Thursday, June 25, 2015
CWD-positive white-tailed deer found on Eau Claire County farm
Release Date: June 24, 2015
Contact: Raechelle Cline, 608-224-5005 Jim Dick, Communications Director,
608-224-5020
MADISON – A white-tailed deer from a breeding farm in Eau Claire County has
tested positive for chronic wasting disease (CWD), Wisconsin State Veterinarian
Dr. Paul McGraw announced today. The National Veterinary Services Laboratory in
Ames, Iowa, confirmed the test results.
The 7-year-old Eau Claire County doe, which died on the farm, was one of
about 167 deer reported to be on the 12 acre farm, according to the farm’s March
2015 registration.
Samples were taken from the doe on June 8 in accordance with Wisconsin
Department of Agriculture, Trade and Consumer Protection’s (DATCP’s) rules,
which require testing of farm-raised deer and elk when they die or are killed.
McGraw quarantined the Eau Claire County herd, which stops movement of live deer
from the property, except to slaughter. Disposition of the remaining deer will
depend upon the outcome of the investigation. The DATCP Animal Health Division’s
investigation will also examine the animal’s history and trace movements of deer
onto and off the property to determine whether other herds may have been exposed
to the CWD test-positive deer.
###
what about all the escapees and or the good old SSS shoot, shovel, and shut
up.
you know the excuse, works well for cattle and BSE, just ask Canadian
Alberta premier Ralph Klein ‘'
*** I guess any self-respecting rancher would have shot, shovelled and shut
up, but he didn't do that." — Klein recalls how the mad cow crisis started and
rancher Marwyn Peaster's role.’’
I would guess it works well for cervids too. that old sickly looking
captive cervid that happens to escape never to be found ??? oops...records???
what records???
Friday, September 20, 2013
Missouri State records show gaps in oversight of captive deer farms,
ranches
a few escapees off the top of my head ;
Tuesday, November 27, 2012
Pennsylvania ‘Pink 23’ Adams County exposed CWD Escaped Deer shot, but
where are the other escapees ?
Saturday, June 29, 2013
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN
INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA
Tuesday, June 11, 2013
CWD GONE WILD, More cervid escapees from more shooting pens on the loose in
Pennsylvania
Wisconsin : 436 Deer Have Escaped From Farms to Wild
Date: March 18, 2003 Source: Milwaukee Journal Sentinel
Contacts: LEE BERGQUIST lbergquist@journalsentinel.com
State finds violations, lax record keeping at many sites, report says A
state inspection of private deer farms, prompted by the discovery of chronic
wasting disease, found that 436 white-tailed deer escaped into the wild,
officials said Tuesday
The Department of Natural Resources found that captive deer have escaped
from one-third of the state's 550 deer farms over the lifetime of the
operations. The agency also uncovered hundreds of violations and has sought a
total of 60 citations or charges against deer farm operators.
Hundreds of deer escape
The DNR found a total of 671 deer that escaped farms - 436 of which were
never found - because of storm-damaged fences, gates being left open or the
animals jumping over or through fences.
In one example in Kewaunee County, a deer farmer's fence was knocked down
in a summer storm. Ten deer escaped, and the farmer told the DNR he had no
intention of trying to reclaim them. The DNR found five of the deer, killed them
and cited the farmer for violation of a regulation related to fencing.
Another deer farmer near Mishicot, in Manitowoc County, released all nine
of his whitetails last summer after he believed the discovery of chronic wasting
disease was going to drive down the market for captive deer.
The DNR found 24 instances of unlicensed deer farms and issued 19
citations.
Game Farms Inspected
A summary of the findings of the Department of Natural Resources'
inspection of 550 private white-tailed deer farms in the state: The deer farms
contained at least 16,070 deer, but the DNR believes there are more deer in
captivity than that because large deer farms are unable to accurately count
their deer. 671 deer had escaped from game farms, including 436 that were never
found.
24 farmers were unlicensed. One had been operating illegally since 1999
after he was denied a license because his deer fence did not meet minimum
specifications.
Records maintained by operators ranged from "meticulous documentation to
relying on memory." At least 227 farms conducted various portions of their deer
farm business with cash. Over the last three years, 1,222 deer died on farms for
various reasons. Disease testing was not performed nor required on the majority
of deer. Farmers reported doing business with people in 22 other states and one
Canadian province. ..
Earl Ray Tomblin, Governor Frank Jezioro, Director
News Release: November 4, 2011
Facebook: WV Commerce - State Parks
Hoy Murphy, Public Information Officer (304) 957-9365 hoy.r.murphy@wv.gov
Contact: Curtis Taylor, Wildlife Resources Section Chief 304-558-2771
DNR.Wildlife@wv.gov
Elk escape from captive cervid facility in Pennsylvania near West Virginia
border
SOUTH CHARLESTON, W.Va. – The West Virginia Division of Natural Resources
(WVDNR) has confirmed with officials from the Pennsylvania Department of
Agriculture (PDA) that at least two elk, including one adult bull and one cow,
have escaped from a captive cervid facility (deer and elk farms) in Greene
County, Pa. Greene County shares a common border with Marshall, Wetzel and
Monongalia counties in West Virginia. The elk escaped from a captive cervid
facility located approximately three miles from the West Virginia-Pennsylvania
border.
The PDA regulates captive cervid facilities in Pennsylvania. A
representative of the agency was unaware if the recent escaped elk were tagged.
The WVDNR regulates captive cervid facilities in West Virginia. In West
Virginia, all captive cervids in breeding facilities must be ear-tagged, and
there are currently no reported elk escapes from any facility in West Virginia.
A bull elk has been seen recently in Wetzel County, W.Va., according to
WVDNR officials. There have been no reports of cow elk sightings in either
Wetzel County, W.Va., or Greene County, Pa. No free-ranging wild elk live within
150 miles of Wetzel County. The elk sighted in Wetzel County is likely the
escaped animal from the captive facility in Pennsylvania.
Friday, September 28, 2012
Stray elk renews concerns about deer farm security Minnesota
Monday, June 11, 2012
*** OHIO Captive deer escapees and non-reporting ***
Thursday, October 23, 2014
FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE PRESERVE
Thursday, April 02, 2015
OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's
properties near Millersburg
Wednesday, February 11, 2015
World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with
two counts of tampering with evidence
Friday, April 04, 2014
*** Wisconsin State officials kept silent on CWD discovery at game farm ***
Tuesday, October 07, 2014
*** Wisconsin white-tailed deer tested positive for CWD on a Richland
County breeding farm, and a case of CWD has been discovered on a Marathon County
hunting preserve
Wednesday, March 04, 2015
Disease sampling results provide current snapshot of CWD in Wisconsin
finding 324 positive detections statewide in 2014
what about CWD infection rates on some of these game farms ???
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats)
FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever
in a North American captive herd. RECOMMENDATION: That the Board approve the
purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat
Program inPortage County and approve the restrictions on public use of the
site.SUMMARY:
For Immediate Release Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or
Dustin.VandeHoef@IowaAgriculture.gov
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED
79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today
announced that the test results from the depopulation of a quarantined captive
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the
herd, tested positive for Chronic Wasting Disease (CWD). The owners of the
quarantined herd have entered into a fence maintenance agreement with the Iowa
Department of Agriculture and Land Stewardship,which requires the owners to
maintain the 8’ foot perimeter fence around the herd premises for five years
after the depopulation was complete and the premises had been cleaned and
disinfected CWD is a progressive, fatal, degenerative neurological disease of
farmed and free-ranging deer, elk, and moose. There is no known treatment or
vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA
Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services
Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting
preserve in southeast IA was positive for CWD. An investigation revealed that
this animal had just been introduced into the hunting preserve from the
above-referenced captive deer herd in north-central Iowa.The captive deer herd
was immediately quarantined to prevent the spread of CWD. The herd has remained
in quarantine until its depopulation on August 25 to 27, 2014.The Iowa
Department of Agriculture and Land Stewardship participated in a joint operation
to depopulate the infected herd with USDA Veterinary Services, which was the
lead agency, and USDA Wildlife Services.Federal indemnity funding became
available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at
that time, which was before depopulation and testing, at $1,354,250. At that
time a herd plan was developed with the owners and officials from USDA and the
Iowa Department of Agriculture and Land Stewardship.Once the depopulation was
complete and the premises had been cleaned and disinfected, indemnity of
$917,100.00 from the USDA has been or will be paid to the owners as compensation
for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land
Stewardship operates a voluntary CWD program for farms that sell live animals.
Currently 145 Iowa farms participate in the voluntary program. The
above-referenced captive deer facility left the voluntary CWD program prior to
the discovery of the disease as they had stopped selling live animals. All deer
harvested in a hunting preserve must be tested for CWD. -30-
*** see history of this CWD blunder here ;
On June 5, 2013, DNR conducted a fence inspection, after gaining approval
from surrounding landowners, and confirmed that the fenced had beencut or
removed in at least four separate locations; that the fence had degraded and was
failing to maintain the enclosure around the Quarantined Premises in at least
one area; that at least three gates had been opened;and that deer tracks were
visible in and around one of the open areas in the sand on both sides of the
fence, evidencing movement of deer into the Quarantined Premises.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration’s BSE Feed Regulation
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin)
from deer and elk is prohibited for use in feed for ruminant animals. With
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may
not be used for any animal feed or feed ingredients. For elk and deer considered
at high risk for CWD, the FDA recommends that these animals do not enter the
animal feed system. However, this recommendation is guidance and not a
requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD
eradication zones and
2) deer and elk that at some time during the 60-month period prior to
slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive
animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from
the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin
processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk
protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data
on the amount of deer and/or elk protein possibly being imported in these
products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs
of CWD in affected adults are weight loss and behavioural changes that can span
weeks or months (Williams, 2005). In addition, signs might include excessive
salivation, behavioural alterations including a fixed stare and changes in
interaction with other animals in the herd, and an altered stance (Williams,
2005). These signs are indistinguishable from cervids experimentally infected
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be
introduced into countries with BSE such as GB, for example, infected deer
populations would need to be tested to differentiate if they were infected with
CWD or BSE to minimise the risk of BSE entering the human food-chain via
affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and
can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil
and surrounding environment is contaminated with CWD prions and in a
bioavailable form. In rural areas where CWD has not been reported and deer are
present, there is a greater than negligible risk the soil is contaminated with
CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving
between GB and North America, the probability of at least one person travelling
to/from a CWD affected area and, in doing so, contaminating their clothing,
footwear and/or equipment prior to arriving in GB is greater than negligible.
For deer hunters, specifically, the risk is likely to be greater given the
increased contact with deer and their environment. However, there is significant
uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher
probability of exposure to CWD transferred to the environment than wild deer
given the restricted habitat range and higher frequency of contact with tourists
and returning GB residents.
snip...
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced
into Great Britain? A Qualitative Risk Assessment October 2012
CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD
$$$
CWD, spreading it around...
for the game farm industry, and their constituents, to continue to believe
that they are _NOT_, and or insinuate that they have _NEVER_ been part of the
problem, will only continue to help spread cwd. the game farming industry, from
the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet
mills, shooting pens, to large ranches, are not the only problem, but it is
painfully obvious that they have been part of the problem for decades and
decades, just spreading it around, as with transportation and or exportation and
or importation of cervids from game farming industry, and have been proven to
spread cwd. no one need to look any further than South Korea blunder ;
===========================================
spreading cwd around...
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of
farmed elk in Saskatchewan in a single epidemic. All of these herds were
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease
eradication program. Animals, primarily over 12 mo of age, were tested for the
presence CWD prions following euthanasia. Twenty-one of the herds were linked
through movements of live animals with latent CWD from a single infected source
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily
infected herds.
***The source herd is believed to have become infected via importation of
animals from a game farm in South Dakota where CWD was subsequently diagnosed
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation
of these herds was observed. Within-herd transmission was observed on some
farms, while the disease remained confined to the introduced animals on other
farms.
spreading cwd around...
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the
Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim,
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research
Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion
disease in native North America deer and Rocky mountain elks. The disease is a
unique member of the transmissible spongiform encephalopathies (TSEs), which
naturally affects only a few species. CWD had been limited to USA and Canada
until 2000.
On 28 December 2000, information from the Canadian government showed that a
total of 95 elk had been exported from farms with CWD to Korea. These consisted
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72
elk in 1997, which had been held in pre export quarantine at the “source
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD
surveillance program was initiated by the Ministry of Agriculture and Forestry
(MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994
were impossible to identify. CWD control measures included stamping out of all
animals in the affected farm, and thorough cleaning and disinfection of the
premises. In addition, nationwide clinical surveillance of Korean native
cervids, and improved measures to ensure reporting of CWD suspect cases were
implemented.
Total of 9 elks were found to be affected. CWD was designated as a
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and
2005.
Since February of 2005, when slaughtered elks were found to be positive,
all slaughtered cervid for human consumption at abattoirs were designated as
target of the CWD surveillance program. Currently, CWD laboratory testing is
only conducted by National Reference Laboratory on CWD, which is the Foreign
Animal Disease Division (FADD) of National Veterinary Research and Quarantine
Service (NVRQS).
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the
human consumption was confirmed as positive. Consequently, all cervid – 54 elks,
41 Sika deer and 5 Albino deer – were culled and one elk was found to be
positive. Epidemiological investigations were conducted by Veterinary
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary
services.
Epidemiologically related farms were found as 3 farms and all cervid at
these farms were culled and subjected to CWD diagnosis. Three elks and 5
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and
confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were
linked to the importation of elks from Canada in 1994 based on circumstantial
evidences.
In December 2010, one elk was confirmed as positive at Farm 5.
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer –
were culled and one Manchurian Sika deer and seven Sika deer were found to be
positive. This is the first report of CWD in these sub-species of deer.
Epidemiological investigations found that the owner of the Farm 2 in CWD
outbreaks in July 2010 had co-owned the Farm 5.
In addition, it was newly revealed that one positive elk was introduced
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as
negative.
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
Chronic wasting disease (CWD) is a widespread and expanding prion disease
in free-ranging and captive cervid species in North America. The zoonotic
potential of CWD prions is a serious public health concern. Current literature
generated with in vitro methods and in vivo animal models (transgenic mice,
macaques and squirrel monkeys) reports conflicting results. The susceptibility
of human CNS and peripheral organs to CWD prions remains largely unresolved. In
our earlier bioassay experiments using several humanized transgenic mouse lines,
we detected protease-resistant PrPSc in the spleen of two out of 140 mice that
were intracerebrally inoculated with natural CWD isolates, but PrPSc was not
detected in the brain of the same mice. Secondary passages with such
PrPSc-positive CWD-inoculated humanized mouse spleen tissues led to efficient
prion transmission with clear clinical and pathological signs in both humanized
and cervidized transgenic mice. Furthermore, a recent bioassay with natural CWD
isolates in a new humanized transgenic mouse line led to clinical prion
infection in 2 out of 20 mice. These results indicate that the CWD prion has the
potential to infect human CNS and peripheral lymphoid tissues and that there
might be asymptomatic human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
The propensity for trans-species prion transmission is related to the
structural characteristics of the enciphering and heterologous PrP, but the
exact mechanism remains mostly mysterious. Studies of the effects of primary or
tertiary prion protein structures on trans-species prion transmission have
relied primarily upon animal bioassays, making the influence of prion protein
structure vs. host co-factors (e.g. cellular constituents, trafficking, and
innate immune interactions) difficult to dissect. As an alternative strategy, we
used real-time quakinginduced conversion (RT-QuIC) to investigate trans-species
prion conversion.
To assess trans-species conversion in the RT-QuIC system, we compared
chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions,
as well as feline CWD (fCWD) and feline spongiform encephalopathy (FSE). Each
prion was seeded into each host recombinant PrP (full-length rPrP of
white-tailed deer, bovine or feline). We demonstrated that fCWD is a more
efficient seed for feline rPrP than for white-tailed deer rPrP, which suggests
adaptation to the new host.
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD. ***This insinuates that, at the level
of protein:protein interactions, the barrier preventing transmission of CWD to
humans is less robust than previously estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls,
and Candace Mathiason Colorado State University; Fort Collins, CO USA
Chronic wasting disease (CWD) is the transmissible spongiform
encephalopathy (TSE), of free-ranging and captive cervids (deer, elk and moose).
The presence of infectious prions in the tissues, bodily fluids and
environments of clinical and preclinical CWD-infected animals is thought to
account for its high transmission efficiency. Recently it has been recognized
that mother to offspring transmission may contribute to the facile transmission
of some TSEs. Although the mechanism behind maternal transmission is not yet
known, the extended asymptomatic TSE carrier phase (lasting years to decades)
suggests that it may have implications in the spread of prions.
Placental trafficking and/or secretion in milk are 2 means by which
maternal prion transmission may occur. In these studies we explore these avenues
during early and late infection using a transgenic mouse model expressing cervid
prion protein. Na€ıve and CWD-infected dams were bred at both timepoints, and
were allowed to bear and raise their offspring. Milk was collected from the dams
for prion analysis, and the offspring were observed for TSE disease progression.
Terminal tissues harvested from both dams and offspring were analyzed for
prions.
We have demonstrated that
(1) CWDinfected TgCerPRP females successfully breed and bear offspring, and
(2) the presence of PrPCWD in reproductive and mammary tissue from
CWD-infected dams.
We are currently analyzing terminal tissue harvested from offspring born to
CWD-infected dams for the detection of PrPCWD and amplification competent
prions. These studies will provide insight into the potential mechanisms and
biological significance associated with mother to offspring transmission of
TSEs.
==============
P.157: Uptake of prions into plants
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole
Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife
Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI
USA
Soil may preserve chronic wasting disease (CWD) and scrapie infectivity in
the environment, making consumption or inhalation of soil particles a plausible
mechanism whereby na€ıve animals can be exposed to prions. Plants are known to
absorb a variety of substances from soil, including whole proteins, yet the
potential for plants to take up abnormal prion protein (PrPTSE) and preserve
prion infectivity is not known. In this study, we assessed PrPTSE uptake into
roots using laser scanning confocal microscopy with fluorescently tagged PrPTSE
and we used serial protein misfolding cyclic amplification (sPMCA) and detect
and quantify PrPTSE levels in plant aerial tissues. Fluorescence was identified
in the root hairs of the model plant Arabidopsis thaliana, as well as the crop
plants alfalfa (Medicago sativa), barley (Hordeum vulgare) and tomato (Solanum
lycopersicum) upon exposure to tagged PrPTSE but not a tagged control
preparation. Using sPMCA, we found evidence of PrPTSE in aerial tissues of A.
thaliana, alfalfa and maize (Zea mays) grown in hydroponic cultures in which
only roots were exposed to PrPTSE. Levels of PrPTSE in plant aerial tissues
ranged from approximately 4 £ 10 ¡10 to 1 £ 10 ¡9 g PrPTSE g ¡1 plant dry weight
or 2 £ 105 to 7 £ 106 intracerebral ID50 units g ¡1 plant dry weight. Both stems
and leaves of A. thaliana grown in culture media containing prions are
infectious when intracerebrally-injected into mice. ***Our results suggest that
prions can be taken up by plants and that contaminated plants may represent a
previously unrecognized risk of human, domestic species and wildlife exposure to
prions.
===========
***Our results suggest that prions can be taken up by plants and that
contaminated plants may represent a previously unrecognized risk of human,
domestic species and wildlife exposure to prions.***
SEE ;
Friday, May 15, 2015
Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions
Report
============
P.19: Characterization of chronic wasting disease isolates from freeranging
deer (Odocoileus sp) in Alberta and Saskatchewan, Canada
Camilo Duque Velasquez1, Chiye Kim1, Nathalie Daude1, Jacques van der
Merwe1, Allen Herbst1, Trent Bollinger2, Judd Aiken1, and Debbie McKenzie1
1Centre for Prions and Protein Folding Diseases; University of Alberta;
Edmonton, Canada; 2Western College of Veterinary Medicine; University of
Saskatchewan; Saskatoon, Canada
Chronic wasting disease (CWD) is an emerging prion disease of free ranging
and captive species of Cervidae. In North America, CWD is enzootic in some wild
cervid populations and can circulate among different deer species. The
contagious nature of CWD prions and the variation of cervid PRNP alleles, which
influence host susceptibility, can result in the emergence and adaptation of
different CWD strains. These strains may impact transmission host range, disease
diagnosis, spread dynamics and efficacy of potential vaccines. We are
characterizing different CWD agents by biochemical analysis of the PrPCWD
conformers, propagation in vitro cell assays1 and by comparing transmission
properties and neuropathology in Tg33 (Q95G96) and Tg60 (Q95S96) mice.2 Although
Tg60 mice expressing S96- PrPC have been shown resistant to CWD infectivity from
various cervid species,2,3
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived
from experimental infection of deer expressing H95G96-PrPC. The diversity of
strains present in free-ranging mule deer (Odocoileus hemionus) and white-tailed
deer (Odocoileus virginianus) from Alberta and Saskatchewan is being determined
and will allow us to delineate the properties of CWD agents circulating in CWD
enzootic cervid populations of Canada.
References
1. van der Merwe J, Aiken J, Westaway D, McKenzie D. The standard scrapie
cell assay: Development, utility and prospects. Viruses 2015; 7(1):180–198;
PMID:25602372; http://dx.doi.org/10.3390/v7010180
2. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller
M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting
disease in transgenic mice expressing a naturally occurring allelic variant of
deer prion protein. J Virol 2007; 81(9):4533–4539; PMID: 17314157; http://dx. doi.org/10.1128/JVI.02762-06
3. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison
of chronic wasting disease infectivity from deer with variation at prion protein
residue 96. J Virol 2011; 85(17):9235–9238; PMID: 21697479; http://dx.doi.org/10.1128/JVI.00790-11
=========
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived
from experimental infection of deer expressing H95G96-PrPC.
==========
P.136: Mother to offspring transmission of CWD—Detection in fawn tissues
using the QuIC assay
Amy Nalls, Erin McNulty, Clare Hoover, Jeanette Hayes-Klug, Kelly Anderson,
Edward Hoover, and Candace Mathiason Colorado State University; Fort Collins, CO
USA
To investigate the role mother to offspring transmission plays in chronic
wasting disease (CWD), we have employed a small, polyestrous breeding, indoor
maintainable cervid model, the Reeves’ muntjac deer. Muntjac doe were inoculated
with CWD and tested positive by lymphoid biopsy at 4 months post inoculation.
From these CWD-infected doe, we obtained 3 viable fawns. These fawns tested
IHC-positive for CWD by lymphoid biopsy as early as 40 d post birth, and all
have been euthanized due to clinical disease at 31, 34 and 59 months post birth.
The QuIC assay demonstrates sensitivity and specificity in the detection of
conversion competent prions in peripheral IHC-positive tissues including tonsil,
mandibular, partotid, retropharyngeal, and prescapular lymph nodes, adrenal
gland, spleen and liver. In summary, using the muntjac deer model, we have
demonstrated CWD clinical disease in offspring born to CWD-infected doe and
found that the QuIC assay is an effective tool in the detection of prions in
peripheral tissues. ***Our findings demonstrate that transmission of prions from
mother to offspring can occur, and may be underestimated for all prion
diseases.
===============
***Our findings demonstrate that transmission of prions from mother to
offspring can occur, and may be underestimated for all prion diseases.
===============
I strenuously once again urge the FDA and its industry constituents, to
make it MANDATORY that all ruminant feed be banned to all ruminants, and this
should include all cervids as soon as possible for the following
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from
deer and elk is prohibited for use in feed for ruminant animals. With regards to
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used
for any animal feed or feed ingredients. For elk and deer considered at high
risk for CWD, the FDA recommends that these animals do not enter the animal feed
system.
***However, this recommendation is guidance and not a requirement by law.
======
31 Jan 2015 at 20:14 GMT
*** Ruminant feed ban for cervids in the United States? ***
31 Jan 2015 at 20:14 GMT
Friday, May 22, 2015
*** Chronic Wasting Disease and Program Updates - 2014 NEUSAHA Annual
Meeting 12-14 May 2014 ***
Saturday, May 30, 2015
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS
Wednesday, June 10, 2015
Zoonotic Potential of CWD Prions
LATE-BREAKING ABSTRACTS
PRION CONFERENCE 2014 HELD IN ITALY RECENTLY CWD BSE TSE UPDATE
> First transmission of CWD to transgenic mice over-expressing bovine
prion protein gene (TgSB3985)
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping
up the future of prion research
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First
transmission of CWD to transgenic mice over-expressing bovine prion protein gene
(TgSB3985)
P.126: Successful transmission of chronic wasting disease (CWD) into mice
over-expressing bovine prion protein (TgSB3985)
Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana
Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1
1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of
California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA
Keywords: chronic wasting disease, transmission, transgenic mouse, bovine
prion protein
Background. CWD is a disease affecting wild and farmraised cervids in North
America. Epidemiological studies provide no evidence of CWD transmission to
humans. Multiple attempts have failed to infect transgenic mice expressing human
PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal
human PrPC in vitro provides additional evidence that transmission of CWD to
humans cannot be easily achieved. However, a concern about the risk of CWD
transmission to humans still exists. This study aimed to establish and
characterize an experimental model of CWD in TgSB3985 mice with the following
attempt of transmission to TgHu mice.
Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were
intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse
(CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly
injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD)
or elk (CWD/Elk). Animals were observed for clinical signs of neurological
disease and were euthanized when moribund. Brains and spleens were removed from
all mice for PrPCWD detection by Western blotting (WB). A histological analysis
of brains from selected animals was performed: brains were scored for the
severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain
regions.
Results. Clinical presentation was consistent with TSE. More than 90% of
TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres
in the brain but only mice in the latter group carried PrPCWD in their spleens.
We found evidence for co-existence or divergence of two CWD/ Tga20 strains based
on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk
or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen
by WB. However, on neuropathological examination we found presence of amyloid
plaques that stained positive for PrPCWD in three CWD/WTD- and two
CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and
CWD/Elkinfected mice were similar but unique as compared to profiles of BSE,
BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM
mice tested positive for PrPCWD by WB or by immunohistochemical detection.
Conclusions. To our knowledge, this is the first established experimental
model of CWD in TgSB3985. We found evidence for co-existence or divergence of
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice.
Finally, we observed phenotypic differences between cervid-derived CWD and
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway
to characterize these strains.
PRION 2014 CONFERENCE
CHRONIC WASTING DISEASE CWD
A FEW FINDINGS ;
Conclusions. To our knowledge, this is the first established experimental
model of CWD in TgSB3985. We found evidence for co-existence or divergence of
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice.
Finally, we observed phenotypic differences between cervid-derived CWD and
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway
to characterize these strains.
We conclude that TSE infectivity is likely to survive burial for long time
periods with minimal loss of infectivity and limited movement from the original
burial site. However PMCA results have shown that there is the potential for
rainwater to elute TSE related material from soil which could lead to the
contamination of a wider area. These experiments reinforce the importance of
risk assessment when disposing of TSE risk materials.
The results show that even highly diluted PrPSc can bind efficiently to
polypropylene, stainless steel, glass, wood and stone and propagate the
conversion of normal prion protein. For in vivo experiments, hamsters were ic
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters,
inoculated with 263K-contaminated implants of all groups, developed typical
signs of prion disease, whereas control animals inoculated with non-contaminated
materials did not.
Our data establish that meadow voles are permissive to CWD via peripheral
exposure route, suggesting they could serve as an environmental reservoir for
CWD. Additionally, our data are consistent with the hypothesis that at least two
strains of CWD circulate in naturally-infected cervid populations and provide
evidence that meadow voles are a useful tool for CWD strain typing.
Conclusion. CWD prions are shed in saliva and urine of infected deer as
early as 3 months post infection and throughout the subsequent >1.5 year
course of infection. In current work we are examining the relationship of
prionemia to excretion and the impact of excreted prion binding to surfaces and
particulates in the environment.
Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC)
are shed in urine of infected deer as early as 6 months post inoculation and
throughout the subsequent disease course. Further studies are in progress
refining the real-time urinary prion assay sensitivity and we are examining more
closely the excretion time frame, magnitude, and sample variables in
relationship to inoculation route and prionemia in naturally and experimentally
CWD-infected cervids.
Conclusions. Our results suggested that the odds of infection for CWD is
likely controlled by areas that congregate deer thus increasing direct
transmission (deer-to-deer interactions) or indirect transmission
(deer-to-environment) by sharing or depositing infectious prion proteins in
these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely
controlled by separate factors than found in the Midwestern and endemic areas
for CWD and can assist in performing more efficient surveillance efforts for the
region.
Conclusions. During the pre-symptomatic stage of CWD infection and
throughout the course of disease deer may be shedding multiple LD50 doses per
day in their saliva. CWD prion shedding through saliva and excreta may account
for the unprecedented spread of this prion disease in nature.
P.28: Modeling prion species barriers and the new host effect using RT-QuIC
Kristen A Davenport, Davin M Henderson, Candace K Mathiason, and Edward A
Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA
The propensity for trans-species prion transmission is related to the
structural characteristics of the enciphering and heterologous PrP, but the
exact mechanism remains mostly mysterious.
Studies of the effects of primary or tertiary prion protein
www.landesbioscience.com Prion 37 structures on trans-species prion transmission
have relied upon animal bioassays, making the influence of prion protein
structure vs. host co-factors (e.g. cellular constituents, trafficking, and
innate immune interactions) difficult to dissect.
As an alternative strategy, we are using real-time quaking-induced
conversion (RT-QuIC) to investigate the propensity for and the kinetics of
trans-species prion conversion. RT-QuIC has the advantage of providing more
defined conditions of seeded conversion to study the specific role of native
PrP:PrPRES interactions as a component of the species barrier.
We are comparing chronic wasting disease (CWD) and bovine spongiform
encephalopathy (BSE) prions by seeding each prion into its native host recPrP
(full-length bovine recPrP, or white tail deer recPrP) vs. into the heterologous
species.
Upon establishing the characteristics of intra-species and inter-species
prion seeding for CWD and BSE prions, we will evaluate the seeding kinetics and
cross-species seeding efficiencies of BSE and CWD passaged into a common new
host—feline—shown to be a permissive host for both CWD and BSE.
*** We hypothesize that both BSE prions and CWD prions passaged through
felines will seed human recPrP more efficiently than BSE or CWD from the
original hosts, evidence that the new host will dampen the species barrier
between humans and BSE or CWD. The new host effect is particularly relevant as
we investigate potential means of trans-species transmission of prion disease.
Chronic Wasting Disease Susceptibility of Four North American Rodents
Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A.
Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel
J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary
Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI
53706, USA 2US Geological Survey, National Wildlife Health Center, 6006
Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural
Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary
Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author
email: cjohnson@svm.vetmed.wisc.edu
We intracerebrally challenged four species of native North American rodents
that inhabit locations undergoing cervid chronic wasting disease (CWD)
epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed
mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles
(Myodes gapperi). The inocula were prepared from the brains of hunter-harvested
white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles
proved to be most susceptible, with a median incubation period of 272 days.
Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the
brains of all challenged meadow voles. Subsequent passages in meadow voles lead
to a significant reduction in incubation period. The disease progression in
red-backed voles, which are very closely related to the European bank vole (M.
glareolus) which have been demonstrated to be sensitive to a number of TSEs, was
slower than in meadow voles with a median incubation period of 351 days. We
sequenced the meadow vole and red-backed vole Prnp genes and found three amino
acid (AA) differences outside of the signal and GPI anchor sequences. Of these
differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is
particularly intriguing due its postulated involvement in "rigid loop" structure
and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5
years post-inoculation, but appear to be exhibiting a high degree of disease
penetrance. White-footed mice have an even longer incubation period but are also
showing high penetrance. Second passage experiments show significant shortening
of incubation periods. Meadow voles in particular appear to be interesting lab
models for CWD. These rodents scavenge carrion, and are an important food source
for many predator species. Furthermore, these rodents enter human and domestic
livestock food chains by accidental inclusion in grain and forage. Further
investigation of these species as potential hosts, bridge species, and
reservoirs of CWD is required.
please see ;
Monday, August 8, 2011
*** Susceptibility of Domestic Cats to CWD Infection ***
Oral.29: Susceptibility of Domestic Cats to CWD Infection
Amy Nalls, Nicholas J. Haley, Jeanette Hayes-Klug, Kelly Anderson, Davis M.
Seelig, Dan S. Bucy, Susan L. Kraft, Edward A. Hoover and Candace K.
Mathiason†
Colorado State University; Fort Collins, CO USA†Presenting author; Email:
ckm@lamar.colostate.edu
Domestic and non-domestic cats have been shown to be susceptible to one
prion disease, feline spongiform encephalopathy (FSE), thought to be transmitted
through consumption of bovine spongiform encephalopathy (BSE) contaminated meat.
Because domestic and free ranging felids scavenge cervid carcasses, including
those in CWD affected areas, we evaluated the susceptibility of domestic cats to
CWD infection experimentally. Groups of n = 5 cats each were inoculated either
intracerebrally (IC) or orally (PO) with CWD deer brain homogenate. Between
40–43 months following IC inoculation, two cats developed mild but progressive
symptoms including weight loss, anorexia, polydipsia, patterned motor behaviors
and ataxia—ultimately mandating euthanasia. Magnetic resonance imaging (MRI) on
the brain of one of these animals (vs. two age-matched controls) performed just
before euthanasia revealed increased ventricular system volume, more prominent
sulci, and T2 hyperintensity deep in the white matter of the frontal hemisphere
and in cortical grey distributed through the brain, likely representing
inflammation or gliosis. PrPRES and widely distributed peri-neuronal vacuoles
were demonstrated in the brains of both animals by immunodetection assays. No
clinical signs of TSE have been detected in the remaining primary passage cats
after 80 months pi. Feline-adapted CWD was sub-passaged into groups (n=4 or 5)
of cats by IC, PO, and IP/SQ routes. Currently, at 22 months pi, all five IC
inoculated cats are demonstrating abnormal behavior including increasing
aggressiveness, pacing, and hyper responsiveness.
*** Two of these cats have developed rear limb ataxia. Although the limited
data from this ongoing study must be considered preliminary, they raise the
potential for cervid-to-feline transmission in nature.
AD.63:
Susceptibility of domestic cats to chronic wasting disease
Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin
Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1 1Colorado
State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN
USA
Domestic and nondomestic cats have been shown to be susceptible to feline
spongiform encephalopathy (FSE), almost certainly caused by consumption of
bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and
free-ranging nondomestic felids scavenge cervid carcasses, including those in
areas affected by chronic wasting disease (CWD), we evaluated the susceptibility
of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5
cats each were inoculated either intracerebrally (IC) or orally (PO) with
CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated
cats developed signs consistent with prion disease, including a stilted gait,
weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail
tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from
these two cats were pooled and inoculated into cohorts of cats by IC, PO, and
intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted
CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased
incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the
symptomatic cats by western blotting and immunohistochemistry and abnormalities
were seen in magnetic resonance imaging, including multifocal T2 fluid
attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size
increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4
IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns
consistent with the early stage of feline CWD.
*** These results demonstrate that CWD can be transmitted and adapted to
the domestic cat, thus raising the issue of potential cervid-to- feline
transmission in nature.
www.landesbioscience.com
PO-081: Chronic wasting disease in the cat— Similarities to feline
spongiform encephalopathy (FSE)
FELINE SPONGIFORM ENCEPHALOPATHY FSE
2011
*** After a natural route of exposure, 100% of white-tailed deer were
susceptible to scrapie.
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF
THE STUDIES ON CWD TRANSMISSION TO CATTLE ;
----- Original Message -----
From: David Colby To: flounder9@verizon.net
Cc: stanley@XXXXXXXX
Sent: Tuesday, March 01, 2011 8:25 AM
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 +
Author Affiliations
Dear Terry Singeltary,
Thank you for your correspondence regarding the review article Stanley
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner
asked that I reply to your message due to his busy schedule. We agree that the
transmission of CWD prions to beef livestock would be a troubling development
and assessing that risk is important. In our article, we cite a peer-reviewed
publication reporting confirmed cases of laboratory transmission based on
stringent criteria. The less stringent criteria for transmission described in
the abstract you refer to lead to the discrepancy between your numbers and ours
and thus the interpretation of the transmission rate. We stand by our assessment
of the literature--namely that the transmission rate of CWD to bovines appears
relatively low, but we recognize that even a low transmission rate could have
important implications for public health and we thank you for bringing attention
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor
Department of Chemical Engineering University of Delaware
===========END...TSS==============
Thursday, July 03, 2014
How Chronic Wasting Disease is affecting deer population and what’s the
risk to humans and pets?
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
Wednesday, March 04, 2015
*** Disease sampling results provide current snapshot of CWD in Wisconsin
finding 324 positive detections statewide in 2014
Tuesday, October 07, 2014
*** Wisconsin white-tailed deer tested positive for CWD on a Richland
County breeding farm, and a case of CWD has been discovered on a Marathon County
hunting preserve
Terry S. Singeltary Sr.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home