 11, 2015 
 
World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with 
two counts of tampering with evidence 
 
 
On the last Saturday of Ohio’s shotgun season, 17-year-old Alex Wright 
killed a 30-point monster that had escaped from a nearby high-fence hunting 
outfitter. Wright had heard rumors about the escape, and after seeing a trail 
camera image of this buck wandering the property he hunts, the Ulrichsville teen 
took down the non-typical that would have cost him more than $19,900 to shoot 
behind Stillwater Trophy Outfitters’ fence. 
 
 
Thursday, October 23, 2014 
 
*** FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE 
PRESERVE 
 
 
Tuesday, October 21, 2014 
 
*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer 
Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE 
 
 
Tuesday, October 07, 2014 
 
*** Wisconsin white-tailed deer tested positive for CWD on a Richland 
County breeding farm, and a case of CWD has been discovered on a Marathon County 
hunting preserve 
 
 
Thursday, October 02, 2014 
 
*** IOWA TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE 
RELEASED 79.8 percent of the deer tested positive for the disease 
 
 
Tuesday, November 04, 2014 
 
N.C. Wildlife Resources Commission Revisions Made to Captive Cervid 
Licenses and Permits 
 
 
Saturday, September 20, 2014 
 
*** North Carolina Captive cervid licenses and permits Senate Bill 744 
Singeltary Submission 
 
 
Friday, October 21, 2011 
 
Chronic Wasting Disease Found in Captive Deer Missouri 
 
 
The Missouri Department of Agriculture discovers the state's first case of 
CWD in a captive white-tailed deer.
 
 
Thursday, July 03, 2014 
 
*** How Chronic Wasting Disease is affecting deer population and what’s the 
risk to humans and pets? 
 
 
Tuesday, July 01, 2014 
 
*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND 
POTENTIAL RISK FACTORS THERE FROM 
 
 
 Saturday, June 29, 2013 
 
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN 
***INDIANA***, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN 
LOUISIANA 
 
 
Tuesday, October 21, 2014 
 
*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer 
Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE 
 
 
”The occurrence of CWD must be viewed against the contest of the locations 
in which it occurred. It was an incidental and unwelcome complication of the 
respective wildlife research programmes. Despite it’s subsequent recognition as 
a new disease of cervids, therefore justifying direct investigation, no specific 
research funding was forthcoming. The USDA veiwed it as a wildlife problem and 
consequently not their province!” ...page 26. 
 
 
Sunday, January 06, 2013 
 
USDA TO PGC ONCE CAPTIVES ESCAPE "it‘s no longer its business.” 
 
 
Tuesday, December 20, 2011
 
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) 
FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever 
in a North American captive herd. RECOMMENDATION: That the Board approve the 
purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat 
Program inPortage County and approve the restrictions on public use of the 
site.SUMMARY:
 
 
For Immediate Release Thursday, October 2, 2014 
 
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or 
Dustin.VandeHoef@IowaAgriculture.gov
 
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 
79.8 percent of the deer tested positive for the disease
 
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today 
announced that the test results from the depopulation of a quarantined captive 
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the 
herd, tested positive for Chronic Wasting Disease (CWD). The owners of the 
quarantined herd have entered into a fence maintenance agreement with the Iowa 
Department of Agriculture and Land Stewardship,which requires the owners to 
maintain the 8’ foot perimeter fence around the herd premises for five years 
after the depopulation was complete and the premises had been cleaned and 
disinfected CWD is a progressive, fatal, degenerative neurological disease of 
farmed and free-ranging deer, elk, and moose. There is no known treatment or 
vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA 
Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services 
Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting 
preserve in southeast IA was positive for CWD. An investigation revealed that 
this animal had just been introduced into the hunting preserve from the 
above-referenced captive deer herd in north-central Iowa.The captive deer herd 
was immediately quarantined to prevent the spread of CWD. The herd has remained 
in quarantine until its depopulation on August 25 to 27, 2014.The Iowa 
Department of Agriculture and Land Stewardship participated in a joint operation 
to depopulate the infected herd with USDA Veterinary Services, which was the 
lead agency, and USDA Wildlife Services.Federal indemnity funding became 
available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at 
that time, which was before depopulation and testing, at $1,354,250. At that 
time a herd plan was developed with the owners and officials from USDA and the 
Iowa Department of Agriculture and Land Stewardship.Once the depopulation was 
complete and the premises had been cleaned and disinfected, indemnity of 
$917,100.00 from the USDA has been or will be paid to the owners as compensation 
for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land 
Stewardship operates a voluntary CWD program for farms that sell live animals. 
Currently 145 Iowa farms participate in the voluntary program. The 
above-referenced captive deer facility left the voluntary CWD program prior to 
the discovery of the disease as they had stopped selling live animals. All deer 
harvested in a hunting preserve must be tested for CWD. -30-
 
 
*** see history of this CWD blunder here ; 
 
 
On June 5, 2013, DNR conducted a fence inspection, after gaining approval 
from surrounding landowners, and confirmed that the fenced had beencut or 
removed in at least four separate locations; that the fence had degraded and was 
failing to maintain the enclosure around the Quarantined Premises in at least 
one area; that at least three gates had been opened;and that deer tracks were 
visible in and around one of the open areas in the sand on both sides of the 
fence, evidencing movement of deer into the Quarantined Premises.
 
 
Tuesday, January 06, 2015 
 
APHIS Provides Additional Information on Chronic Wasting Disease (CWD) 
Indemnity Requests January 5, 2015 05:26 PM EST
 
 
 
 TSS
     
    
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home