Thursday, December 03, 2015

The Forest Service Approves Continued Use of Alkali Creek Elk Feedground, and risks introducing CWD TSE Prion

 

 
Sent: Thursday, December 03, 2015 1:50 PM
Subject: The Forest Service Approves Continued Use of Alkali Creek Elk Feedground
 

Jackson, WY 83001
 
FOR IMMEDIATE RELEASE CONTACTS: Mary Cernicek (307) 739-5564
 
DATE: December 2, 2015
 
The Forest Service Approves Continued Use of Alkali Creek Elk Feedground
 
Jackson, Wyo. – The Jackson Ranger District of the Bridger-Teton National Forest announces that Forest Supervisor Tricia O’Connor signed a Record of Decision approving the authorization of continued use of Alkali Creek Elk Feedground by the Wyoming Game and Fish Commission (the Commission).
 
Alkali Creek Elk Feedground is located within the Gros Ventre drainage northeast of Jackson, Wyoming along with two other State feedgrounds at Patrol Cabin and Fish Creek. The Commission uses feedgrounds as tools to reduce damage to haystack yards and winter pastures on private lands and reduce potential for transmission of diseases from elk to livestock. Elk feeding sites have been strategically placed on National Forest System lands with the intent of preventing elk migration through private lands that are located in historic big game winter ranges.
 
Alkali Creek Feedground is situated such that it is critical for holding elk in the Gros Ventre drainage that otherwise would end up overwintering on adjoining private agricultural lands or on the National Elk Refuge. The U.S. Department of the Interior’s 2007 Bison and Elk Management Plan for Grand Teton National Park and the National Elk Refuge sets an objective for having about 5,000 elk on feed on the National Elk Refuge in the winter. At current herd populations, this objective cannot be met if substantial numbers of elk leave the Gros Ventre drainage.
 
At the feedground, the Wyoming Game and Fish Department (WGFD) will maintain and operate one elk tagging corral, one horse corral, one tack shed, one haystack yard containing two hay sheds, and spring and trough developments including protective fencing and piping as part of their ongoing winter elk management program. In the winter, elk feeders typically follow a daily routine of distributing hay on the feedground using a horse drawn sleigh. WGFD personnel monitor the elk for signs of disease and also count numbers of branch-antlered bulls, spikes, cows, calves and the total number of elk on the feedground. This information is used to determine quotas for future hunting seasons. Forest Supervisor O’Connor intends to amend an existing special use permit issued to the Commission in 2008 for use at five other feedgrounds to add authorization for use at Alkali Creek. However, this amendment will not occur until the WGFD Chronic Wasting Disease Plan update is completed and it adequately addresses risks and management options for feedgrounds on National Forest System lands. WGFD recently released a draft of the Chronic Wasting Disease plan for public comment. If this plan update is not completed and accepted by the Forest Service prior to initiation of feeding for the winter of 2015-16, a one year temporary permit will be issued for use at Alkali Creek. This decision was informed by analysis documented in an Environmental Impact Statement.
 
The Record of Decision and its supporting documents are available at http://www.fs.usda.gov/goto/btnf/projects.
 
-###-
 
 
===================
 
Long Term Special Use Authorization for the Wyoming Game and Fish Commission to Use National Forest System Land for their Winter Elk Management Activities at Alkali Creek Feedground
 
Reasons for My Decision
 
This decision relies upon environmental analyses and public involvement as documented in the project record for the 2015 Final SEIS and its Erratum which tiers to the original 2008 EIS for Long Term Special Use Authorization for the Commission to Use National Forest System Lands for their Winter Elk Management Activities (2008 EIS). Changed circumstances and new information considered in the 2015 Final SEIS include changes in species listed as Threatened or Sensitive, designation of Wild and Scenic Rivers, impacts to the Gros Ventre Wilderness, issuance of the Pronghorn Forest Plan Amendment, effects related to recent fire activity, current information related to wildlife diseases, and effects of changes in the Commission regulations. The 2015 Final SEIS also includes updated environmental effects analyses based on updated specialist’s reports, more recent public comments, and concerns expressed during the objection process that I have factored into this decision. Where there are discrepancies between information presented in the 2008 EIS and the 2015 Final SEIS, I relied upon the information presented in the 2015 Final SEIS because it incorporates changed conditions and newer scientific findings. Throughout this process the Forest Service has relied on best available science and in large measure there is not disagreement or opposing views about the basic scientific findings. The disagreements that exist mostly arise from the framing and application of this science to a complex landscape with multiple and often conflicting managerial, social, and political objectives.
 
My decision meets the purpose and need by responding to the Commission’s request to continue to use facilities on National Forest System lands to conduct their winter elk management activities. Under 36 CFR 251.50, an authorization is required for this use of National Forest System lands. This action is needed because the existing authorization will expire on December 31, 2015.
 
I am making this decision because State-operated feedgrounds on National Forest System lands reduce damage to haystack yards and winter pastures on private lands, maintain elk population numbers, and reduce commingling of elk and livestock that can lead to brucellosis transmission. The Alkali Creek Feedground is strategically placed to effectively gather elk as they transition from summer ranges down to lower elevations in the winter. Use of National Forest System land at Alkali Creek allows for lower numbers of overwintering elk at the National Elk Refuge and more effective management of elk movements to prevent commingling with livestock and damage to agricultural lands.
 
This decision is difficult and complicated, and is one that I have not taken lightly. Feeding as part of winter elk management in western Wyoming is an emotive and controversial issue, and for good reason. The management of elk in and around Jackson is set in our community’s history as well as in the ecology of Jackson Hole. Elk are an iconic species that represents both the wildness of Wyoming and the role that humans have taken in managing that wildness. No alternative, with or without feedgrounds, is without tradeoffs and consequences to wildlife, resources, and people. In spite of the impacts and tradeoffs, I make this decision knowing that there is a concerted effort among local, state, and federal agencies and the public they serve to restore historic migration routes, ensure the production and availability of natural winter range, protect private land from elk damage, and to address current and emerging wildlife disease issues. I have the discretion to authorize or not authorize the use and occupancy of National Forest System lands for the purpose of winter elk management. I decided that continuing to authorize use of National Forest System lands for this feedground while encouraging and supporting the Commission in exploration of alternative ways to manage elk populations in northwest Wyoming is the prudent course of action. My decision concerning Alkali Creek Feedground means that I expect to amend WGFC’s 2008 special use permit to add this use. Although the 2008 special use permit tenure extends to 2028, my decision does not foreclose options for seeking and implementing long-term alternatives to winter feeding sooner than 2028, and those efforts will continue. The continued westward expansion of chronic wasting disease detected during the 2015 hunting season punctuates the need for exploring opportunities for change. In making this decision, I am recommending that the WGFC/WGFD transition away from the need for supplemental feed for elk. Use at Alkali Creek feedground is not intended to be permitted in perpetuity. My staff
 
2 will prepare a report annually that identifies changing conditions and recommends any needed adjustment in feedground management. This will assist our efforts to adapt to future events and opportunities.
 
One of the Bridger-Teton National Forest Land and Resources Management Plan (Forest Plan) goals is to help communities continue or gain greater prosperity by helping to re-establish historic elk migration routes to provide increased viewing and hunting opportunities for outfitters and clients (page 113, goal 1.1(g), Forest Plan 1990). I remain committed to this goal in the long term, but by design, feedgrounds modify migration patterns. At the same time by reducing winter mortality feedgrounds increase viewing opportunities and potential for hunter success in harvesting elk. Re-establishing historic elk migration routes may require WGFC to reduce elk herd objectives in order to reduce damages and conflicts on private property. In any case, the historic and ongoing efforts by the Forest Service to reduce reliance on supplemental feeding with our interagency partners is contributing to meeting the existing goal as currently defined. Reestablishing historical elk migration routes will take the combined effort and cooperation of state and local agencies as well as private organizations and citizens. In some cases this may not be possible with the development pressure that has occurred since our Forest Plan was signed. Through efforts such as the Jackson Interagency Habitat Initiative, the Interagency Elk Studies Group, and ongoing coordination with the National Elk Refuge, Grand Teton National Park, and the WGFD on development of the Bison and Elk Step-down Management Plan for the 2007 Bison and Elk Management Plan and the National Elk Refuge Comprehensive Conservation Plan, the Forest Service continues to work with interagency partners on ways to reduce reliance on supplemental feeding and management of feedgrounds. The Forest Service will ensure that all interested publics, non-governmental organizations, and interagency cooperators are given the opportunity to be deeply involved with these issues when we revise our current Forest Plan.
 
I clearly understand and acknowledge that the Commission’s action of feeding results in artificially high concentrations of elk during winter and early spring which increases risk of disease transmission (Johnson, 2014; Appendix 7; and Appendix 3 in the 2015 Final SEIS).
 
Brucellosis is a bacterial disease primarily of Rocky Mountain elk and bison that can be transmitted to domestic cattle. The disease is limited to northwestern Wyoming and adjoining portions of Montana and Idaho. Cows often abort their first fetus after becoming infected. Abortions may occur in subsequent pregnancies but diminish over time. Chronic wasting disease is a chronic, fatal disease of the central nervous system of captive and free-ranging mule and white-tailed deer, elk, and moose. Chronic wasting disease has been documented in one Canadian province and eight states, including Wyoming, however it has not been observed in elk in western Wyoming. In November 2015, WGFD detected the disease in a buck whitetail deer harvested in hunt area 112 east of Yellowstone National Park and the Bridger-Teton National Forest boundary. Research suggests both diseases are transmitted by animal-to-animal contact and other means. The Forest Service is working in cooperation with the Commission and other federal agencies to support efforts to manage brucellosis, chronic wasting disease, and other diseases. It is the responsibility of the Commission to direct the management of wildlife populations, including studying and managing the potential for disease transmission and determining acceptable levels of disease prevalence and risk. I have reviewed the WGFD Brucellosis Management Action Plan for the Jackson elk herd (Project Record) and WGFD Chronic Wasting Disease Management Plan (2015 Final SEIS Appendix 3), in determining the potential effect of feedgrounds on disease transmission and prevalence. When chronic wasting disease becomes established on the Bridger-Teton National Forest, there is a moderate to strong likelihood that the population limiting effects of chronic wasting disease to elk, mule deer, and moose may be hastened by supplemental feeding. In response to this threat, the Forest Service requested that WGFD convene an interagency working group to update contingency plans for the feedground portion of the WGFD Chronic Wasting Disease Management Plan. WGFD did convene such a group and it consisted of staff from WGFD, Bridger-Teton National Forest, Grand Teton National Park, and the National Elk Refuge. WGFD considered input from this group and subsequently developed a draft revised Chronic Wasting Disease Management Plan and released it on November 30, 2015 for public review and comment.
 
As described in Appendix 7 of the 2015 Final SEIS, the presence of feedgrounds, as a whole, is likely to increase the frequency and duration of contacts that may transmit chronic wasting disease from elk to elk, from elk to the environment and from the environment to other ungulate species. While the influence of feedgrounds as a whole on the transmission of chronic wasting disease is fairly evident, the influence of a single feedground is more difficult to discern. Recent literature indicates that population-level impacts to elk are likely with the arrival of chronic wasting
 
3
 
disease in elk in western Wyoming; although there may be a time-lag between arrival and population-level impacts. Confounding factors, including the influence of feedgrounds and the presence and abundance of top predators make predicting the outcome of the arrival of chronic wasting disease in western Wyoming less clear. Elk in western Wyoming reside within a complex mosaic of lands that are managed in an interagency manner. It is important that chronic wasting disease be similarly managed in an interagency fashion. The nature of the pathology of chronic wasting disease, the biology and ecology of the landscapes involved, and the arrangement of different land jurisdictions with differing agency missions and management objectives require that solutions be collaborative and integrated in a holistic and adaptive fashion. Thus, as with feedgrounds, chronic wasting disease mitigations will require an even greater collaborative interagency effort to manage. I decided it would be inappropriate to act unilaterally on this issue, for example by selecting the No Action Alternative, given the potential to displace impacts and conflicts and potential for unintended consequences to other state, private and federal jurisdictions.
 
In the Draft ROD for this project (January 2015), Acting Forest Supervisor Conant proposed to intensify coordination concerning chronic wasting disease management efforts when it is detected within a certain distance of elk feedgrounds. With the recent identification of chronic wasting disease in a buck whitetail deer in a hunt unit immediately east of the Bridger-Teton National Forest boundary, I have decided to dispense with a waiting period and engage in heightened coordination efforts now.
 
I recognize that authorization of feedgrounds results in browsing and mechanical damage that over the course of time has reduced historical distributions of aspen, sagebrush and willows, the effects of which are most apparent on the immediate environs of the feedground, but that can be measured in some locations to as far as a mile distant. I decided that the benefits of allowing WGFD to reduce wildlife conflicts on private lands and help achieve National Elk Refuge management plan objectives outweighs the limited vegetative impacts on National Forest System lands. Nonetheless, I am requiring mitigation measures aimed at reducing impacts to wetlands and other resources in the vicinity of the feedground.
 
I considered the potential effects to all wildlife, as described in Chapter 3 of the 2015 Final SEIS and find that with the exception of elk and other cervids susceptible to chronic wasting disease, the impacts from allowing use and occupancy of the feedgrounds is nominal.
 
Even after decades of use soil compaction and erosion are within acceptable limits as determined by the soils specialist using the best available science (Chapter 3, 2015 Final SEIS). Several of the mitigation measures described above are intended to further minimize future soil compaction and disturbance.
 
Alkali Creek Feedground is located immediately north of the Gros Ventre Wilderness boundary. Although no feeding occurs in the Wilderness, the presence of the feedground does result in elk congregating in large groups within the Wilderness, especially in the forested north-facing stands that provide shade on warmer days and protection from wind and driving snow during blizzards. This concentration of elk does impact vegetation within the Wilderness. Wilderness is partly defined as an area retaining its primeval character and influence, which is protected and managed so as to preserve its natural conditions and which generally appears to have been affected primarily by the forces of nature (Wilderness Act of 1964, Section 2c). The use of the words “generally appears” and “affected primarily” recognizes that, while managers must constantly strive to minimize human interference with natural processes, the requirement to do so is not absolute. I carefully reviewed and considered the current and expected future effects on vegetation and wildlife on wilderness character (as described in the final SEIS and the Project Record). Although, there are localized browsing effects on aspen, the overall composition, structure, and function of plant communities and natural processes are expected to be maintained within the Gros Ventre Wilderness. Forest Service managers have authorized and reauthorized the use of Alkali Creek Feedground for the past thirty years since the passage of the Wyoming Wilderness Act (WWA) and the past twenty-five years since the Forest Plan was established. I used current information to affirm that feedground operation at this location is in compliance with WWA and the Forest Plan. Further discussion concerning this topic in found in the “Compliance with Applicable Laws” section of this ROD.
 
Contact Person
 
For additional information concerning this decision, contact District Ranger Dale Deiter at the Jackson Ranger District Office, PO Box 1689, 25 Rosecrans Lane, Jackson, Wyoming, 83001 or by phone at 307-739-5410 or email at ddeiter@fs.fed.us.
 
2015
 
 
=============
 
2008
 
Record of Decision
 
Long Term Special Use Authorization for Wyoming Game and Fish Commission to Use National Forest System Land for their Winter Elk Management Activities
 
USDA Forest Service
 
Bridger-Teton National Forest
 
Jackson and Pinedale Ranger Districts
 
Teton and Sublette Counties, Wyoming
 
July 15, 2008
 
 
Wyoming Game and Fish Commission Alkali Creek Feedground #39126
 
Commenting on This Project
 
 
 
> The Forest Service Approves Continued Use of Alkali Creek Elk Feedground
 
I kindly submit the following disputing the approval of the continued Use of Alkali Creek Elk Feedground, and reasons why.
 
THE CONTINUED CONGREGATION OF CERVID AT THE Alkali Creek Elk Feedground, risk not only cervid, but the environment and humans, from the risk of Chronic Wasting Disease CWD TSE Prion.
 
see ;
 
Tuesday, December 01, 2015
 
DRAFT for Public Review and Comment – November 30, 2015 WYOMING GAME AND FISH DEPARTMENT CHRONIC WASTING DISEASE MANAGEMENT PLAN Singeltary Submission
 
 
Saturday, May 25, 2013
 
Wyoming Game and Fish Commission Alkali Creek Feedground #39126 Singeltary comment submission
 
 
Longitudinal Detection of Prion Shedding in Saliva and Urine by CWD-Infected Deer by RT-QuIC
 
Davin M. Henderson1, Nathaniel D. Denkers1, Clare E. Hoover1, Nina Garbino1, Candace K. Mathiason1 and Edward A. Hoover1# + Author Affiliations
 
1Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
 
ABSTRACT Chronic Wasting Disease (CWD) is an emergent, rapidly spreading prion disease of cervids. Shedding of infectious prions in saliva and urine is thought to be an important factor in CWD transmission. To help elucidate this issue, we applied an in vitro amplification assay to determine the onset, duration, and magnitude of prion shedding in longitudinally collected saliva and urine samples from CWD-exposed white-tailed deer. We detected prion shedding as early as 3 months after CWD exposure and sustained shedding throughout the disease course. We estimated that a 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 ml of infected deer saliva or 10 ml or urine. Given the average course of infection and daily production of these body fluids, an infected deer would shed thousands of prion infectious doses over the course of CWD infection. The direct and indirect environmental impact of this magnitude of prion shedding for cervid and non-cervid species is surely significant.
 
Importance: Chronic wasting disease (CWD) is an emerging and uniformly fatal prion disease affecting free ranging deer and elk and now recognized in 22 United States and 2 C anadian Provinces. It is unique among prion diseases in that it is transmitted naturally though wild populations. A major hypothesis for CWD's florid spread is that prions are shed in excreta and transmitted via direct or indirect environmental contact. Here we use a rapid in vitro assay to show that infectious doses of CWD prions are in fact shed throughout the multi-year disease course in deer. This finding is an important advance in assessing the risks posed by shed CWD prions to animals as well as humans.
 
FOOTNOTES
 
↵#To whom correspondence should be addressed: Edward A. Hoover, Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, US Email: edward.hoover@colostate.edu
 
 
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
 
***Title: Transmission of chronic wasting disease to sentinel reindeer (Rangifer tarandus tarandus)
 
Authors
 
item Moore, S - item Kunkle, Robert item Nicholson, Eric item Richt, Juergen item Hamir, Amirali item Waters, Wade item Greenlee, Justin
 
Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A
 
Technical Abstract: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, but CWD has not been reported in free-ranging caribou (Rangifer tarandus caribou) or farmed reindeer. Potential contact between CWD-affected cervids and Rangifer species that are free-ranging or co-housed on farms presents a potential risk of CWD transmission. The aims of this study were to 1) investigate the transmission of CWD from white-tailed deer (Odocoileus virginianus; CWD-wtd), mule deer (Odocoileus hemionus; CWD-md), or elk (Cervus elaphus nelsoni; CWD-elk) to reindeer via the intracranial route, and 2) to assess for direct and indirect horizontal transmission to non-inoculated sentinels. Three groups of 5 reindeer fawns were challenged intracranially with CWD-wtd, CWD-md, or CWD-elk. Two years after challenge of inoculated reindeer, non-inoculated control reindeer were introduced into the same pen as the CWD-wtd inoculated reindeer (n=4) or into a pen adjacent to the CWD-md inoculated reindeer (n=2). Reindeer were allowed to develop clinical disease. At death/euthanasia a complete necropsy examination was performed, including immunohistochemical testing of tissues for disease-associated CWD prion protein (PrP-CWD). Intracranially challenged reindeer developed clinical disease from 21 months post-inoculation (MPI). PrP-CWD was detected in 5/6 sentinel reindeer although only 2/6 developed clinical disease during the study period (<57 div="" mpi="">
 
***We have shown that reindeer are susceptible to CWD from various cervid sources and can transmit CWD to naive reindeer both directly and indirectly.
 
Last Modified: 12/3/2015
 
 
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
 
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
 
 
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
 
 
HIGHEST INFECTION RATE ON SEVERAL CWD CONFIRMED CAPTIVES
 
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011
 
The CWD infection rate was nearly 80%, the highest ever in a North American captive herd.
 
RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.
 
SUMMARY:
 
 
For Immediate Release Thursday, October 2, 2014
 
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov
 
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease
 
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD).
 
 
*** see history of this CWD blunder here ;
 
 
On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had been cut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.
 
 
The overall incidence of clinical CWD in white-tailed deer was 82%
 
Species (cohort) CWD (cases/total) Incidence (%) Age at CWD death (mo)
 
 
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
 
 
Sunday, January 06, 2013
 
USDA TO PGC ONCE CAPTIVES ESCAPE
 
*** "it‘s no longer its business.”
 
 
CWD, spreading it around...
 
for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;
 
===========================================
 
spreading cwd around...
 
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.
 
***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.
 
 
spreading cwd around...
 
Friday, May 13, 2011
 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
 
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea
 
Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.
 
On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.
 
All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.
 
Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
 
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.
 
Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).
 
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.
 
Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
 
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.
 
Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.
 
In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.
 
In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.
 
 
 
 
 
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
 
The infectious agents responsible for transmissible spongiform encephalopathy (TSE) are notoriously resistant to most physical and chemical methods used for inactivating pathogens, including heat. It has long been recognized, for example, that boiling is ineffective and that higher temperatures are most efficient when combined with steam under pressure (i.e., autoclaving). As a means of decontamination, dry heat is used only at the extremely high temperatures achieved during incineration, usually in excess of 600°C. It has been assumed, without proof, that incineration totally inactivates the agents of TSE, whether of human or animal origin.
 
 
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
 
Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.
 
 
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
 
The data presented here demonstrate that sPMCA can detect low levels of PrPCWD in the environment, corroborate previous biological and experimental data suggesting long term persistence of prions in the environment2,3 and imply that PrPCWD accumulation over time may contribute to transmission of CWD in areas where it has been endemic for decades. This work demonstrates the utility of sPMCA to evaluate other environmental water sources for PrPCWD, including smaller bodies of water such as vernal pools and wallows, where large numbers of cervids congregate and into which prions from infected animals may be shed and concentrated to infectious levels.
 
 
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
 
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
 
In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key inputs for the model in the companion paper published here.
 
 
PL1
 
Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
 
Claudio Soto
 
Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
 
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
 
=========================
 
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
 
========================
 
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
 
 
see ;
 
 
 
 
 
 
98 | Veterinary Record | January 24, 2015
 
EDITORIAL
 
Scrapie: a particularly persistent pathogen
 
Cristina Acín
 
Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’
 
From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).
 
Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.
 
Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.
 
The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).
 
In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.
 
Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).
 
In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.
 
The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).
 
Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).
 
So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?
 
What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.
 
References
 
snip...
 
98 | Veterinary Record | January 24, 2015
 
 
Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination
 
Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations
 
1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.
 
SNIP...
 
Discussion
 
Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.
 
Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.
 
The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.
 
Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014
 
 
Monday, November 3, 2014
 
Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination
 
 
PPo3-22:
 
Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie
 
Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK
 
Key words: scrapie, evironmental persistence, sPMCA
 
Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.
 
 
Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, and Candace Mathiason Colorado State University; Fort Collins, CO USA
 
Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy (TSE), of free-ranging and captive cervids (deer, elk and moose).
 
The presence of infectious prions in the tissues, bodily fluids and environments of clinical and preclinical CWD-infected animals is thought to account for its high transmission efficiency. Recently it has been recognized that mother to offspring transmission may contribute to the facile transmission of some TSEs. Although the mechanism behind maternal transmission is not yet known, the extended asymptomatic TSE carrier phase (lasting years to decades) suggests that it may have implications in the spread of prions.
 
Placental trafficking and/or secretion in milk are 2 means by which maternal prion transmission may occur. In these studies we explore these avenues during early and late infection using a transgenic mouse model expressing cervid prion protein. Na€ıve and CWD-infected dams were bred at both timepoints, and were allowed to bear and raise their offspring. Milk was collected from the dams for prion analysis, and the offspring were observed for TSE disease progression. Terminal tissues harvested from both dams and offspring were analyzed for prions.
 
We have demonstrated that
 
(1) CWDinfected TgCerPRP females successfully breed and bear offspring, and
 
(2) the presence of PrPCWD in reproductive and mammary tissue from CWD-infected dams.
 
We are currently analyzing terminal tissue harvested from offspring born to CWD-infected dams for the detection of PrPCWD and amplification competent prions. These studies will provide insight into the potential mechanisms and biological significance associated with mother to offspring transmission of TSEs.
 
==============
 
P.157: Uptake of prions into plants
 
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI USA
 
Soil may preserve chronic wasting disease (CWD) and scrapie infectivity in the environment, making consumption or inhalation of soil particles a plausible mechanism whereby na€ıve animals can be exposed to prions. Plants are known to absorb a variety of substances from soil, including whole proteins, yet the potential for plants to take up abnormal prion protein (PrPTSE) and preserve prion infectivity is not known. In this study, we assessed PrPTSE uptake into roots using laser scanning confocal microscopy with fluorescently tagged PrPTSE and we used serial protein misfolding cyclic amplification (sPMCA) and detect and quantify PrPTSE levels in plant aerial tissues. Fluorescence was identified in the root hairs of the model plant Arabidopsis thaliana, as well as the crop plants alfalfa (Medicago sativa), barley (Hordeum vulgare) and tomato (Solanum lycopersicum) upon exposure to tagged PrPTSE but not a tagged control preparation. Using sPMCA, we found evidence of PrPTSE in aerial tissues of A. thaliana, alfalfa and maize (Zea mays) grown in hydroponic cultures in which only roots were exposed to PrPTSE. Levels of PrPTSE in plant aerial tissues ranged from approximately 4 £ 10 ¡10 to 1 £ 10 ¡9 g PrPTSE g ¡1 plant dry weight or 2 £ 105 to 7 £ 106 intracerebral ID50 units g ¡1 plant dry weight. Both stems and leaves of A. thaliana grown in culture media containing prions are infectious when intracerebrally-injected into mice. ***Our results suggest that prions can be taken up by plants and that contaminated plants may represent a previously unrecognized risk of human, domestic species and wildlife exposure to prions.
 
===========
 
***Our results suggest that prions can be taken up by plants and that contaminated plants may represent a previously unrecognized risk of human, domestic species and wildlife exposure to prions.***
 
SEE ;
 
Friday, May 15, 2015
 
Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions
 
Report
 
 
============
 
P.19: Characterization of chronic wasting disease isolates from freeranging deer (Odocoileus sp) in Alberta and Saskatchewan, Canada
 
Camilo Duque Velasquez1, Chiye Kim1, Nathalie Daude1, Jacques van der Merwe1, Allen Herbst1, Trent Bollinger2, Judd Aiken1, and Debbie McKenzie1 1Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton, Canada; 2Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Canada
 
Chronic wasting disease (CWD) is an emerging prion disease of free ranging and captive species of Cervidae. In North America, CWD is enzootic in some wild cervid populations and can circulate among different deer species. The contagious nature of CWD prions and the variation of cervid PRNP alleles, which influence host susceptibility, can result in the emergence and adaptation of different CWD strains. These strains may impact transmission host range, disease diagnosis, spread dynamics and efficacy of potential vaccines. We are characterizing different CWD agents by biochemical analysis of the PrPCWD conformers, propagation in vitro cell assays1 and by comparing transmission properties and neuropathology in Tg33 (Q95G96) and Tg60 (Q95S96) mice.2 Although Tg60 mice expressing S96- PrPC have been shown resistant to CWD infectivity from various cervid species,2,3
 
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived from experimental infection of deer expressing H95G96-PrPC. The diversity of strains present in free-ranging mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) from Alberta and Saskatchewan is being determined and will allow us to delineate the properties of CWD agents circulating in CWD enzootic cervid populations of Canada.
 
References
 
1. van der Merwe J, Aiken J, Westaway D, McKenzie D. The standard scrapie cell assay: Development, utility and prospects. Viruses 2015; 7(1):180–198; PMID:25602372; http://dx.doi.org/10.3390/v7010180
 
2. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J Virol 2007; 81(9):4533–4539; PMID: 17314157; http://dx. doi.org/10.1128/JVI.02762-06
 
3. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J Virol 2011; 85(17):9235–9238; PMID: 21697479; http://dx.doi.org/10.1128/JVI.00790-11
 
=========
 
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived from experimental infection of deer expressing H95G96-PrPC.
 
==========
 
P.136: Mother to offspring transmission of CWD—Detection in fawn tissues using the QuIC assay
 
Amy Nalls, Erin McNulty, Clare Hoover, Jeanette Hayes-Klug, Kelly Anderson, Edward Hoover, and Candace Mathiason Colorado State University; Fort Collins, CO USA
 
To investigate the role mother to offspring transmission plays in chronic wasting disease (CWD), we have employed a small, polyestrous breeding, indoor maintainable cervid model, the Reeves’ muntjac deer. Muntjac doe were inoculated with CWD and tested positive by lymphoid biopsy at 4 months post inoculation. From these CWD-infected doe, we obtained 3 viable fawns. These fawns tested IHC-positive for CWD by lymphoid biopsy as early as 40 d post birth, and all have been euthanized due to clinical disease at 31, 34 and 59 months post birth. The QuIC assay demonstrates sensitivity and specificity in the detection of conversion competent prions in peripheral IHC-positive tissues including tonsil, mandibular, partotid, retropharyngeal, and prescapular lymph nodes, adrenal gland, spleen and liver. In summary, using the muntjac deer model, we have demonstrated CWD clinical disease in offspring born to CWD-infected doe and found that the QuIC assay is an effective tool in the detection of prions in peripheral tissues. ***Our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases.
 
===============
 
***Our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases.
 
===============
 
 
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. ***
 
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants and humans by protein misfolding cyclic amplification
 
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama National Institute of Animal Health; Tsukuba, Japan
 
To assess the risk of the transmission of ruminant prions to ruminants and humans at the molecular level, we investigated the ability of abnormal prion protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding cyclic amplification (PMCA).
 
Six rounds of serial PMCA was performed using 10% brain homogenates from transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc seed from typical and atypical BSE- or typical scrapie-infected brain homogenates from native host species. In the conventional PMCA, the conversion of PrPC to PrPres was observed only when the species of PrPC source and PrPSc seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested prion strains. On the other hand, human PrPC was converted by PrPSc from typical and H-type BSE in this PMCA condition.
 
Although these results were not compatible with the previous reports describing the lack of transmissibility of H-type BSE to ovine and human transgenic mice, ***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
 
================
 
 
 
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
 
Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and Robert Kunkle1 1National Animal Disease Center; Ames, IA USA; 2Iowa State University; Ames, IA USA
 
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
 
 
Saturday, January 31, 2015
 
European red deer (Cervus elaphus elaphus) are susceptible to Bovine Spongiform Encephalopathy BSE by Oral Alimentary route
 
 
I strenuously once again urge the FDA and its industry constituents, to make it MANDATORY that all ruminant feed be banned to all ruminants, and this should include all cervids as soon as possible for the following reasons...
 
======
 
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system.
 
***However, this recommendation is guidance and not a requirement by law.
 
======
 
31 Jan 2015 at 20:14 GMT
 
*** Ruminant feed ban for cervids in the United States? ***
 
31 Jan 2015 at 20:14 GMT
 
 
Friday, December 14, 2012
 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
 
snip...
 
In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
 
Animals considered at high risk for CWD include:
 
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
 
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
 
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
 
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
 
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
 
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
 
snip...
 
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
 
snip...
 
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
 
snip...
 
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
 
snip...
 
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
 
snip...
 
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
 
snip...
 
 
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
 
Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and Robert Kunkle1 1National Animal Disease Center; Ames, IA USA; 2Iowa State University; Ames, IA USA
 
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
 
 
Saturday, January 31, 2015
 
European red deer (Cervus elaphus elaphus) are susceptible to Bovine Spongiform Encephalopathy BSE by Oral Alimentary route
 
 
I strenuously once again urge the FDA and its industry constituents, to make it MANDATORY that all ruminant feed be banned to all ruminants, and this should include all cervids as soon as possible for the following reasons...
 
======
 
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system.
 
***However, this recommendation is guidance and not a requirement by law.
 
======
 
31 Jan 2015 at 20:14 GMT
 
*** Ruminant feed ban for cervids in the United States? ***
 
31 Jan 2015 at 20:14 GMT
 
 
Friday, December 14, 2012
 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
 
snip...
 
In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
 
Animals considered at high risk for CWD include:
 
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
 
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
 
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
 
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
 
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
 
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
 
snip...
 
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
 
snip...
 
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
 
snip...
 
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
 
snip...
 
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
 
snip...
 
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
 
snip...
 
 
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
 
 
Monday, October 26, 2015
 
*** FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015
 
 
Sunday, October 25, 2015
 
USAHA Detailed Events Schedule – 119th USAHA Annual Meeting CAPTIVE LIVESTOCK CWD SCRAPIE TSE PRION
 
 
*** Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation ***
 
 
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
 
 
Monday, October 26, 2015
 
*** FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015
 
 
Sunday, October 25, 2015
 
USAHA Detailed Events Schedule – 119th USAHA Annual Meeting CAPTIVE LIVESTOCK CWD SCRAPIE TSE PRION
 
 
*** Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation ***
 
 
Saturday, September 12, 2015
 
In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk
 
>>>Interestingly, five of fifteen sPMCA positive dams showed no evidence of PrPCWD in either CNS or LRS, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the fifteen sPMCA positive dams revealed PrPCWD in 80% of fetuses (12/15), regardless of gestational stage. These findings demonstrate that PrPCWD is more abundant in peripheral tissues of CWD exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of the CWD in naturally exposed cervid populations.<<<
 
 
*** PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS ***
 
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
 
O18
 
Zoonotic Potential of CWD Prions
 
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 3Encore Health Resources, Houston, Texas, USA
 
***These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.***
 
P.105: RT-QuIC models trans-species prion transmission
 
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA
 
Additionally, human rPrP was competent for conversion by CWD and fCWD.
 
***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.***
 
 
HD.13: CWD infection in the spleen of humanized transgenic mice
 
Liuting Qing and Qingzhong Kong Case Western Reserve University; Cleveland, OH USA
 
Chronic wasting disease (CWD) is a widespread prion disease in free-ranging and captive cervid species in North America, and there is evidence suggesting the existence of multiple CWD strains. The susceptibility of human CNS and peripheral organs to the various CWD prion strains remains largely unclear. Current literature suggests that the classical CWD strain is unlikely to infect human brain, but the potential for peripheral infection by CWD in humans is unknown. We detected protease-resistant PrPSc in the spleens of a few humanized transgenic mice that were intracerebrally inoculated with natural CWD isolates, but PrPSc was not detected in the brains of any of the CWD-inoculated mice. Our ongoing bioassays in humanized Tg mice indicate that intracerebral challenge with such PrPSc-positive humanized mouse spleen already led to prion disease in most animals. These results indicate that the CWD prion may have the potential to infect human peripheral lymphoid tissues.
 
 
From: Terry S. Singeltary Sr.
 
Sent: Saturday, November 15, 2014 9:29 PM
 
To: Terry S. Singeltary Sr.
 
Subject: THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE R. G. WILL 1984
 
THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE
 
R. G. WILL
 
1984
 
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). (SEE LINK IN REPORT HERE...TSS) PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
 
snip...
 
 
85%+ of all human tse prion disease is sporadic CJD.
 
see what the NIH prion Gods say themselves ;
 
‘’In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong.’’
 
‘’Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.’’
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
 
 
now, let’s see what the authors said about this casual link, personal communications years ago. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
 
From: TSS (216-119-163-189.ipset45.wt.net)
 
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
 
Date: September 30, 2002 at 7:06 am PST
 
From: "Belay, Ermias"
 
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
 
Sent: Monday, September 30, 2002 9:22 AM
 
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Dear Sir/Madam,
 
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
 
Ermias Belay, M.D. Centers for Disease Control and Prevention
 
-----Original Message-----
 
From: Sent: Sunday, September 29, 2002 10:15 AM
 
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
 
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
 
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
 
Thursday, April 03, 2008
 
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
 
snip...
 
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
 
snip... full text ;
 
 
CJD is so rare in people under age 30, one case in a billion (leaving out medical mishaps), that four cases under 30 is "very high," says Colorado neurologist Bosque. "Then, if you add these other two from Wisconsin [cases in the newspaper], six cases of CJD in people associated with venison is very, very high." Only now, with Mary Riley, there are at least seven, and possibly eight, with Steve, her dining companion. "It's not critical mass that matters," however, Belay says. "One case would do it for me." The chance that two people who know each other would both contact CJD, like the two Wisconsin sportsmen, is so unlikely, experts say, it would happen only once in 140 years.
 
Given the incubation period for TSEs in humans, it may require another generation to write the final chapter on CWD in Wisconsin. "Does chronic wasting disease pass into humans? We'll be able to answer that in 2022," says Race. Meanwhile, the state has become part of an immense experiment.
 
 
I urge everyone to watch this video closely...terry
 
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
 
 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
 
 
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
 
Emmanuel Comoy, Jacqueline Mikol, Val erie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
 
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
 
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
 
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold longe incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
 
***is the third potentially zoonotic PD (with BSE and L-type BSE),
 
***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
 
===============
 
***thus questioning the origin of human sporadic cases...TSS
 
===============
 
 
Terry S. Singeltary

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home