Sunday, November 11, 2012

Iowa DNR TO HOST NOV. 20 MEETING ON CHRONIC WASTING DISEASE FOR DAVIS AND WAPELLO COUNTY LANDOWNERS

Subject: DNR TO HOST NOV. 20 MEETING ON CHRONIC WASTING DISEASE FOR DAVIS AND WAPELLO COUNTY LANDOWNERS

DNR TO HOST NOV. 20 MEETING ON CHRONIC WASTING DISEASE FOR DAVIS AND WAPELLO COUNTY LANDOWNERS
MEDIA CONTACT: Kevin Baskins, DNR, at Kevin.Baskins@dnr.iowa.gov or 515-249-2814.
BLOOMFIELD —The Iowa Department of Natural Resources is holding a meeting for landowners in Davis and Wapello counties to discuss chronic wasting disease and the DNR’s plan to collect additional samples for testing during the upcoming deer hunting season.
The meeting is November 20, at 6:30 p.m., at the Davis County Courthouse Courtroom, 100 Courthouse Square, in Bloomfield. The DNR will give an overview of chronic wasting disease, present its statewide testing plan for the 2012 deer hunting season, and discuss proper sampling procedures and protocols.
Chronic wasting disease was confirmed in a Davis County hunting preserve earlier this summer.
“We hope to have as many Davis and Wapello County landowners attend as possible as they will be a vital component to our overall CWD containment plan,” said Dr. Dale Garner, chief of the Iowa DNR’s Wildlife Bureau. “We need to collect additional samples in the county and in the area surrounding the facility to ascertain if anything is happening in the wild deer herd,” Garner said.
The majority of samples are collected during the shotgun deer seasons from hunters and the lockers where deer are processed.
Iowa has tested 42,557 wild deer and more than 4,000 captive deer and elk as part of the surveillance program since 2002 when CWD was found in Wisconsin.
-30-
Greetings Iowa Hunters, legislators, et al,
I saw the meeting coming up, and thought I might update you a bit on some of the CWD science and updates from other states. the recent studies, and science there from are in the blogs (I don’t advertise as the science for human and animal TSE prion disease should be free, and I made a promise).
human risk factors and species barrier towards the bottom.
please use as you wish, and good luck. ...
kind regards,
terry
Wednesday, October 17, 2012
Prion Remains Infectious after Passage through Digestive System of American Crows (Corvus brachyrhynchos)
Game Farms, and risk there from CWD
Friday, October 26, 2012
CHRONIC WASTING DISEASE CWD PENNSYLVANIA GAME FARMS, URINE ATTRACTANT PRODUCTS, BAITING, AND MINERAL LICKS
Thursday, November 01, 2012
ALABAMA BIG BUCK PROJECT, A CWD TSE PRION ACCIDENT WAITING TO HAPPEN
Saturday, September 01, 2012
Resistance of Soil-Bound Prions to Rumen Digestion
Friday, October 12, 2012
*** Texas Animal Health Commission (TAHC) is Now Accepting Comments on Rule Proposals for “Chronic Wasting Disease (CWD)” ***
TO: comments@tahc.state.tx.us;
Texas Animal Health Commission (TAHC)
Saturday, July 07, 2012
TEXAS Animal Health Commission Accepting Comments on Chronic Wasting Disease Rule Proposal
Considering the seemingly high CWD prevalence rate in the Sacramento and Hueco Mountains of New Mexico, CWD may be well established in the population and in the environment in Texas at this time.
Tuesday, July 10, 2012
Chronic Wasting Disease Detected in Far West Texas
Friday, June 01, 2012
TEXAS DEER CZAR TO WISCONSIN ASK TO EXPLAIN COMMENTS
Monday, March 26, 2012
Texas Prepares for Chronic Wasting Disease CWD Possibility in Far West Texas
Thursday, November 01, 2012
PA GAME COMMISSION TO HOLD PUBLIC MEETING TO DISCUSS CWD Release #128-12
Thursday, October 11, 2012
Pennsylvania Confirms First Case CWD Adams County Captive Deer Tests Positive
Monday, October 15, 2012
PENNSYLVANIA GAME COMMISSION AND AGRICULTURE DEPARTMENT TO HOLD PUBLIC MEETING TO DISCUSS CWD MONITORING EFFORTS FOR IMMEDIATE RELEASE: October 15, 2012 Release #124-12
Pennsylvania CWD number of deer exposed and farms there from much greater than first thought
Published: Wednesday, October 17, 2012, 10:44 PM Updated: Wednesday, October 17, 2012, 11:33 PM
Tuesday, October 23, 2012
PA Captive deer from CWD-positive farm roaming free
Wednesday, October 24, 2012
WYOMING Deer Hunt Area 132 Near Green River Added to CWD List
Monday, October 08, 2012
VDGIF has discovered four positive cases of CWD in Virginia Updated 9/24/2012
Friday, September 28, 2012
Stray elk renews concerns about deer farm security Minnesota
Friday, September 21, 2012
Chronic Wasting Disease CWD raises concerns about deer farms in Iowa
Tuesday, September 11, 2012
Agreement Reached with Owner to De-Populate CWD Deer at Davis County Hunting Preserve Iowa
Wednesday, September 05, 2012
Additional Facility in Pottawatamie County Iowa Under Quarantine for CWD after 5 deer test positive
Friday, July 20, 2012
CWD found for first time in Iowa at hunting preserve
Generation of a new form of human PrPSc in vitro by inter-species transmission from cervids prions
Marcelo A. Barria1, Glenn C. Telling2, Pierluigi Gambetti3, James A. Mastrianni4 and Claudio Soto1,* 1Mitchell Center for Alzheimer’s disease and related Brain disorders, Dept of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA 2Dept of Microbiology, Immunology & Molecular Genetics, and Neurology, Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY, USA 3Institute of Pathology, Case Western Reserve University, Cleveland, OH, USA 4Dept of Neurology, University of Chicago, Chicago, IL, USA. Running Title: Conversion of human PrPC by cervid PrPSc Keywords: Prion / transmissible spongiform encephalopathy / infectivity / misfolded prion protein / prion strains * To whom correspondence should be addressed. University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030. Tel 713-5007086; Fax 713-5000667; E-mail Claudio.Soto@uth.tmc.edu The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.M110.198465 JBC Papers in Press.
Published on January 4, 2011 as Manuscript M110.198465 Copyright 2011 by The American Society for Biochemistry and Molecular Biology, Inc. 5, Downloaded from www.jbc.org by guest, on November 11, 2012 2
Prion diseases are infectious neurodegenerative disorders affecting humans and animals that result from the conversion of normal prion protein (PrPC) into the misfolded prion protein (PrPSc). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrPC can be converted into the misfolded form by CWD PrPSc we performed experiments using the Protein Misfolding Cyclic Amplification (PMCA) technique, which mimic in vitro the process of prion replication. Our results show that cervid PrPSc can induce the conversion of human PrPC, but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrPSc exhibits a distinct biochemical pattern that differs from any of the currently known forms of human PrPSc. Our results also have profound implications for understanding the mechanisms of prion species barrier and indicate that the transmission barrier is a dynamic process that depend on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans, and that this ability depends on CWD strain adaptation.
Various studies aimed to analyze the transmission of CWD to transgenic mice expressing human PrP have consistently given negative results (9-11), indicating a strong species barrier. This conclusion is consistent with our many failed experiments to attempt converting human PrPC with natural CWD, even after pushing the PMCA conditions (see figure 1). We found successful conversion only after adaptation of the CWD prion strain by successive passages in vitro or in cervid transgenic mice. We are not aware that in any of the transgenic mice studies the inoculum used was a previously stabilized CWD strain. Although, it has been shown that strain stabilization in vitro by PMCA (17;26) and in vivo using experimental rodents (36) has similarities with the strain adaptation process occurring in natural hosts, we cannot rule out that the type of CWD strain adaptation that is required to produce strains transmissible to humans may take much longer time in cervids or not occur at all. An important experiment will be to study transmissibility to humanized transgenic mice of CWD passed experimentally in deer several times. Besides the importance of our results for public health in relation to the putative transmissibility of CWD to humans, our data also illustrate a very important and novel scientific concept related to the mechanism of prion transmission across species barriers. Today the view is that species barrier is mostly controlled by the degree of similarity on the sequence of the prion protein between the host and the infectious material (4). In our study we show that the strain and moreover the stabilization of the strain plays a major role in the inter-species transmission. In our system there is no change on the protein sequence, but yet strain adaptation results in a complete change on prion transmissibility with potentially dramatic consequences. Therefore, our findings lead to a new view of the species barrier that should not be seen as a static process, but rather a dynamic biological phenomenon that can change over time when prion strains mature and evolve. It remains to be investigated if other species barriers also change upon progressive strain adaptation of other prion forms (e.g. the sheep/human barrier).
Our results have far-reaching implications for human health, since they indicate that cervid PrPSc can trigger the conversion of human PrPC into PrPSc, suggesting that CWD might be infectious to humans. Interestingly our findings suggest that unstable strains from CWD affected animals might not be a problem for humans, but upon strain stabilization by successive passages in the wild, this disease might become progressively more transmissible to man.
Generation of a New Form of Human PrPScin Vitro by Interspecies Transmission from Cervid Prions*
Marcelo A. Barria‡, Glenn C. Telling§, Pierluigi Gambetti¶, James A. Mastrianni‖ and Claudio Soto‡,1 + Author Affiliations
From the ‡Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas 77030, the §Departments of Microbiology, Immunology, and
Molecular Genetics and Neurology, Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, Kentucky 40506, the ¶Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and the ‖Department of Neurology, The University of Chicago, Chicago, Illinois 60637 1 To whom correspondence should be addressed: University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030. Tel.: 713-500-7086; Fax: 713-500-0667; E-mail: claudio.soto@uth.tmc.edu.
Abstract
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrPC) into the misfolded prion protein (PrPSc). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrPC can be converted into the misfolded form by CWD PrPSc, we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrPSc can induce the conversion of human PrPC but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrPSc exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrPSc. Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.
UPDATED DATA ON 2ND CWD STRAIN
Wednesday, September 08, 2010 CWD PRION CONGRESS SEPTEMBER 8-11 2010
Tuesday, June 05, 2012
Captive Deer Breeding Legislation Overwhelmingly Defeated During 2012 Legislative Session
Friday, August 31, 2012
COMMITTEE ON CAPTIVE WILDLIFE AND ALTERNATIVE LIVESTOCK and CWD 2009-2012 a review
Friday, August 24, 2012
Diagnostic accuracy of rectal mucosa biopsy testing for chronic wasting disease within white-tailed deer (Odocoileus virginianus) herds in North America
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF THE STUDIES ON CWD TRANSMISSION TO CATTLE ;
CWD to cattle figures CORRECTION
Greetings,
I believe the statement and quote below is incorrect ;
"CWD has been transmitted to cattle after intracerebral inoculation, although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding raised concerns that CWD prions might be transmitted to cattle grazing in contaminated pastures."
Please see ;
Within 26 months post inoculation, 12 inoculated animals had lost weight, revealed abnormal clinical signs, and were euthanatized. Laboratory tests revealed the presence of a unique pattern of the disease agent in tissues of these animals. These findings demonstrate that when CWD is directly inoculated into the brain of cattle, 86% of inoculated cattle develop clinical signs of the disease.
" although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). "
shouldn't this be corrected, 86% is NOT a low rate. ...
kindest regards,
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518
Thank you!
Thanks so much for your updates/comments. We intend to publish as rapidly as possible all updates/comments that contribute substantially to the topic under discussion.
re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author Affiliations
1Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143 2Department of Neurology, University of California, San Francisco, San Francisco, California 94143 Correspondence: stanley@ind.ucsf.edu
Mule deer, white-tailed deer, and elk have been reported to develop CWD. As the only prion disease identified in free-ranging animals, CWD appears to be far more communicable than other forms of prion disease. CWD was first described in 1967 and was reported to be a spongiform encephalopathy in 1978 on the basis of histopathology of the brain. Originally detected in the American West, CWD has spread across much of North America and has been reported also in South Korea. In captive populations, up to 90% of mule deer have been reported to be positive for prions (Williams and Young 1980). The incidence of CWD in cervids living in the wild has been estimated to be as high as 15% (Miller et al. 2000). The development of transgenic (Tg) mice expressing cervid PrP, and thus susceptible to CWD, has enhanced detection of CWD and the estimation of prion titers (Browning et al. 2004; Tamgüney et al. 2006). Shedding of prions in the feces, even in presymptomatic deer, has been identified as a likely source of infection for these grazing animals (Williams and Miller 2002; Tamgüney et al. 2009b). CWD has been transmitted to cattle after intracerebral inoculation, although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding raised concerns that CWD prions might be transmitted to cattle grazing in contaminated pastures.
snip...
----- Original Message -----
From: David Colby To: flounder9@verizon.net
Cc: stanley@XXXXXXXX
Sent: Tuesday, March 01, 2011 8:25 AM
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author Affiliations
Dear Terry Singeltary,
Thank you for your correspondence regarding the review article Stanley Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner asked that I reply to your message due to his busy schedule. We agree that the transmission of CWD prions to beef livestock would be a troubling development and assessing that risk is important. In our article, we cite a peer-reviewed publication reporting confirmed cases of laboratory transmission based on stringent criteria. The less stringent criteria for transmission described in the abstract you refer to lead to the discrepancy between your numbers and ours and thus the interpretation of the transmission rate. We stand by our assessment of the literature--namely that the transmission rate of CWD to bovines appears relatively low, but we recognize that even a low transmission rate could have important implications for public health and we thank you for bringing attention to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor Department of Chemical Engineering University of Delaware
===========END...TSS==============
SNIP...SEE FULL TEXT ;
UPDATED DATA ON 2ND CWD STRAIN Wednesday, September 08, 2010 CWD PRION CONGRESS SEPTEMBER 8-11 2010
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
(PLEASE NOTE SOME OF THESE OLD UK GOVERNMENT FILE URLS ARE SLOW TO OPEN, AND SOMETIMES YOU MAY HAVE TO CLICK ON MULTIPLE TIMES, PLEASE BE PATIENT, ANY PROBLEMS PLEASE WRITE ME PRIVATELY, AND I WILL TRY AND FIX OR SEND YOU OLD PDF FILE...TSS)
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. The purpose of these experiments was to determine susceptibility of white-tailed deer (WTD) to scrapie and to compare the resultant clinical signs, lesions, and molecular profiles of PrPSc to those of chronic wasting disease (CWD). We inoculated WTD intracranially (IC; n = 5) and by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate.
All deer were inoculated with a 10% (wt/vol) brain homogenate from sheep with scrapie (1ml IC, 1 ml IN, 30 ml oral). All deer inoculated by the intracranial route had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues as early as 7 months-post-inoculation (PI) and a single deer that was necropsied at 15.6 months had widespread distribution of PrPSc highlighting that PrPSc is widely distributed in the CNS and lymphoid tissues prior to the onset of clinical signs. IC inoculated deer necropsied after 20 months PI (3/5) had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues.
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
After a natural route of exposure, 100% of WTD were susceptible to scrapie. Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive.
This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS
Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.
see full text ;
CHRONIC WASTING DISEASE CWD RISK FACTORS FOR TRANSMISSION TO HUMANS
Envt.06:
Zoonotic Potential of CWD: Experimental Transmissions to Non-Human Primates
Emmanuel Comoy,1,† Valérie Durand,1 Evelyne Correia,1 Aru Balachandran,2 Jürgen Richt,3 Vincent Beringue,4 Juan-Maria Torres,5 Paul Brown,1 Bob Hills6 and Jean-Philippe Deslys1
1Atomic Energy Commission; Fontenay-aux-Roses, France; 2Canadian Food Inspection Agency; Ottawa, ON Canada; 3Kansas State University; Manhattan, KS USA; 4INRA; Jouy-en-Josas, France; 5INIA; Madrid, Spain; 6Health Canada; Ottawa, ON Canada
†Presenting author; Email: emmanuel.comoy@cea.fr
The constant increase of chronic wasting disease (CWD) incidence in North America raises a question about their zoonotic potential. A recent publication showed their transmissibility to new-world monkeys, but no transmission to old-world monkeys, which are phylogenetically closer to humans, has so far been reported. Moreover, several studies have failed to transmit CWD to transgenic mice overexpressing human PrP. Bovine spongiform encephalopathy (BSE) is the only animal prion disease for which a zoonotic potential has been proven. We described the transmission of the atypical BSE-L strain of BSE to cynomolgus monkeys, suggesting a weak cattle-to-primate species barrier. We observed the same phenomenon with a cattleadapted strain of TME (Transmissible Mink Encephalopathy). Since cattle experimentally exposed to CWD strains have also developed spongiform encephalopathies, we inoculated brain tissue from CWD-infected cattle to three cynomolgus macaques as well as to transgenic mice overexpressing bovine or human PrP. Since CWD prion strains are highly lymphotropic, suggesting an adaptation of these agents after peripheral exposure, a parallel set of four monkeys was inoculated with CWD-infected cervid brains using the oral route. Nearly four years post-exposure, monkeys exposed to CWD-related prion strains remain asymptomatic. In contrast, bovinized and humanized transgenic mice showed signs of infection, suggesting that CWD-related prion strains may be capable of crossing the cattle-to-primate species barrier. Comparisons with transmission results and incubation periods obtained after exposure to other cattle prion strains (c-BSE, BSE-L, BSE-H and cattle-adapted TME) will also be presented, in order to evaluate the respective risks of each strain.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease
Martin L. Daus,1,† Johanna Breyer,2 Katjs Wagenfuehr,1 Wiebke Wemheuer,2 Achim Thomzig,1 Walter Schulz-Schaeffer2 and Michael Beekes1 1Robert Koch Institut; P24 TSE; Berlin, Germany; 2Department of Neuropathology, Prion and Dementia Research Unit, University Medical Center Göttingen; Göttingen, Germany
†Presenting author; Email: dausm@rki.de
Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE) occurring in cervids in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity in skeletal muscles of CWD-infected cervids. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). The concentration of PrPTSE in skeletal muscles of CWD-infected WTD was estimated to be approximately 2000- to 10000-fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle- associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.
Volume 18, Number 3—March 2012
Samuel E. Saunders1, Shannon L. Bartelt-Hunt, and Jason C. Bartz
Author affiliations: University of Nebraska-Lincoln, Omaha, Nebraska, USA (S.E. Saunders, S.L. Bartelt-Hunt); Creighton University, Omaha (J.C. Bartz)
Synopsis
Occurrence, Transmission, and Zoonotic Potential of Chronic Wasting Disease
snip...
Most epidemiologic studies and experimental work have suggested that the potential for CWD transmission to humans is low, and such transmission has not been documented through ongoing surveillance (2,3). In vitro prion replication assays report a relatively low efficiency of CWD PrPSc-directed conversion of human PrPc to PrPSc (30), and transgenic mice overexpressing human PrPc are resistant to CWD infection (31); these findings indicate low zoonotic potential. However, squirrel monkeys are susceptible to CWD by intracerebral and oral inoculation (32). Cynomolgus macaques, which are evolutionarily closer to humans than squirrel monkeys, are resistant to CWD infection (32). Regardless, the finding that a primate is orally susceptible to CWD is of concern...
snip...
Reasons for Caution There are several reasons for caution with respect to zoonotic and interspecies CWD transmission. First, there is strong evidence that distinct CWD strains exist (36). Prion strains are distinguished by varied incubation periods, clinical symptoms, PrPSc conformations, and CNS PrPSc depositions (3,32). Strains have been identified in other natural prion diseases, including scrapie, BSE, and CJD (3). Intraspecies and interspecies transmission of prions from CWD-positive deer and elk isolates resulted in identification of >2 strains of CWD in rodent models (36), indicating that CWD strains likely exist in cervids. However, nothing is currently known about natural distribution and prevalence of CWD strains. Currently, host range and pathogenicity vary with prion strain (28,37). Therefore, zoonotic potential of CWD may also vary with CWD strain. In addition, diversity in host (cervid) and target (e.g., human) genotypes further complicates definitive findings of zoonotic and interspecies transmission potentials of CWD.
Intraspecies and interspecies passage of the CWD agent may also increase the risk for zoonotic CWD transmission. The CWD prion agent is undergoing serial passage naturally as the disease continues to emerge. In vitro and in vivo intraspecies transmission of the CWD agent yields PrPSc with an increased capacity to convert human PrPc to PrPSc (30). Interspecies prion transmission can alter CWD host range (38) and yield multiple novel prion strains (3,28). The potential for interspecies CWD transmission (by cohabitating mammals) will only increase as the disease spreads and CWD prions continue to be shed into the environment. This environmental passage itself may alter CWD prions or exert selective pressures on CWD strain mixtures by interactions with soil, which are known to vary with prion strain (25), or exposure to environmental or gut degradation.
Given that prion disease in humans can be difficult to diagnose and the asymptomatic incubation period can last decades, continued research, epidemiologic surveillance, and caution in handling risky material remain prudent as CWD continues to spread and the opportunity for interspecies transmission increases. Otherwise, similar to what occurred in the United Kingdom after detection of variant CJD and its subsequent link to BSE, years of prevention could be lost if zoonotic transmission of CWD is subsequently identified,...
snip...
Saturday, October 6, 2012
TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES 2011 Annual Report
Friday, November 09, 2012
Chronic Wasting Disease CWD in cervidae and transmission to other species
Sunday, November 11, 2012
Susceptibilities of Nonhuman Primates to Chronic Wasting Disease November 2012
with kindest regards,
terry
layperson
Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home