Thursday, June 23, 2016

TEXAS A&M AGRILIFE EXTENSION A Guide to Chronic Wasting Disease (CWD) in Texas Cervids

TEXAS A&M AGRILIFE EXTENSION

 

A Guide to Chronic Wasting Disease (CWD) in Texas Cervids

 

John M. Tomeček Ph.D., Assistant Professor and Extension Wildlife Specialist, Department of Wildlife and Fisheries Sciences, Texas A&M University

 

Terry Hensley MS., DVM, Assistant Agency Director and Extension Veterinarian, Texas A&M Veterinary Medicine Diagnostic Laboratory, Texas A&M University

 

Walt E. Cook Ph.D., DVM, Clinical Associate Professor, Department of Veterinary Pathobiology, Texas A&M University

 

Bob Dittmar DVM, Wildlife Veterinarian, Texas Parks and Wildlife Department

 

1

 

Chronic Wasting Disease (CWD) has a dramatic impact on cervid* management in regions where it occurs. For wildlife professionals and veterinarians, the disease presents clear challenges. For people engaged in hunting or hunting-related businesses, the disease creates serious concerns soon after it is discovered in their area.

 

CWD has been present in far west Texas since 2012, but because early infections were in remote areas, the disease is still little understood throughout most of the state. Some information about CWD has been distorted, and myths have circulated through the general public. Given CWD’s potential threat to cervid populations, and the consequent economic impacts related to hunting, the people of Texas need to have an accurate understanding of the disease, its diagnosis, management, and implications for the future.

 

What is Chronic Wasting Disease?

 

CWD affects the nervous system in cervids—that is, mule deer, white-tailed deer, elk, and moose. It is one disease in a family called the transmissible spongiform encephalopathies (TSEs), such as scrapie in domestic sheep and goats, bovine spongiform encephalopathy (BSE), and Creutzfeldt-Jakob Disease (CJD) in humans. CWD only infects cervids and, like most TSEs, cannot naturally be transmitted to noncervid hosts. As its name suggests, CWD causes slow progressive weight loss and degraded body condition, abnormal behavior, and ultimately death1. These symptoms are caused by the deposition of abnormal proteins (prions) in nervous system tissues. These abnormal prion proteins accumulate and then interrupt nervous system functions.

 

Cervid populations in Texas include native species (white-tailed deer, mule deer, and elk) as well as exotics (red deer, roe deer, sika, axis). Given the size and diversity of these populations, this disease could potentially affect many animals. History of Chronic Wasting Disease

 

The precise location and mode of CWD development is not known. The condition was first noted in 1967 in research mule deer herds in Colorado, but not confirmed as a TSE until 1978. By the late 1970s, CWD was recognized in Colorado and Wyoming in captive mule deer, black-tailed deer, and elk. In 1981, the disease was identified in wild elk in Colorado, and

 

*Underlined terms are in the glossary on page 9 Photo source: Dr. Terry Kreeger, Wyoming Game and Fish Department

 

2

 

shortly thereafter in Wyoming elk. In 1985, it was identified in mule deer in Colorado and Wyoming and in white-tailed deer of both states in 1990. At that point, an endemic zone for the disease was established in those states. CWD was not detected outside that endemic zone until 1996.

 

In the mid-1990s, CWD spread to captive herds in Oklahoma, Nebraska and Saskatchewan. Wild cervids in Saskatchewan were affected by 2000. In 2001, CWD was identified in wild white-tailed deer in South Dakota and in a captive herd in Nebraska. In the early 2000s, CWD spread across New Mexico, Illinois, Alberta, Wisconsin, Utah, Kansas, and New York.

 

Growing concern precipitated the creation of CWD control efforts at the federal level. Additional funding was directed toward researching the disease and developing better testing methods. In the 2010s, the disease expanded into Virginia, Missouri, Minnesota, Texas, Iowa, Ohio, and Pennsylvania. In 2015, Michigan confirmed the first case of CWD in wild white-tailed deer. Currently 23 states and two Canadian provinces have CWD infections in elk, white-tailed deer, moose, red deer, and black-tailed deer2.

 


 

3

 

Chronic Wasting Disease in Texas

 

The Texas Parks and Wildlife Department (TPWD) has sampled for CWD since 2002 from hunter harvest, road kill and clinical animals. This sampling represents Texas’ proactive stance on the issue. To date, more than 32,000 samples have been collected from free-ranging white-tailed and mule deer across the state. More than 12,000 samples have been collected by permitted deer breeders in Texas as part of the surveillance program to move deer. In 2012, CWD was detected in free-ranging mule deer in the Hueco Mountains in El Paso and Hudspeth counties in West Texas. To contain the disease, TPWD responded by restricting unnatural movement of animals and imposing mandatory sampling of hunter harvested animals in the area. Enhanced surveillance continues in that area to determine the extent of the disease. To date, seven mule deer have tested positive for CWD—all have been located in the Hueco Mountains area.

 

In July 2015, TPWD and the Texas Animal Health Commission confirmed a case of CWD in a captive white-tailed deer in Medina County. This was the first identified instance of the disease in captive white-tailed deer in Texas. Follow-up testing found three more positive animals in the herd. A deer from this facility that was moved to another facility, subsequently also tested positive—for a total of five. Efforts are underway to determine the source of the animal’s infection, test animals that have left the index facility and to formulate management strategies. TPWD is also increasing surveillance of free-ranging deer throughout the state.

 

Epidemiology

 

Clinical Signs

 

The most obvious clinical sign of CWD is the progressive loss of weight and body condition, despite continued feeding activity. However, cervids may show subtle behavior and coat abnormalities before weight loss becomes notable. As the disease progresses, infected animals may drink and urinate excessively. Behavior alters significantly as the disease progresses, and may include sluggishness, decreased activity, blank expressions, sawhorse stance, and repetitive movement patterns. In some cases, animals may drool excessively and grind their teeth.

 

It was thought that the disease incubated for 16 months before the animal showed clinical signs. Then animal sheds of infected prions could beginning from 16 to 36 months1. More recent research indicates that transmission is possible through prions shed in feces in less than 16 months3. This suggests that individuals that appear healthy can still transmit CWD. The presence of signs alone, however, is not a clear diagnosis of the disease because other disorders can cause similar signs.

 

Photo source: Dr. Terry Kreeger, Wyoming Game and Fish Department

 

4

 

Transmission

 

CWD is transmitted through direct animal-to-animal contact or indirect contact with prion-contaminated feces, urine, or saliva from infected individuals. Animals are typically 3 to 4 years old before clinical signs appear, but there are documented cases of first signs of the disease showing in animals as young as 18 months and as old as 13 years. It is uncommon for yearlings to exhibit clinical signs. Speculation holds that males can be exposed when removing antler velvet by rubbing this soft tissue on structures in the environment. Exposure to prions from other aspects of the rut is likely more important. Infectious agents shed into the environment from carcasses are likely also important4,5. Recent research indicates that some plant structures may retain infected prions from these transmission routes, preserve them in the environment, and act as reservoirs for the disease6. How important this reservoir mechanism is to maintaining or spreading CWD is unknown.

 

Previous efforts to eradicate CWD from captive cervid facilities prove the infectious agents can remain infectious in the environment for years. They are difficult, if not impossible, to inactivate or remove under current management and disinfection strategies. For this reason, indirect transmission may be more important than direct transmission. Cervid-dense areas, such as holding pens or supplemental feeding stations may serve as transmission hot spots. The movement of live animals or infected carcasses may cause the disease to spread over long distances. Though experts speculate that initial transmission occurred when captive cervids came into contact with wild populations, no clear evidence supports this notion. Furthermore, it is now likely that transmission between wild and captive populations has occurred in both directions. This disease, however, is limited to deer and related species, and there is no reason to believe it can be transmitted to domestic livestock7.

 

Diagnosis

 

Though animals may be infected for some time, clinical signs are usually the first indication that an animal may have the disease. Clinical signs, therefor, are evidence that an animal is in late infection and should be taken seriously. Unfortunately, these signs can be difficult to distinguish from other cervid diseases, such as chronic hemorrhagic disease, brain abscess, meningitis, encephalitis, malnutrition, and pneumonia. The only definitive diagnosis must come from laboratory testing of brain, lymph node, or tonsil tissue from sacrificed animals. Live animal tests have been used in research, but are not currently approved for

 

Photo source: Wisconsin Department of Natural Resources

 

5

 

public use by regulatory agencies. Although lesions may appear on the animal as a result of weight loss and degraded body condition, the only way to definitively diagnose CWD is by identifying lesions and prion deposition in nervous or lymphoid tissues at a microscopic level. Necropsy often indicates aspiration pneumonia as the ultimate cause of death. For this reason, it is important to test for CWD when any deer appears to die of pneumonia.

 

Testing procedures

 

If you want to have an animal tested, contact your local Texas Parks and Wildlife Department wildlife biologist first. You must deliver specific intact tissues to the laboratory and taking samples requires specific training and experience. In most cases, brain stem tissue called the obex is used to test for CWD prions. Another important tissue is the medial retropharyngeal lymph nodes (RLN). In deer, the prions will usually show up in the RLN before the obex. The obex and RLN must be removed from the carcass and placed in a 10 percent formalin solution for transport to the laboratory. Samples must not be frozen. If you are not trained to collect these samples or are uncomfortable with the process, you may submit the entire head, with identification attached, to the Texas A&M Veterinary Medical Diagnostic Laboratory for testing.

 

Contact the Texas A&M Veterinary Medical Diagnostic Laboratory for instructions on taking and submitting samples. In many cases, your local veterinarian can help you properly collect and ship samples to the lab. You are responsible for testing costs.

 

Treatment and herd management

 

Currently, there is no treatment for this disease. While there has been some preliminary success in vaccinating white-tailed deer in New York8, and research in Canada is ongoing, no vaccine has proven effective. The potential for natural genetic immunity has been considered, such as occurs with domestic sheep and goats with the TSE scrapie. To date, research has found no individuals from CWD susceptible species that are truly immune. Although there is no vaccination or treatment for CWD, a number of states and provinces have adopted management practices to reduce the disease’s prevalence and limit its transmission. These practices are not specific to free-roaming or captive deer—they apply to all at-risk cervids. The following outlines the benefits, challenges, and implementation of a few of these practices.

 

Density Management

 

This practice seeks to limit the spread of the disease by decreasing animal density to levels where transmission would be minimal. While reducing densities cannot eradicate established CWD, it may reduce the disease’s prevalence and slow its spread.

 

Photo source: Wisconsin Department of Natural Resources

 

6

 

The target densities often reflect scientific estimates of densities that would occur naturally—uninfluenced by human activities. These target densities can be achieved through lethal or nonlethal removal of animals or habitat modification. Removing animals can reduce densities in wild or captive populations. Although this strategy likely is the most effective at slowing the spread of CWD into a region, other states have indicated that it is difficult to maintain hunter-performed density-management for periods exceeding 5 years9. Agency based culling, though very unpopular, could be used on private properties to some effect.

 

Bait and feed removal/modification

 

Reducing the availability and frequency of supplemental feeds or bait helps limit transmission by limiting sites where cervids congregate. While this practice can be effective, it can also have a negative impact on hunting businesses that rely on bait sites to attract game animals consistently. This practice is very easy to implement, but often is unpopular. One possible modification is to have landowners move bait and feeding sites frequently to prevent infectious agent buildup in the soil. Another possibility is to discontinue baiting and feeding during certain times of the year. Feeders that do not allow feed to contact the soil, may reduce environmental contamination and disease transmission.

 

Selective Removal

 

Animals that display clinical symptoms of CWD, should be lethally removed from the herd, tested, and disposed of safely to minimize exposing other animals to the disease. This practice maximizes the number of deer in the herd while removing those most likely to be infected. This method, however, does not remove animals before they could potentially transmit the disease. Research suggests that this model could significantly reduce disease prevalence, provided infected animals could be identified and removed10. This practice may not be practical in large, sparsely populated areas of Texas. Human health and safety precautions

 

For the General Public

 

There is no evidence that CWD can be transmitted to humans—there is ample evidence to suggest it cannot be transmitted to humans. While some have been concerned that exposure to infected deer would increase cases of Creutzfeldt-Jakob syndrome, this has not occurred in areas where CWD is considered endemic11. There is also no indication that it can be transmitted to domestic livestock such as sheep or cattle, unlike BSE (Mad Cow), which caused widespread human health concerns in Great Britain. Nevertheless, experts advise caution as we learn more about the disease12.

 

7

 

Given the development and evolution of zoonotic diseases, human exposure to animals potentially infected with any disease should be minimized. Those who process and handle meat from animals killed in areas where CWD is present should follow the practices outlined below to limit exposure. If you suspect an animal might be infected, contact the appropriate government agencies immediately. See “Resources” on page 13 for contact information.

 

For Hunters

 

CWD affects the nervous system of infected animals and hunters may feel uneasy about eating meat from cervids in areas where CWD has been documented. However, we know that tens of thousands, possibly hundreds of thousands of hunters and their families have eaten deer and elk from endemic areas over the past decades without incident. Concerns over the disease should not keep you from the hunt for several reasons.

 

First, even in some of the highest-prevalence areas of Wyoming and Colorado, fewer than 30 percent of wild cervids are typically infected. In Texas, only a dozen cases have been documented across the entire state as of 1 October 2015. Second, hunting is also one of the best, and simplest, tools for reducing densities of cervids to prevent disease transmission. Texas hunters have a long history of supporting conservation by conscientious hunting to benefit animal health and habitats.

 

Employing basic wild game meat safety should address any concerns you may have. The simple precautions outlined below can keep the hunter and family stay safe. These precautions assume that hunters comply with state regulations regarding the location and timing of game harvest and processing.

 

• Do not harvest animals that exhibit clinical signs of CWD or any other disease.

 

• When processing harvested game, wear protective gloves, and avoid contact with nervous system tissues.

 

• Do not consume brain or organ meats, especially lymph nodes from the head of cervids.

 

• Bone out the meat, and make sure to minimize contact with the brain and spine—they constitute the bulk of the nervous system where prions tend to concentrate.

 

• Dispose of all nonconsumable parts securely in a location where other cervids will not be exposed to the carcass, for example, in an approved landfill or buried at least 6 feet deep.

 

• Cleaning processing equipment in a 50 percent chlorine bleach solution will destroy prions, but is very harmful

 

Photo source: Wisconsin Department of Natural Resources 8

 

to most equipment. Cleaning equipment with hot soapy water is typically sufficient, given the limited health risks to humans. Wipe down processing surfaces with the same solution on a clean cloth. The future of cervid hunting in Texas

 

CWD has now been diagnosed in two cervid species in Texas. The nature of CWD, makes eradication unlikely once it takes hold in a region. The best management practices continue to be those that minimize disease transmission. Given that cervid hunting in Texas is economically and culturally important, especially in rural communities, concern for the future of this enterprise is understandable. In regions where CWD is endemic, such as Colorado and Wyoming, cervid hunting continues to be a very desirable commodity whose value has not decreased. Some are quick to note the decline of mule deer populations in the CWD-infected Rocky Mountain states, however, these declines could be attributed to factors such as prolonged drought, habitat degradation, and other factors. In addition, many mule deer populations are declining for reasons other than CWD. No one knows what effect CWD will have on Texas hunting, or if this disease will cause notable changes to hunting practices. What does seem certain is that cervid hunting in Texas will continue to be important, and that management based on the latest science will continue.

 

If you think an animal is infected

 

1. Do not attempt to touch, kill, or move the animal in any way.

 

2. Carefully document the location of the animal, and any other pertinent details.

 

3. Contact the nearest Texas Parks and Wildlife Game Warden or Biologist or the Texas Animal Health Commission.

 

4. Follow the instructions given by those agencies.

 

5. Continue to be vigilant for potentially infected animals.

 

Photo source: Wisconsin Department of Natural Resources 9

 

Glossary

 

Cervid – Any member of the family Cervidae, including deer, elk, and moose.

 

Endemic – A condition regularly found in a certain area.

 

Obex – Portion of the brain where the brain narrows to become the central canal of the spinal cord; located in the caudal medulla.

 

Prion – A malformed protein particle associated with various brain diseases, including TSEs.

 

Shedding – When a disease produces infectious agents that can infect other hosts.

 

Transmissible Spongiform Encephalopathy (TSE) – A disease of the nervous system, caused by the presence of prions. They are distinguished by long incubation periods, characteristic spongiform changes associated with neuronal loss, and a failure to induce inflammatory response.

 

Velvet – In this context, the soft, blood-vessel-rich tissue that forms antlers annually. When bony growth has finished, this tissue is shed by rubbing it on tree trunks, branches, and other structures.

 

Zoonotic – A disease that can be transmitted between humans and animals. These diseases typically infect animals, but can also infect humans.

 

Resources

 

Texas Parks and Wildlife Department

 

www.tpwd.texas.gov

 

(512) 389-4800

 

Texas Animal Health Commission

 

www.tahc.texas.gov

 

1-800-550-8242

 

Texas A&M Veterinary Medicine Diagnostic Laboratory

 

www.tvmdl.tamu.edu

 

Chronic Wasting Disease Alliance

 

www.cwd-info.org

 

Texas A&M AgriLife Extension: Wildlife Unit

 

www.wildlife.tamu.edu

 

10

 

References 1 Williams, E. S., M. W. Miller, T. J. Kreeger, R. H. Kahn, and E. T. Thorne. 2002. Chronic Wasting Disease of Deer and Elk: A Review with Recommendations for Management. The Journal of Wildlife Management 66:551-563. 2 Schwabenlander, M. D., M. R. Culhane, S. M. Hall, S. M. Goyal, P. L. Anderson, M. Carstensen, S. J. Wells, W. B. Slade, and A. G. Armien. 2013. A case of chronic wasting disease in a captive red deer (Cervus elaphus). J Vet Diagn Invest 25:573-576. 3 Tamguney, G., M. W. Miller, L. L. Wolfe, T. M. Sirochman, D. V. Glidden, C. Palmer, A. Lemus, S. J. DeArmond, and S. B. Prusiner. 2009. Asymptomatic deer excrete infectious prions in faeces. Nature 461:529-532. 4 Gough, K. C., and B. C. Maddison. 2010. Prion transmission: Prion excretion and occurrence in the environment. Prion 4:275-282. 5 Samuel, E. S., L. B.-H. Shannon, and C. B. Jason. 2012. Occurrence, Transmission, and Zoonotic Potential of Chronic Wasting Disease. Emerging Infectious Disease journal 18:369. 6 Pritzkow, S., R. Morales, F. Moda, U. Khan, Glenn C. Telling, E. Hoover, and C. Soto. 2015. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions. Cell Reports 11:1168-1175. 7 Hamir, A. N., R. C. Cutlip, J. M. Miller, E. S. Williams, M. J. Stack, M. W. Miller, K. I. O’Rourke, and M. J. Chaplin. 2001. Preliminary findings on the experimental transmission of chronic wasting disease agent of mule deer to cattle. Journal of Veterinary Diagnostic Investigation 13:91-96. 8 Goni, F., C. K. Mathiason, L. Yim, K. Wong, J. Hayes-Klug, A. Nalls, D. Peyser, V. Estevez, N. Denkers, J. Xu, D. A. Osborn, K. V. Miller, R. J. Warren, D. R. Brown, J. A. Chabalgoity, E. A. Hoover, and T. Wisniewski. 2015. Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. Vaccine 33:726-733. 9 Brown, T. L., J. Shanahan, D. Decker, W. Siemer, P. Curtis, and J. Major. 2005. Response of hunters and the general public to the discovery of chronic wasting disease in deer in Oneida County, New York. Human Dimensions Research Unit, Department of Natural Resource Cornell University Series 5-08. 10 Wasserberg, G., E. E. Osnas, R. E. Rolley, and M. D. Samuel. 2009. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. The Journal of Applied Ecology 46:457-466. 11 MaWhinney, S., W. J. Pape, J. E. Forster, C. A. Anderson, P. Bosque, and M. W. Miller. 2006. Human prion disease and relative risk associated with chronic wasting disease. Emerging Infectious Diseases 12:1527. 12 Saunders, S. E., S. L. Bartelt-Hunt, and J. C. Bartz. 2012. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerging Infectious Diseases 18:369-376.

 

Texas A&M AgriLife Extension Service AgriLifeExtension.tamu.edu More Extension publications can be found at AgriLifeBookstore.org Texas A&M AgriLife does not discriminate on the basis of race, color, religion, sex, national origin, disability, age, genetic information, veteran status, sexual orientation or gender identity and provides equal access in its programs, activities, education and employment. The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

 


 


 

Greetings Texas Hunters et al,

 

let’s analyize a few myths Texas A&M et al like to pass on to the public about the CWD TSE Prion

 

Texas A&M Myth Number 1

 

>>> There is no evidence that CWD can be transmitted to humans—there is ample evidence to suggest it cannot be transmitted to humans. <<<

 

now, before getting into the latest sound science on the potential transmission of CWD TSE Prion to humans, and the likelihood therefrom, IF it has not already happened. I assure you that the FDA did not recall all this Elk Tenderloin that was confirmed to have had CWD, the FDA did not recall all this meat, FOR THE HEALTH OF THE DEAD CWD INFECTED ELK, recalled right here in Texas...

 

Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease

 

Contact: Exotic Meats USA 1-800-680-4375

 

FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.

 

Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.

 

Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.

 

Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.

 

#

 


 

Envt.07:

 

Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease

 

***The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

 


 

Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

 

Martin L. Daus1, Johanna Breyer2, Katja Wagenfuehr1, Wiebke M. Wemheuer2, Achim Thomzig1, Walter J. Schulz-Schaeffer2, Michael Beekes1*

 

1 P24 - Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany, 2 Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center Go¨ ttingen, Go¨ ttingen, Germany

 

Abstract

 

Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

 

snip...

 

Yet, it has to be noted that our assessments of PrPTSE levels in skeletal muscles were based on findings in presumably pre- or subclinically infected animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with clinically manifest CWD may possibly exceed our estimate which refers to clinically inconspicuous animals that are more likely to enter the human food chain. Our tissue blot findings in skeletal muscles from CWDinfected WTD would be consistent with an anterograde spread of CWD prions via motor nerve fibres to muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection were previously found in hamsters orally challenged with scrapie [28] and suggested by the detection of PrPTSE in muscle fibres and muscle-associated nerve fascicles of clinically-ill non-human primates challenged with BSE prions [29]. Whether the absence of detectable PrPTSE in myofibers observed in our study is a specific feature of CWD in WTD, or was due to a pre- or subclinical stage of infection in the examined animals, remains to be established. In any case, our observations support previous findings suggesting the precautionary prevention of muscle tissue from CWD-infected WTD in the human diet, and highlight the need to comprehensively elucidate of whether CWD may be transmissible to humans. While the understanding of TSEs in cervids has made substantial progress during the past few years, the assessment and management of risks possibly emanating from prions in skeletal muscles of CWD-infected cervids requires further research.

 

Citation: Daus ML, Breyer J, Wagenfuehr K, Wemheuer WM, Thomzig A, et al. (2011) Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease. PLoS ONE 6(4): e18345. doi:10.1371/journal.pone.0018345

 

Editor: Jason Bartz, Creighton University, United States of America

 

Received December 17, 2010; Accepted March 1, 2011; Published April 1, 2011

 

Copyright: 2011 Daus et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The study was sponsored by the Alberta Prion Research Institute (APRI, www.prioninstitute.ca), and the study was carried out within the APRIsponsored research project ‘‘Comprehensive risk assessment of Chronic Wasting Disease (CWD) transmission to humans using non-human primates’’. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 

Competing Interests: The authors have declared that no competing interests exist.

 

* E-mail: BeekesM@rki.de

 


 

PRION 2016 TOKYO

 

Zoonotic Potential of CWD Prions: An Update

 

Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3, Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6, Pierluigi Gambetti1, Qingzhong Kong1,5,6

 

1Department of Pathology, 3National Prion Disease Pathology Surveillance Center, 5Department of Neurology, 6National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.

 

4Department of Biological Sciences and Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada,

 

2Encore Health Resources, 1331 Lamar St, Houston, TX 77010

 

Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions.

 

PRION 2016 TOKYO

 

In Conjunction with Asia Pacific Prion Symposium 2016

 

PRION 2016 Tokyo

 

Prion 2016

 


 

Prion 2016

 

Purchase options Price * Issue Purchase USD 198.00

 


 

Cervid to human prion transmission

 

Kong, Qingzhong

 

Case Western Reserve University, Cleveland, OH, United States

 

Abstract

 

Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that:

 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;

 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;

 

(3) Reliable essays can be established to detect CWD infection in humans;and

 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.

 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3.

 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1.

 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.

 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.

 

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.

 

Funding Agency Agency National Institute of Health (NIH)

 

Institute National Institute of Neurological Disorders and Stroke (NINDS)

 

Type Research Project (R01)

 

Project # 1R01NS088604-01A1

 

Application # 9037884

 

Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)

 

Program Officer Wong, May

 

Project Start 2015-09-30

 

Project End 2019-07-31

 

Budget Start 2015-09-30

 

Budget End 2016-07-31

 

Support Year 1

 

Fiscal Year 2015

 

Total Cost $337,507

 

Indirect Cost $118,756

 

Institution

 

Name Case Western Reserve University

 

Department Pathology

 

Type Schools of Medicine

 

DUNS # 077758407

 

City Cleveland

 

State OH

 

Country United States

 

Zip Code 44106

 


 

===========================================================

 

We hypothesize that:

 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;

 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;

 

(3) Reliable essays can be established to detect CWD infection in humans;and

 

(4) *** CWD transmission to humans has already occurred. *** We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.

 

============================================================

 

Key Molecular Mechanisms of TSEs

 

Zabel, Mark D.

 

Colorado State University-Fort Collins, Fort Collins, CO, United States Abstract Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative diseases affecting humans, cervids, bovids, and ovids. The absolute requirement of PrPC expression to generate prion diseases and the lack of instructional nucleic acid define prions as unique infectious agents. Prions exhibit species-specific tropism, inferring that unique prion strains exist that preferentially infct certain host species and confront transmission barriers to heterologous host species. However, transmission barriers are not absolute. Scientific consensus agrees that the sheep TSE scrapie probably breached the transmission barrier to cattle causing bovine spongiform encephalopathy that subsequently breached the human transmission barrier and likely caused several hundred deaths by a new-variant form of the human TSE Creutzfeldt-Jakob disease in the UK and Europe. The impact to human health, emotion and economies can still be felt in areas like farming, blood and organ donations and the threat of a latent TSE epidemic. This precedent raises the real possibility of other TSEs, like chronic wasting disease of cervids, overcoming similar human transmission barriers. A groundbreaking discovery made last year revealed that mice infected with heterologous prion strains facing significant transmission barriers replicated prions far more readily in spleens than brains6. Furthermore, these splenic prions exhibited weakened transmission barriers and expanded host ranges compared to neurogenic prions. These data question conventional wisdom of avoiding neural tissue to avoid prion xenotransmission, when more promiscuous prions may lurk in extraneural tissues. Data derived from work previously funded by NIH demonstrate that Complement receptors CD21/35 bind prions and high density PrPC and differentially impact prion disease depending on the prion isolate or strain used. Recent advances in live animal and whole organ imaging have led us to generate preliminary data to support novel, innovative approaches to assessing prion capture and transport. We plan to test our unifying hypothesis for this proposal that CD21/35 control the processes of peripheral prion capture, transport, strain selection and xenotransmission in the following specific aims. 1. Assess the role of CD21/35 in splenic prion strain selection and host range expansion. 2. Determine whether CD21/35 and C1q differentially bind distinct prion strains 3. Monitor the effects of CD21/35 on prion trafficking in real time and space 4. Assess the role of CD21/35 in incunabular prion trafficking

 

Public Health Relevance Transmissible spongiform encephalopathies, or prion diseases, are devastating illnesses that greatly impact public health, agriculture and wildlife in North America and around the world. The impact to human health, emotion and economies can still be felt in areas like farming, blood and organ donations and the threat of a latent TSE epidemic. This precedent raises the real possibility of other TSEs, like chronic wasting disease (CWD) of cervids, overcoming similar human transmission barriers. Early this year Canada reported its first case of BSE in over a decade audits first case of CWD in farmed elk in three years, underscoring the need for continued vigilance and research. Identifying mechanisms of transmission and zoonoses remains an extremely important and intense area of research that will benefit human and other animal populations.

 

Funding Agency Agency National Institute of Health (NIH)

 

Institute National Institute of Allergy and Infectious Diseases (NIAID)

 

Type High Priority, Short Term Project Award (R56)

 

Project # 1R56AI122273-01A1

 

Application # 9211114

 

Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)

 

Program Officer Beisel, Christopher E

 

Project Start 2016-02-16

 

Project End 2017-01-31

 

Budget Start 2016-02-16

 

Budget End 2017-01-31

 

Support Year 1

 

Fiscal Year 2016

 

Total Cost

 

Indirect Cost Institution Name Colorado State University-Fort Collins

 

Department Microbiology/Immun/Virology

 

Type Schools of Veterinary Medicine

 

DUNS # 785979618 City Fort Collins

 

State CO

 

Country United States

 

Zip Code 80523

 


 

PMCA Detection of CWD Infection in Cervid and Non-Cervid Species

 

Hoover, Edward Arthur

 

Colorado State University-Fort Collins, Fort Collins, CO, United States Abstract Chronic wasting disease (CWD) of deer and elk is an emerging highly transmissible prion disease now recognized in 18 States, 2 Canadian provinces, and Korea. We have shown that Infected deer harbor and shed high levels of infectious prions in saliva, blood, urine, and feces, and in the tissues generating those body fluids and excreta, thereby leading to facile transmission by direct contact and environmental contamination. We have also shown that CWD can infect some non-cervid species, thus the potential risk CWD represents to domestic animal species and to humans remains unknown. Whether prions borne in blood, saliva, nasal fluids, milk, or excreta are generated or modified in the proximate peripheral tissue sites, may differ in subtle ways from those generated in brain, or may be adapted for mucosal infection remain open questions. The increasing parallels in the pathogenesis between prion diseases and human neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, add relevance to CWD as a transmissible protein misfolding disease. The overall goal of this work is to elucidate the process of CWD prion transmission from mucosal secretory and excretory tissue sites by addressing these questions: (a) What are the kinetics and magnitude of CWD prion shedding post-exposure? (b) Are excreted prions biochemically distinct, or not, from those in the CNS? (c) Are peripheral epithelial or CNS tissues, or both, the source of excreted prions? and (d) Are excreted prions adapted for horizontal transmission via natural/trans-mucosal routes? The specific aims of this proposal are: (1) To determine the onset and consistency of CWD prion shedding in deer and cervidized mice; (2); To compare the biochemical and biophysical properties of excretory vs. CNS prions; (3) To determine the capacity of peripheral tissues to support replication of CWD prions; (4) To determine the protease- sensitive infectious fraction of excreted vs. CNS prions; and (5) To compare the mucosal infectivity of excretory vs. CNS prions. Understanding the mechanisms that enable efficient prion dissemination and shedding will help elucidate how horizontally transmissible prions evolve and succeed, and is the basis of this proposal. Understanding how infectious misfolded proteins (prions) are generated, trafficked, shed, and transmitted will aid in preventing, treating, and managing the risks associated with these agents and the diseases they cause.

 

Public Health Relevance Chronic wasting disease (CWD) of deer and elk is an emergent highly transmissible prion disease now recognized throughout the USA as well as in Canada and Korea. We have shown that infected deer harbor and shed high levels of infectious prions in saliva, blood, urine, and feces thereby leading to transmission by direct contact and environmental contamination. In that our studies have also shown that CWD can infect some non-cervid species, the potential risk CWD may represents to domestic animal species and humans remains unknown. The increasing parallels in the development of major human neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, and prion diseases add relevance to CWD as a model of a transmissible protein misfolding disease. Understanding how infectious misfolded proteins (prions) are generated and transmitted will aid in interrupting, treating, and managing the risks associated with these agents and the diseases they cause.

 

Funding Agency Agency National Institute of Health (NIH)

 

Institute National Institute of Neurological Disorders and Stroke (NINDS)

 

Type Research Project (R01)

 

Project # 4R01NS061902-07

 

Application # 9010980

 

Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)

 

Program Officer Wong, May Project Start 2009-09-30

 

Project End 2018-02-28

 

Budget Start 2016-03-01

 

Budget End 2017-02-28

 

Support Year 7

 

Fiscal Year 2016

 

Total Cost $409,868

 

Indirect Cost $134,234 Institution Name Colorado State University-Fort Collins

 

Department Microbiology/Immun/Virology

 

Type Schools of Veterinary Medicine

 

DUNS # 785979618 City Fort Collins

 

State CO

 

Country United States

 

Zip Code 80523

 


 

LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$

 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS

 

*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***

 

O18

 

Zoonotic Potential of CWD Prions

 

Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 3Encore Health Resources, Houston, Texas, USA

 

*** These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.

 

==================

 

***These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.***

 

==================

 

P.105: RT-QuIC models trans-species prion transmission

 

Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA

 

Conversely, FSE maintained sufficient BSE characteristics to more efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was competent for conversion by CWD and fCWD.

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.

 

================

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.***

 

================

 


 

*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***

 

Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014

 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.

 


 


 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

***********CJD REPORT 1994 increased risk for consumption of veal and venison and lamb***********

 

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994

 

Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss)

 

These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...

 

Table 9 presents the results of an analysis of these data.

 

There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).

 

Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.

 

There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).

 

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

 

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

 

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

 

snip...

 

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

 

snip...

 

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

 

snip...

 

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

 

snip...see full report ;

 


 

CJD9/10022

 

October 1994

 

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane BerksWell Coventry CV7 7BZ

 

Dear Mr Elmhirst,

 

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

 

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

 

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

 

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

 

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

 

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.

 


 

Monday, May 02, 2016

 

*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***

 


 

*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD

 


 

*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent

 

*** Here we report that a human prion strain that had adopted the cervid prion protein (PrP) sequence through passage in cervidized transgenic mice efficiently infected transgenic mice expressing human PrP,

 

*** indicating that the species barrier from cervid to humans is prion strain-dependent and humans can be vulnerable to novel cervid prion strains.

 

PPo2-27:

 

Generation of a Novel form of Human PrPSc by Inter-species Transmission of Cervid Prions

 

*** Our findings suggest that CWD prions have the capability to infect humans, and that this ability depends on CWD strain adaptation, implying that the risk for human health progressively increases with the spread of CWD among cervids.

 

PPo2-7:

 

Biochemical and Biophysical Characterization of Different CWD Isolates

 

*** The data presented here substantiate and expand previous reports on the existence of different CWD strains.

 


 

Envt.07:

 

Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease

 

***The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

 


 

>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO CONVERSION OF THE HUMAN PRION PROTEIN<<<

 

*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***

 

Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014

 

Wednesday, January 01, 2014

 

Molecular Barriers to Zoonotic Transmission of Prions

 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.

 


 


 

Saturday, April 23, 2016

 

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

 

Taylor & Francis

 

Prion 2016 Animal Prion Disease Workshop Abstracts

 

WS-01: Prion diseases in animals and zoonotic potential

 

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

 

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

 

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

 

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

 

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

 

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

 

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 


 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

Title: Transmission of scrapie prions to primate after an extended silent incubation period

 

Authors

 

item Comoy, Emmanuel - item Mikol, Jacqueline - item Luccantoni-Freire, Sophie - item Correia, Evelyne - item Lescoutra-Etchegaray, Nathalie - item Durand, Valérie - item Dehen, Capucine - item Andreoletti, Olivier - item Casalone, Cristina - item Richt, Juergen item Greenlee, Justin item Baron, Thierry - item Benestad, Sylvie - item Hills, Bob - item Brown, Paul - item Deslys, Jean-Philippe -

 

Submitted to: Scientific Reports Publication Type: Peer Reviewed Journal Publication Acceptance Date: May 28, 2015 Publication Date: June 30, 2015 Citation: Comoy, E.E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., Dehen, C., Andreoletti, O., Casalone, C., Richt, J.A., Greenlee, J.J., Baron, T., Benestad, S., Brown, P., Deslys, J. 2015. Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports. 5:11573.

 

Interpretive Summary: The transmissible spongiform encephalopathies (also called prion diseases) are fatal neurodegenerative diseases that affect animals and humans. The agent of prion diseases is a misfolded form of the prion protein that is resistant to breakdown by the host cells. Since all mammals express prion protein on the surface of various cells such as neurons, all mammals are, in theory, capable of replicating prion diseases. One example of a prion disease, bovine spongiform encephalopathy (BSE; also called mad cow disease), has been shown to infect cattle, sheep, exotic undulates, cats, non-human primates, and humans when the new host is exposed to feeds or foods contaminated with the disease agent. The purpose of this study was to test whether non-human primates (cynomologous macaque) are susceptible to the agent of sheep scrapie. After an incubation period of approximately 10 years a macaque developed progressive clinical signs suggestive of neurologic disease. Upon postmortem examination and microscopic examination of tissues, there was a widespread distribution of lesions consistent with a transmissible spongiform encephalopathy. This information will have a scientific impact since it is the first study that demonstrates the transmission of scrapie to a non-human primate with a close genetic relationship to humans. This information is especially useful to regulatory officials and those involved with risk assessment of the potential transmission of animal prion diseases to humans. Technical Abstract: Classical bovine spongiform encephalopathy (c-BSE) is an animal prion disease that also causes variant Creutzfeldt-Jakob disease in humans. Over the past decades, c-BSE's zoonotic potential has been the driving force in establishing extensive protective measures for animal and human health.

 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.

 


 

Scrapie to Humans USA?

 

1: Neuroepidemiology. 1985;4(4):240-9. Related Articles,

 

Links

 

Sheep consumption: a possible source of spongiform encephalopathy in humans.

 

Davanipour Z, Alter M, Sobel E, Callahan M.

 

A fatal spongiform encephalopathy of sheep and goats (scrapie) shares many characteristics with Creutzfeldt-Jakob disease (CJD), a similar dementing illness of humans. To investigate the possibility that CJD is acquired by ingestion of contaminated sheep products, we collected information on production, slaughtering practices, and marketing of sheep in Pennsylvania. The study revealed that sheep were usually marketed before central nervous system signs of scrapie are expected to appear; breeds known to be susceptible to the disease were the most common breeds raised in the area; sheep were imported from other states including those with a high frequency of scrapie; use of veterinary services on the sheep farms investigated and, hence, opportunities to detect the disease were limited; sheep producers in the area knew little about scrapie despite the fact that the disease has been reported in the area, and animal organs including sheep organs were sometimes included in processed food. Therefore, it was concluded that in Pennsylvania there are some 'weak links' through which scrapie-infected animals could contaminate human food, and that consumption of these foods could perhaps account for spongiform encephalopathy in humans. The weak links observed are probably not unique to Pennsylvania.

 

PMID: 3915057 [PubMed - indexed for MEDLINE]

 


 

2015

 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations

 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France

 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.

 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,

 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),

 

***is the third potentially zoonotic PD (with BSE and L-type BSE),

 

***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.

 

===============

 

***thus questioning the origin of human sporadic cases***

 

===============

 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.

 

==============

 


 

Tuesday, December 16, 2014

 

*** Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE.

 

***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans.

 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

see more here ;

 


 

***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans.***

 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.***

 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

1: J Infect Dis 1980 Aug;142(2):205-8

 

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

 

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

 

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

 

snip...

 

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

 

PMID: 6997404

 


 

Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

 

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

 

snip...

 

76/10.12/4.6

 


 

snip...see full text ;

 


 

Monday, May 02, 2016

 

*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***

 


 

Wednesday, May 25, 2016

 

USDA APHIS National Scrapie TSE Prion Eradication Program April 2016 Monthly Report Prion 2016 Tokyo Update

 


 

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

 


 

 Texas A&M Myth Number 2

 

>>> There is also no indication that it can be transmitted to domestic livestock such as sheep or cattle,<<<

 

 Thursday, June 09, 2016

 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

 

 Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964

 

 How Did CWD Get Way Down In Medina County, Texas?

 

 Confucius ponders...

 

 Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)?

 

 Epidemiology of Scrapie in the United States 1977

 

 snip...

 

 Scrapie Field Trial Experiments Mission, Texas

 

 A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.

 

 The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas: (1) a series of pastures and-pens occupied by male animals only, and (2) a series of pastures and pens occupied by females and young progeny of both sexes. ...

 

snip...

 

DISCUSSION

 

Observations of natural outbreaks of scrapie indicated that the disease spread from flock to flock by the movement of infected, but apparently normal, sheep which were incubating the disease.

 

There was no evidence that the disease spread to adjacent flocks in the absend of such movements or that vectors or other host species were involved in the spread of scrapie to sheep or goats; however, these possibilities should be kept open...

 

snip...see full text ;

 


 

Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY

 


 

P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum

 

 Justin Greenlee1, S Jo Moore1, Jodi Smith1, M Heather West Greenlee2, and Robert Kunkle1

 

 1National Animal Disease Center; Ames, IA USA;

 

 2Iowa State University; Ames, IA USA

 

 The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n D 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.

 


 

 Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

 Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

 

 Authors

 

 item Greenlee, Justin item Moore, S - item Smith, Jodi - item Kunkle, Robert item West Greenlee, M -

 

 Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.

 


 


 

 White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection

 

 Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS

 

 Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.

 

 see full text ;

 


 

 PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

 Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 


 

 White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation

 

 snip...

 

 It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that

 

 1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and

 

 2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.

 

 This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.

 


 


 

 2012

 

 PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

 Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

 snip...

 

 The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

 *** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

 Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

 2011

 

 *** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

 White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection

 

 Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS

 

 Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.

 

 see full text ;

 


 

 Friday, April 22, 2016

 

 *** Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer

 


 

 Thursday, June 09, 2016

 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

 

How Did CWD Get Way Down In Medina County, Texas?

 


 


 

Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle

 

Authors: Nicholas Haley1, Christopher Siepker2, Justin Greenlee3, Jürgen Richt4

 

VIEW AFFILIATIONS Affiliations: 1 1Midwestern Univerisity 2 2Kansas State University 3 3USDA, Agricultural Research Service 4 4Kansas State University

 

Published Ahead of Print: 31 March, 2016 Journal of General Virology doi: 10.1099/jgv.0.000438 Published Online: 31/03/2016

 

Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues - an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real time quaking induced conversion (RT-QuIC), we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection.

 


 

Friday, August 14, 2015

 

Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation

 

ARS VIRUS AND PRION RESEARCH / Research / Publication #277212

 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

Title: Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation

 

Authors

 

item Greenlee, Justin item Nicholson, Eric item Smith, Jodi item Kunkle, Robert item Hamir, Amirali

 

Submitted to: Journal of Veterinary Diagnostic Investigation Publication

 

Type: Peer Reviewed Journal Publication Acceptance

 

Date: July 12, 2012

 

Publication Date: November 1, 2012

 

Citation: Greenlee, J.J., Nicholson, E.M., Smith, J.D., Kunkle, R.A., Hamir, A.N. 2012.

 

Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation.

 

Journal of Veterinary Diagnostic Investigation. 24(6):1087-1093.

 

Interpretive Summary: Chronic Wasting Disease (CWD), a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America, is a transmissible spongiform encephalopathy (TSE). TSEs are caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Cattle could be exposed to chronic wasting disease (CWD) by contact with infected farmed or free-ranging cervids. The purpose of this study was to assess the potential transmission of CWD from elk to cattle after intracranial inoculation, the most direct route to test the potential of a host to replicate an isolate of the prion agent. This study reports that only 2 of 14 calves inoculated with CWD from elk had clinical signs or evidence of abnormal prion protein accumulation. These results suggest that cattle are unlikely to be susceptible to CWD if inoculated by a more natural route. This information could have an impact on regulatory officials developing plans to reduce or eliminate TSEs and farmers with concerns about ranging cattle on areas where CWD may be present.

 

Technical Abstract:

 

***Cattle could be exposed to the agent of chronic wasting disease (CWD) through contact with infected farmed or free-ranging cervids or exposure to contaminated premises. The purpose of this study was to assess the potential for CWD derived from elk to transmit to cattle after intracranial inoculation. Calves (n=14) were inoculated with brain homogenate derived from elk with CWD to determine the potential for transmission and define the clinicopathologic features of disease.

 

Cattle were necropsied if clinical signs occurred or at the termination of experiment (49 months post-inoculation (MPI)).

 

Clinical signs of poor appetite, weight loss, circling, and bruxism occurred in two cattle (14%) at 16 and 17 MPI, respectively.

 

Accumulation of abnormal prion protein (PrP**Sc) in these cattle was confined to the central nervous system with the most prominent immunoreactivity in midbrain, brainstem, and hippocampus with lesser immunoreactivity in the cervical spinal cord.

 

*** The rate of transmission was lower than in cattle inoculated with CWD derived from mule deer (38%) or white-tailed deer (86%).

 

Additional studies are required to fully assess the potential for cattle to develop CWD through a more natural route of exposure, but a low rate of transmission after intracranial inoculation suggests that risk of transmission through other routes is low.

 

***A critical finding here is that if CWD did transmit to exposed cattle, currently used diagnostic techniques would detect and differentiate it from other prion diseases in cattle based on absence of spongiform change, distinct pattern of PrP**Sc deposition, and unique molecular profile.

 


 

*** P.126: Successful transmission of chronic wasting disease (CWD) into mice over-expressing bovine prion protein (TgSB3985) ***

 

Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1 1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA

 

Keywords: chronic wasting disease, transmission, transgenic mouse, bovine prion protein

 

Background. CWD is a disease affecting wild and farmraised cervids in North America. Epidemiological studies provide no evidence of CWD transmission to humans. Multiple attempts have failed to infect transgenic mice expressing human PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal human PrPC in vitro provides additional evidence that transmission of CWD to humans cannot be easily achieved. However, a concern about the risk of CWD transmission to humans still exists. This study aimed to establish and characterize an experimental model of CWD in TgSB3985 mice with the following attempt of transmission to TgHu mice.

 

Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse (CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD) or elk (CWD/Elk). Animals were observed for clinical signs of neurological disease and were euthanized when moribund. Brains and spleens were removed from all mice for PrPCWD detection by Western blotting (WB). A histological analysis of brains from selected animals was performed: brains were scored for the severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain regions.

 

Results. Clinical presentation was consistent with TSE. More than 90% of TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres in the brain but only mice in the latter group carried PrPCWD in their spleens. We found evidence for co-existence or divergence of two CWD/ Tga20 strains based on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen by WB. However, on neuropathological examination we found presence of amyloid plaques that stained positive for PrPCWD in three CWD/WTD- and two CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and CWD/Elkinfected mice were similar but unique as compared to profiles of BSE, BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM mice tested positive for PrPCWD by WB or by immunohistochemical detection.

 

Conclusions. To our knowledge, this is the first established experimental model of CWD in TgSB3985. We found evidence for co-existence or divergence of two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. Finally, we observed phenotypic differences between cervid-derived CWD and CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway to characterize these strains.

 

TSS

 

UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF THE STUDIES ON CWD TRANSMISSION TO CATTLE ;

 

CWD to cattle figures CORRECTION

 

Greetings,

 

I believe the statement and quote below is incorrect ;

 

"CWD has been transmitted to cattle after intracerebral inoculation, although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding raised concerns that CWD prions might be transmitted to cattle grazing in contaminated pastures."

 

Please see ;

 

Within 26 months post inoculation, 12 inoculated animals had lost weight, revealed abnormal clinical signs, and were euthanatized. Laboratory tests revealed the presence of a unique pattern of the disease agent in tissues of these animals. These findings demonstrate that when CWD is directly inoculated into the brain of cattle, 86% of inoculated cattle develop clinical signs of the disease.

 


 

" although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). "

 

shouldn't this be corrected, 86% is NOT a low rate. ...

 

kindest regards,

 

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

 

Thank you!

 

Thanks so much for your updates/comments. We intend to publish as rapidly as possible all updates/comments that contribute substantially to the topic under discussion.

 


 

re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author Affiliations

 

1Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143 2Department of Neurology, University of California, San Francisco, San Francisco, California 94143 Correspondence: stanley@ind.ucsf.edu

 


 

Mule deer, white-tailed deer, and elk have been reported to develop CWD. As the only prion disease identified in free-ranging animals, CWD appears to be far more communicable than other forms of prion disease. CWD was first described in 1967 and was reported to be a spongiform encephalopathy in 1978 on the basis of histopathology of the brain. Originally detected in the American West, CWD has spread across much of North America and has been reported also in South Korea. In captive populations, up to 90% of mule deer have been reported to be positive for prions (Williams and Young 1980). The incidence of CWD in cervids living in the wild has been estimated to be as high as 15% (Miller et al. 2000). The development of transgenic (Tg) mice expressing cervid PrP, and thus susceptible to CWD, has enhanced detection of CWD and the estimation of prion titers (Browning et al. 2004; Tamgüney et al. 2006). Shedding of prions in the feces, even in presymptomatic deer, has been identified as a likely source of infection for these grazing animals (Williams and Miller 2002; Tamgüney et al. 2009b). CWD has been transmitted to cattle after intracerebral inoculation, although the infection rate was low (4 of 13 animals [Hamir et al. 2001]). This finding raised concerns that CWD prions might be transmitted to cattle grazing in contaminated pastures.

 

snip...

 


 

----- Original Message -----

 

From: David Colby To: flounder9@verizon.net

 

Cc: stanley@XXXXXXXX

 

Sent: Tuesday, March 01, 2011 8:25 AM

 

Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author Affiliations

 

Dear Terry Singeltary,

 

Thank you for your correspondence regarding the review article Stanley Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner asked that I reply to your message due to his busy schedule. We agree that the transmission of CWD prions to beef livestock would be a troubling development and assessing that risk is important. In our article, we cite a peer-reviewed publication reporting confirmed cases of laboratory transmission based on stringent criteria. The less stringent criteria for transmission described in the abstract you refer to lead to the discrepancy between your numbers and ours and thus the interpretation of the transmission rate. We stand by our assessment of the literature--namely that the transmission rate of CWD to bovines appears relatively low, but we recognize that even a low transmission rate could have important implications for public health and we thank you for bringing attention to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor Department of Chemical Engineering University of Delaware

 

===========END...TSS==============

 

SNIP...SEE FULL TEXT ;

 


 

Friday, August 14, 2015

 

*** Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation ***

 


 

Friday, May 27, 2016 Canine Prions: A New Form of Prion Disease EP-021 PRION 2016 TOKYO EP-021 Canine Prions: A New Form of Prion Disease

 

Mourad Tayebi1, Monique A David2, Brian Summers3

 

1 University of Melbourne, Veterinary Sciences, Australia; 2Ausbiologics, Sydney, Australia; 3Royal Veterinary College, London, UK

 

The origin of bovine spongiform encephalopathy (BSE), which rapidly evolved into a major epidemic remains unresolved and was initially widely attributed to transmission of sheep scrapie to cattle with contaminated feed prepared from rendered sheep carcasses. Alternative transmission hypotheses also include feed contaminated with unrecognized subclinical case(s) of bovine prion disease or with prion-infected human remains. However, following the demonstration of a BSE case exhibiting the novel mutation E211 K, similar to the E200K mutation associated with most genetic CJD in humans, support for a genetic origin of prion disease in cattle is gaining momentum. In contrast to other animal species such as feline, the canine species seems to be resistant to prion disease as no canine prion cases were previously reported.

 

We describe here three cases of Rottweiler puppy (called RWD cases) with neurological deficits and spongiform change. We used animal bioassays and in vitro studies to show efficient interspecies transmission of this novel canidae prion isolate to other species.

 

Biochemical studies revealed the presence of partially proteinase K (PK)-resistant fragment and immunohistochemistry displayed staining for PrPSc in the cerebral cortex. Importantly, interspecies transmission of canine PrPSc derived from RWD3 brain homogenates following inoculation of hamsters led to signs of prion disease and replication of PrPSc in brains, spinal cords and spleens of these animals.

 

These findings if confirmed by further cases of prion disease in canidae and regardless of the origin of the disease would have a major impact on animal and public health.

 

PRION 2016 TOKYO

 


 

Friday, May 27, 2016 Canine Prions: A New Form of Prion Disease EP-021 PRION 2016 TOKYO

 

EP-021 Canine Prions: A New Form of Prion Disease

 


 

*** DEFRA TO SINGELTARY ON HOUND STUDY AND BSE 2001 ***

 

DEFRA Department for Environment, Food & Rural Affairs

 

Area 307, London, SW1P 4PQ Telephone: 0207 904 6000 Direct line: 0207 904 6287 E-mail: h.mcdonagh.defra.gsi.gov.uk

 

GTN: FAX:

 

Mr T S Singeltary P.O. Box 42 Bacliff Texas USA 77518

 

21 November 2001

 

Dear Mr Singeltary

 

TSE IN HOUNDS

 

Thank you for e-mail regarding the hounds survey. I am sorry for the long delay in responding.

 

As you note, the hound survey remains unpublished. However the Spongiform Encephalopathy Advisory Committee (SEAC), the UK Government's independent Advisory Committee on all aspects related to BSE-like disease, gave the hound study detailed consideration at their meeting in January 1994. As a summary of this meeting published in the BSE inquiry noted, the Committee were clearly concerned about the work that had been carried out, concluding that there had clearly been problems with it, particularly the control on the histology, and that it was more or less inconclusive. However was agreed that there should be a re-evaluation of the pathological material in the study.

 

Later, at their meeting in June 95, The Committee re-evaluated the hound study to see if any useful results could be gained from it. The Chairman concluded that there were varying opinions within the Committee on further work. It did not suggest any further transmission studies and thought that the lack of clinical data was a major weakness.

 

Overall, it is clear that SEAC had major concerns about the survey as conducted. As a result it is likely that the authors felt that it would not stand up to r~eer review and hence it was never published. As noted above, and in the detailed minutes of the SEAC meeting in June 95, SEAC considered whether additional work should be performed to examine dogs for evidence of TSE infection. Although the Committee had mixed views about the merits of conducting further work, the Chairman noted that when the Southwood Committee made their recommendation to complete an assessment of possible spongiform disease in dogs, no TSEs had been identified in other species and hence dogs were perceived as a high risk population and worthy of study. However subsequent to the original recommendation, made in 1990, a number of other species had been identified with TSE ( e.g. cats) so a study in hounds was less critical. For more details see- http://www.bseinquiry.gov.uk/files/yb/1995/06/21005001.pdf

 

As this study remains unpublished, my understanding is that the ownership of the data essentially remains with the original researchers. Thus unfortunately, I am unable to help with your request to supply information on the hound survey directly. My only suggestion is that you contact one of the researchers originally involved in the project, such as Gerald Wells. He can be contacted at the following address.

 

Dr Gerald Wells, Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT 15 3NB, UK

 

You may also wish to be aware that since November 1994 all suspected cases of spongiform encephalopathy in animals and poultry were made notifiable. Hence since that date there has been a requirement for vets to report any suspect SE in dogs for further investigation. To date there has never been positive identification of a TSE in a dog.

 

I hope this is helpful

 

Yours sincerely 4

 

HUGH MCDONAGH BSE CORRESPONDENCE SECTION

 

======================================

 

HOUND SURVEY

 

I am sorry, but I really could have been a co-signatory of Gerald's minute.

 

I do NOT think that we can justify devoting any resources to this study, especially as larger and more important projects such as the pathogenesis study will be quite demanding.

 

If there is a POLITICAL need to continue with the examination of hound brains then it should be passed entirely to the VI Service.

 

J W WILESMITH Epidemiology Unit 18 October 1991

 

Mr. R Bradley

 

cc: Mr. G A H Wells

 


 

3.3. Mr R J Higgins in conjunction with Mr G A Wells and Mr A C Scott would by the end of the year, indentify the three brains that were from the ''POSITIVE'' end of the lesion spectrum.

 


 

TSE in dogs have not been documented simply because OF THE ONLY STUDY, those brain tissue samples were screwed up too. see my investigation of this here, and to follow, later follow up, a letter from defra, AND SEE SUSPICIOUS BRAIN TISSUE SAF's. ...TSS

 


 

TSE & HOUNDS

 

GAH WELLS (very important statement here...TSS)

 

HOUND STUDY

 

AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to other species will invariably present pathology typical of a scrapie-like disease.

 

snip...

 


 

76 pages on hound study;

 

snip...

 


 

The spongiform changes were not pathognomonic (ie. conclusive proof) for prion disease, as they were atypical, being largely present in white matter rather than grey matter in the brain and spinal cord. However, Tony Scott, then head of electron microscopy work on TSEs, had no doubt that these SAFs were genuine and that these hounds therefore must have had a scrapie-like disease. I reviewed all the sections myself (original notes appended) and although the pathology was not typical, I could not exclude the possibility that this was a scrapie-like disorder, as white matter vacuolation is seen in TSEs and Wallerian degeneration was also present in the white matter of the hounds, another feature of scrapie.

 

38.I reviewed the literature on hound neuropathology, and discovered that micrographs and descriptive neuropathology from papers on 'hound ataxia' mirrored those in material from Robert Higgins' hound survey. Dr Tony Palmer (Cambridge) had done much of this work, and I obtained original sections from hound ataxia cases from him. This enabled me provisionally to conclude that Robert Higgins had in all probability detected hound ataxia, but also that hound ataxia itself was possibly a TSE. Gerald Wells confirmed in 'blind' examination of single restricted microscopic fields that there was no distinction between the white matter vacuolation present in BSE and scrapie cases, and that occurring in hound ataxia and the hound survey cases.

 

39.Hound ataxia had reportedly been occurring since the 1930's, and a known risk factor for its development was the feeding to hounds of downer cows, and particularly bovine offal. Circumstantial evidence suggests that bovine offal may also be causal in FSE, and TME in mink. Despite the inconclusive nature of the neuropathology, it was clearly evident that this putative canine spongiform encephalopathy merited further investigation.

 

40.The inconclusive results in hounds were never confirmed, nor was the link with hound ataxia pursued. I telephoned Robert Higgins six years after he first sent the slides to CVL. I was informed that despite his submitting a yearly report to the CVO including the suggestion that the hound work be continued, no further work had been done since 1991. This was surprising, to say the very least.

 

41.The hound work could have provided valuable evidence that a scrapie-like agent may have been present in cattle offal long before the BSE epidemic was recognised. The MAFF hound survey remains unpublished.

 

Histopathological support to various other published MAFF experiments

 

42.These included neuropathological examination of material from experiments studying the attempted transmission of BSE to chickens and pigs (CVL 1991) and to mice (RVC 1994).

 


 

It was thought likely that at least some, and probably all, of the cases in zoo animals were caused by the BSE agent. Strong support for this hypothesis came from the findings of Bruce and others (1994) ( Bruce, M.E., Chree, A., McConnell, I., Foster, J., Pearson, G. & Fraser, H. (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and species barrier. Philosophical Transactions of the Royal Society B 343, 405-411: J/PTRSL/343/405 ), who demonstrated that the pattern of variation in incubation period and lesion profile in six strains of mice inoculated with brain homogenates from an affected kudu and the nyala, was similar to that seen when this panel of mouse strains was inoculated with brain from cattle with BSE. The affected zoo bovids were all from herds that were exposed to feeds that were likely to have contained contaminated ruminant-derived protein and the zoo felids had been exposed, if only occasionally in some cases, to tissues from cattle unfit for human consumption.

 

snip...

 


 

NEW URL ;

 


 

Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

 

Christopher J. Johnson1, Christina M. Carlson2, Aaron R. Morawski3, Alyson Manthei4, Neil R. Cashman5

 

1USGS National Wildlife Health Center, 2Department of Soil Science, University of Wisconsin–Madison, 3Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4Merial Veterinary Scholars Program, School of Veterinary Medicine, University of Wisconsin–Madison, 5Department of Neurology, University of British Columbia

 

Summary

 

Measuring the barrier to the interspecies transmission of prion diseases is challenging and typically involves animal challenges or biochemical assays. Here, we present an in vitro prion protein conversion assay with the ability to predict species barriers.

 

Date Published: 3/10/2015, Issue 97; doi: 10.3791/52522

 

Keywords: Medicine, Issue 97, Prion, species barrier, conversion, immunoblotting, transmissible spongiform encephalopathy, interspecies transmission Cite this Article

 

Johnson, C. J., Carlson, C. M., Morawski, A. R., Manthei, A., Cashman, N. R. Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay. J. Vis. Exp. (97), e52522, doi:10.3791/52522 (2015). Abstract

 

Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitro prion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 


 

>>> show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 

AD.63: Susceptibility of domestic cats to chronic wasting disease

 

Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1

 

1Colorado State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN USA

 

Domestic and nondomestic cats have been shown to be susceptible to feline spongiform encephalopathy (FSE), almost certainly caused by consumption of bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and free-ranging nondomestic felids scavenge cervid carcasses, including those in areas affected by chronic wasting disease (CWD), we evaluated the susceptibility of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 cats each were inoculated either intracerebrally (IC) or orally (PO) with CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated cats developed signs consistent with prion disease, including a stilted gait, weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from these two cats were pooled and inoculated into cohorts of cats by IC, PO, and intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the symptomatic cats by western blotting and immunohistochemistry and abnormalities were seen in magnetic resonance imaging, including multifocal T2 fluid attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns consistent with the early stage of feline CWD. These results demonstrate that CWD can be transmitted and adapted to the domestic cat, thus raising the issue of potential cervid-to- feline transmission in nature.

 


 

www.landesbioscience.com

 

PO-081: Chronic wasting disease in the cat— Similarities to feline spongiform encephalopathy (FSE)

 


 


 


 


 

PO-081: Chronic wasting disease in the cat— Similarities to feline spongiform encephalopathy (FSE)

 


 


 

Thursday, May 31, 2012

 

CHRONIC WASTING DISEASE CWD PRION2012 Aerosol, Inhalation transmission, Scrapie, cats, species barrier, burial, and more

 


 

Monday, August 8, 2011

 

Susceptibility of Domestic Cats to CWD Infection

 


 

Sunday, August 25, 2013

 

Prion2013 Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood, and mother to offspring transmission

 


 

Feline Spongiform Encephalopathy (FSE) FSE was first identified in the UK in 1990. Most cases have been reported in the UK, where the epidemic has been consistent with that of the BSE epidemic. Some other countries (e.g. Norway, Liechtenstein and France) have also reported cases.

 

Most cases have been reported in domestic cats but there have also been cases in captive exotic cats (e.g. Cheetah, Lion, Asian leopard cat, Ocelot, Puma and Tiger). The disease is characterised by progressive nervous signs, including ataxia, hyper-reactivity and behavioural changes and is fatal.

 

The chemical and biological properties of the infectious agent are identical to those of the BSE and vCJD agents. These findings support the hypothesis that the FSE epidemic resulted from the consumption of food contaminated with the BSE agent.

 

The FSE epidemic has declined as a result of tight controls on the disposal of specified risk material and other animal by-products.

 

References: Leggett, M.M. et al.(1990) A spongiform encephalopathy in a cat. Veterinary Record. 127. 586-588

 

Synge, B.A. et al. (1991) Spongiform encephalopathy in a Scottish cat. Veterinary Record. 129. 320

 

Wyatt, J. M. et al. (1991) Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Veterinary Record. 129. 233.

 

Gruffydd-Jones, T. J.et al.. (1991) Feline spongiform encephalopathy. J. Small Animal Practice. 33. 471-476.

 

Pearson, G. R. et al. (1992) Feline spongiform encephalopathy: fibril and PrP studies. Veterinary Record. 131. 307-310.

 

Willoughby, K. et al. (1992) Spongiform encephalopathy in a captive puma (Felis concolor). Veterinary Record. 131. 431-434.

 

Fraser, H. et al. (1994) Transmission of feline spongiform encephalopathy to mice. Veterinary Record 134. 449.

 

Bratberg, B. et al. (1995) Feline spongiform encephalopathy in a cat in Norway. Veterinary Record 136. 444

 

Baron, T. et al. (1997) Spongiform encephalopathy in an imported cheetah in France. Veterinary Record 141. 270-271

 

Zanusso, G et al. (1998) Simultaneous occurrence of spongiform encephalopathy in a man and his cat in Italy. Lancet, V352, N9134, OCT 3, Pp 1116-1117.

 

Ryder, S.J. et al. (2001) Inconsistent detection of PrP in extraneural tissues of cats with feline spongiform encephalopathy. Veterinary Record 146. 437-441

 

Kelly, D.F. et al. (2005) Neuropathological findings in cats with clinically suspect but histologically unconfirmed feline spongiform encephalopathy. Veterinary Record 156. 472-477.

 


 

3 further cheetah cases have occured, plus 1 lion, plus all the primates, and 20 additional house cats. Nothing has been published on any of these UK cases either. One supposes the problem here with publishing is that many unpublished cases were _born_ long after the feed "ban". Caught between a rock and a hard place: leaky ban or horizontal transmission (or both).

 


 


 

YOU explained that imported crushed heads were extensively used in the petfood industry...

 


 

In particular I do not believe one can say that the levels of the scrapie agent in pet food are so low that domestic animals are not exposed...

 


 


 

on occassions, materials obtained from slaughterhouses will be derived from sheep affected with scrapie or cattle that may be incubating BSE for use in petfood manufacture...

 


 

*** Meldrum's notes on pet foods and materials used

 


 

*** BSE & Pedigree Petfoods ***

 


 

In 2003, Denver Post reporter Theo Stein interviewed scientists about CWD spreading though deer and elk in Colorado. Dr. Valerius Geist, who paradoxically has become a darling of anti-wolfers, made this assertion about the significance of wolves in containing CWD spread via proteins called prions.

 

“Wolves will certainly bring the disease to a halt,” he said. “They will remove infected individuals and clean up carcasses that could transmit the disease.”

 

Stein added that “Geist and Princeton University biologist Andrew Dobson theorize that killing off the wolf allowed CWD to take hold in the first place.”

 

Wolves aren’t alone. In a 2009 study titled “Mountain lions prey selectively on prion-infected mule deer,” researchers in Colorado discovered that “adult mule deer killed by mountain lions were more likely to be prion-infected than were deer killed more randomly … suggesting that mountain lions were selecting for infected individuals when they targeted adult deer.”

 


 

NO, NO, NOT NO, BUT HELL KNOW !!!

 

PLEASE be careful what you ask for.

 

recently, canine spongiform encephalopathy has been confirmed.

 

I proved this in 2005, with a letter from MAFF/DEFRA et al confirming my suspicions of the ‘hound study’ way back. this was covered up. see documents below.

 

also, recently, cwd to the domestic cat is a great concern.

 

even though to date, as far as I am aware of, the cwd study on the mountain lion has not produced any confirmation yet, we already know that the feline species is highly succeptible to the TSE prion. domestic cats and the exotic zoo big cats.

 

so in my honest opinion, any program that would use wild animals to prey on other wild animals, as a tool to help curb CWD TSE prion disease, would only help enhance the spread of disease, and it would only help spread the disease to other species. ...TSS

 

Monday, February 14, 2011

 

THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER

 

NO, NO, NOT NO, BUT HELL NO !

 

Journal of Wildlife Diseases, 47(1), 2011, pp. 78-93 © Wildlife Disease Association 2011

 


 

OR-09: Canine spongiform encephalopathy—A new form of animal prion disease

 

Monique David, Mourad Tayebi UT Health; Houston, TX USA

 

It was also hypothesized that BSE might have originated from an unrecognized sporadic or genetic case of bovine prion disease incorporated into cattle feed or even cattle feed contaminated with prion-infected human remains.1 However, strong support for a genetic origin of BSE has recently been demonstrated in an H-type BSE case exhibiting the novel mutation E211K.2 Furthermore, a specific prion protein strain causing BSE in cattle is believed to be the etiological agent responsible for the novel human prion disease, variant Creutzfeldt-Jakob disease (vCJD).3 Cases of vCJD have been identified in a number countries, including France, Italy, Ireland, the Netherlands, Canada, Japan, US and the UK with the largest number of cases. Naturally occurring feline spongiform encephalopathy of domestic cats4 and spongiform encephalopathies of a number of zoo animals so-called exotic ungulate encephalopathies5,6 are also recognized as animal prion diseases, and are thought to have resulted from the same BSE-contaminated food given to cattle and humans, although and at least in some of these cases, a sporadic and/or genetic etiology cannot be ruled out. The canine species seems to display resistance to prion disease and no single case has so far been reported.7,8 Here, we describe a case of a 9 week old male Rottweiler puppy presenting neurological deficits; and histological examination revealed spongiform vacuolation characteristic of those associated with prion diseases.9 Initial biochemical studies using anti-PrP antibodies revealed the presence of partially proteinase K-resistant fragment by western blotting. Furthermore, immunohistochemistry revealed spongiform degeneration consistent with those found in prion disease and displayed staining for PrPSc in the cortex.

 

Of major importance, PrPSc isolated from the Rottweiler was able to cross the species barrier transmitted to hamster in vitro with PMCA and in vivo (one hamster out of 5). Futhermore, second in vivo passage to hamsters, led to 100% attack rate (n = 4) and animals displayed untypical lesional profile and shorter incubation period.

 

In this study, we show that the canine species might be sensitive to prion disease and that PrPSc isolated from a dog can be transmitted to dogs and hamsters in vitro using PMCA and in vivo to hamsters.

 

If our preliminary results are confirmed, the proposal will have a major impact on animal and public health and would certainly lead to implementing new control measures for ‘canine spongiform encephalopathy’ (CSE).

 

References 1. Colchester AC, Colchester NT. The origin of bovine spongiform encephalopathy: the human prion disease hypothesis. Lancet 2005; 366:856-61; PMID:16139661; http:// dx.doi.org/10.1016/S0140-6736(05)67218-2.

 

2. Richt JA, Hall SM. BSE case associated with prion protein gene mutation. PLoS Pathog 2008; 4:e1000156; PMID:18787697; http://dx.doi.org/10.1371/journal. ppat.1000156.

 

3. Collinge J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum Mol Genet 1997; 6:1699-705; PMID:9300662; http://dx.doi.org/10.1093/ hmg/6.10.1699.

 

4. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 1991; 129:233-6; PMID:1957458; http://dx.doi.org/10.1136/vr.129.11.233.

 

5. Jeffrey M, Wells GA. Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet Pathol 1988; 25:398-9; PMID:3232315; http://dx.doi.org/10.1177/030098588802500514.

 

6. Kirkwood JK, Wells GA, Wilesmith JW, Cunningham AA, Jackson SI. Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater kudu (Tragelaphus strepsiceros). Vet Rec 1990; 127:418-20; PMID:2264242.

 

7. Bartz JC, McKenzie DI, Bessen RA, Marsh RF, Aiken JM. Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis. J Gen Virol 1994; 75:2947-53; PMID:7964604; http://dx.doi.org/10.1099/0022-1317- 75-11-2947.

 

8. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, et al. Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci U S A 2005; 102:640-5; PMID:15647367; http://dx.doi.org/10.1073/pnas.0408937102.

 

9. Budka H. Neuropathology of prion diseases. Br Med Bull 2003; 66:121-30; PMID:14522854; http://dx.doi.org/10.1093/bmb/66.1.121.

 


 

Monday, March 26, 2012

 

CANINE SPONGIFORM ENCEPHALOPATHY: A NEW FORM OF ANIMAL PRION DISEASE

 


 

Monday, March 8, 2010

 

Canine Spongiform Encephalopathy aka MAD DOG DISEASE

 


 

Chronic Wasting Disease Susceptibility of Four North American Rodents

 

Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A. Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI 53706, USA 2US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author email: cjohnson@svm.vetmed.wisc.edu

 

We intracerebrally challenged four species of native North American rodents that inhabit locations undergoing cervid chronic wasting disease (CWD) epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles (Myodes gapperi). The inocula were prepared from the brains of hunter-harvested white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles proved to be most susceptible, with a median incubation period of 272 days. Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the brains of all challenged meadow voles. Subsequent passages in meadow voles lead to a significant reduction in incubation period. The disease progression in red-backed voles, which are very closely related to the European bank vole (M. glareolus) which have been demonstrated to be sensitive to a number of TSEs, was slower than in meadow voles with a median incubation period of 351 days. We sequenced the meadow vole and red-backed vole Prnp genes and found three amino acid (AA) differences outside of the signal and GPI anchor sequences. Of these differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is particularly intriguing due its postulated involvement in "rigid loop" structure and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5 years post-inoculation, but appear to be exhibiting a high degree of disease penetrance. White-footed mice have an even longer incubation period but are also showing high penetrance. Second passage experiments show significant shortening of incubation periods. Meadow voles in particular appear to be interesting lab models for CWD. These rodents scavenge carrion, and are an important food source for many predator species. Furthermore, these rodents enter human and domestic livestock food chains by accidental inclusion in grain and forage. Further investigation of these species as potential hosts, bridge species, and reservoirs of CWD is required.

 

please see ;

 


 


 

Subject: Re: TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES

 

***UPDATED CORRECTION BY AUTHOR...SEE EMAIL TO ME...terry

 

From: Kyung-Min Lee Sent: Thursday, October 01, 2015 1:39 PM

 

To: Terry S. Singeltary Sr. ; BSE-L@LISTS.AEGEE.ORG

 

Cc: CJD-L@LISTS.AEGEE.ORG ; cjdvoice@yahoogroups.com ; bloodcjd@yahoogroups.com ; jcattanach@foodprotection.org ; cnc3@psu.edu ; dloynachan@foodprotection.org ; lhovey@foodprotection.org ; Timothy J. Herrman

 

Subject: RE: TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES

 

Dear Terry S. Singeltary Sr.

 

Thank for your interest and concern about our published article entitled “Evaluation of Selected Nutrients and Contaminants in Distillers Grains from Ethanol Production in Texas”. I should apologize you and others that there were some errors and misleading statements in this article due to inappropriate terminology. The statement you were concerned about was corrected to "One sorghum DDGS out of 168 DG samples was contaminated with animal protein prohibited for use in ruminant feed and was channeled to poultry feed." We requested the journal editor to correct some errors and the relevant statements, or to withdraw the article from the journal.

 

Again I sincerely apologize for any confusion and inconvenience this may cause. Thanks.

 

best wishes,

 

Kyung-Min

 

Kyung-Min Lee, Ph. D. Research Scientist Office of the Texas State Chemist

 

Texas A&M AgriLife Research P.O. Box 3160, College Station, TX 77841-3160 Phone: 979-845-4113 (ext 132) Email:kml@otsc.tamu.edu Fax: 979-845-1389

 

snip...end...tss

 

my link corrected

 

Sunday, September 27, 2015

 

TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES

 


 


 

A CONTRIBUTION TO THE NEUROPATHOLOGY OF THE RED-NECKED OSTRICH (STRUTHIO CAMELUS) - SPONGIFORM ENCEPHALOPATHY

 


 

4.21 Three cases of SE’s with an unknown infectious agent have been reported in ostriches (Struthio Camellus) in two zoos in north west Germany (Schoon @ Brunckhorst, 1999, Verh ber Erkeg Zootiere 33:309-314). These birds showed protracted central nervous symptoms with ataxia, disturbances of balance and uncoordinated feeding behaviour. The diet of these birds had included poultry meat meal, some of which came from cattle emergency slaughter cases.

 


 

SE1806

 

TRANSMISSION STUDIES OF BSE TO DOMESTIC FOWL BY ORAL EXPOSURE TO BRAIN HOMOGENATE

 

1 challenged cock bird was necropsied (41 months p.i.) following a period of ataxia, tremor, limb abduction and other neurological signs. Histopathological examination failed to reveal any significant lesions of the central or peripheral nervous systems...

 

1 other challenged cock bird is also showing ataxia (43 months p.i.).

 

snip...

 

94/01.19/7.1

 


 


 

Saturday, January 9, 2016

 

Transmission of sheep-bovine spongiform encephalopathy to pigs Research article

 


 

News Release Media Contact: TPWD News, news@tpwd.texas.gov, 512-389-8030

 

June 20, 2016

 

TPW Commission Adopts Amended Deer Movement Rules

 

AUSTIN – After extensive public testimony, the Texas Parks and Wildlife Commission Monday approved an amended set of regulations for artificial movement of deer by permit as part of the state’s chronic wasting disease (CWD) management plan.

 

Adopted provisions are the result of extensive collaboration between the Texas Parks and Wildlife Department (TPWD), Texas Animal Health Commission (TAHC), the deer breeding community and landowners to address concerns over the future of permitted unnatural deer movement qualifications following the discovery of CWD in 2015, while providing continued protection against the fatal neurological disease for Texas’ 4 million free-ranging and captive deer.

 

“This is bigger than the interests of one group and it’s not about choosing winners or losers,” said Texas Parks and Wildlife Commission Chairman T. Dan Friedkin. “The fundamental issue is how best to protect our state’s deer herds from a deadly disease. The overwhelming amount of interest this issue has generated illustrates just how passionate Texans are about deer and our deer hunting heritage. The actions taken by the commission today are the result of extensive deliberation with input from all stakeholders, and I applaud the many individuals and groups from all over the state who took the time and effort to remain engaged in the process until the end.”

 

Among the provisions adopted by the commission include a suite of options to attain artificial deer movement qualified status through a multilevel system of ante-mortem (“live”) and post-mortem deer testing for CWD. Key changes to the rules include:

 

•Establishing a minimum level of post-mortem testing in deer breeding facilities at 80 percent

 

•Providing an opportunity for all captive deer breeders to test-up to Transfer Category 1 (TC1) status through 50 percent ante-mortem testing of their entire herd (a proposed May 15, 2017, testing deadline was eliminated from the rules) and breeders may choose their preferred ante-mortem testing means (rectal, lymph nodes, tonsillar etc.).

 

•Clarification that the 5-year, 80 percent eligible mortality testing requirement to realize TC1 status may be obtained through testing a 5-year average of annual mortalities and deer breeders may use a 3:1 ratio to substitute live tests for post-mortem tests to meet required testing thresholds.

 

•Property owners may request to expand release sites, provided release site requirements apply to the expanded acreage.

 

•Elimination of testing requirements on Trap, Transfer and Transplant (Triple T) release sites.

 

Details of CWD rule changes affecting specific artificial deer movement permits are available online at www.tpwd.texas.gov/cwd/.

 

The rules take effect upon completion of programming modifications to the Texas Wildlife Information Management System (TWIMS), but no later than Aug. 15, 2016, and apply to the movement of deer under TPWD permits, including Triple T, DMP (deer management permit), TTP (trap, transport and process) and deer breeder.

 

2016-06-20

 


 

Texas Parks & Wildlife tightens rules on deer breeders

 

By Tim Eaton - American-Statesman Staff 

 

Posted: 1:36 p.m. Monday, June 20, 2016

 

Highlights

 

Commission vote came after months of talks.

 

Deer breeders walk out of Texas Parks & Wildlife Commission hearing

 

Anti-breeding forces want to see strict regulations to protect wild deer from chronic wasting disease.

 

The Texas Parks and Wildlife Commission adopted new rules Monday to combat a disease found in deer, but the new rules could put a strain on many of the state’s 1,300 deer breeding businesses.

 

The commission’s vote came after months of discussions with interested groups, including breeders, ranch owners who sell hunting leases, environmental groups and livestock organizations.

 

snip...

 

Deer breeding opponent Jenny Sanders, who is executive director of Texans for Saving our Hunting Heritage, called the commission vote a win.

 

Sanders, who also has served a manager on the 11,300-acre Temple Ranch near Freer in South Texas, said chronic wasting disease as a major threat to white-tailed deer in Texas and to the multibillion-dollar hunting industry. The state had the responsibility to protect the state’s 4 million white-tailed deer, she said.

 

Not everyone agreed with Sanders and the commissioners.

 

snip...

 

Hugo Berlanga, a former member of the Texas House from Corpus Christi and owner of a deer breeding business, said the breeding industry in Texas is already on “life support.” The new regulations will come with high costs and will force some breeding operations of out business, he said.

 

“They have done so much damage to breeders,” he said.

 

Berlanga said the process was rigged to the benefit of large ranch owners who fear competition from smaller businesses that are often close to metro areas.

 

“It’s a bunch of elitists. I can’t explain it any simpler than that,” said Berlanga, a board member of the Texas Deer Association.

 

Sanders, whose group’s members include some representatives from major Texas ranches, has rejected the notion that the breeder fight is about large ranch owners trying to eliminate competition from breeders.

 

Rather, she said in a recent op-ed published in the San Antonio Express News, that “a small group of deer breeders” has “embarked on an effort to undermine” the efforts of the Texas Parks and Wildlife Department.

 

Josh Havens, a spokesman for the Texas Parks and Wildlife Department, said the commission has heard testimony from a number of individuals who either represent themselves, organizations and landowners.

 

“(T)his is a public resource issue, and the commission will make their decision based on science and what is in the best interest of the states wildlife and hunting heritage,” Havens wrote in a text message.

 

Berry, the South Texas breeder, said his and other breeders’ fight won’t end with the commission vote.

 

An already-filed lawsuit is going to be part of the answer, he said.

 

“That’s going to be the next step before the Legislature,” he said.

 


 

>>> “(T)his is a public resource issue, and the commission will make their decision based on science and what is in the best interest of the states wildlife and hunting heritage,” Havens wrote in a text message.<<<

 

Bravo!...tss

 

Deer Breeders Hint At Suing State Over New Chronic Wasting Regulations

 

By Ryan Poppe • 2 hours ago

 

snip...

 

“Under the emergency rules breeders tested about 11-thousand animals, these rules could potentially have the effect of testing 50-plus thousand animals, that’s an increase of about five-times the amount of testing," Tarleton explains.

 

Tarleton says deer breeders and captive deer ranchers are ready to take their fight against the regulations to the courtroom.

 

Carter Smith is the executive director of the Texas Parks and Wildlife Department. He says the new rules are in place to make sure the disease does not spread across both the wild and captive deer population.

 

“The debate is not about low-fence vs. high-fence or breeders vs. anti-breeders, it’s how do we help try to detect and contain a disease that affects the entirety of our state’s 4-million deer," Smith explains.

 

Smith says last month the agency found a mule deer in the Texas Panhandle that had died from chronic wasting disease in the wild. So far Parks and Wildlife officials have not detected transmission of the disease among the state’s whitetail deer population.

 


 

>>>“The debate is not about low-fence vs. high-fence or breeders vs. anti-breeders, it’s how do we help try to detect and contain a disease that affects the entirety of our state’s 4-million deer," Smith explains.<<<

 

Bravo!...tss

 

*** Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964 ***

 

*** How Did CWD Get Way Down In Medina County, Texas?

 

Confucius ponders...

 

Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)?

 

Epidemiology of Scrapie in the United States 1977

 

snip...

 

Scrapie Field Trial Experiments Mission, Texas

 

A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.

 

The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas: (1) a series of pastures and-pens occupied by male animals only, and (2) a series of pastures and pens occupied by females and young progeny of both sexes. ...

 

snip...see full text ;

 


 

Mission, Texas Scrapie transmission to cattle study

 

Wilbur Clarke (reference the Mission, Texas scrapie transmission transmission to cattle study) is now the State Veterinarian for Montana based at Helena.

 

I was given confidential access to sections from the Clarke scrapie-cattle transmission experiment. Details of the experimental design were as supplied previously by Dr. Wrathall (copy of relevant information appended). Only 3 animals (2 inoculated with 2nd pass Suffolk scrapie and 1 inoculated with Angora goat passaged scrapie) showed clinical signs. Clinical signs were characterised by weakness, ''a stilted hindlimb gait'', disorientation, ataxia and, terminally, lateral recumbency. The two cattle from which I examined material were inocluated at 8 months of age and developed signs 36 months pi (goat scrapie inoculum) and 49 months pi (one of the Suffolk scrapie inoculated) respectively. This latter animal was killed at 58 months of age and so the clinical duration was only 1 month. The neuropathology was somewhat different from BSE or the Stetsonville TME in cattle. Vacuolar changes were minimal, to the extent that detection REQUIRED CAREFUL SEARCHING. Conversely astrocyte hypertrophy was a widespread and prominent feature. The material requires DETAILED NEUROPATHOLOGICAL ASSESSMENT BUT WHETHER OR NOT THIS WILL BE DONE REMAINS A QUESTION.

 

Transmission Studies

 

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}...TSS

 

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

 

snip...

 


 


 

Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY

 


 

Tuesday, April 19, 2016

 

Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission

 


 


 


 

Thursday, June 09, 2016

 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

 

How Did CWD Get Way Down In Medina County, Texas?

 


 

Tuesday, June 21, 2016

 

TPW Commission Adopts Amended Deer Movement Rules and Some Deer breeders walk out of hearing on chronic wasting disease CWD TSE Prion

 


 

Thursday, June 16, 2016

 

Help fight this fatal disease CWD TSE PRION threat to Texas wild deer herd

 


 

WISCONSIN CHRONIC WASTING DISEASE CWD TSE PRION SPIRALING FURTHER INTO THE ABYSS UPDATE

 


 

Tuesday, May 03, 2016

 

Arkansas Chronic Wasting Disease CWD TSE Prion and Elk Restoration Project and Hunkering Down in the BSE Situation Room USDA 1998

 


 

Friday, April 22, 2016

 

COLORADO CHRONIC WASTING DISEASE CWD TSE PRION SURVEILLANCE AND TESTING PROGRAM IS MINIMAL AND LIMITED

 

*** SEE CWD HIGH INFECTION RATE MAPS FOR COLORADO ! ***

 


 

Saturday, May 28, 2016

 

*** Infection and detection of PrPCWD in soil from CWD infected farm in Korea Prion 2016 Tokyo ***

 


 

Friday, February 05, 2016

 

Report of the Committee on Wildlife Diseases FY2015 CWD TSE PRION Detections in Farmed Cervids and Wild

 


 

Saturday, April 23, 2016

 

*** SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 ***

 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

 


 

Monday, May 02, 2016

 

*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***

 


 

Tuesday, June 07, 2016

 

*** Comparison of two US sheep scrapie isolates supports identification as separate strains ***

 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 


 

Friday, June 03, 2016

 

Chronic Wasting Disease CWD TSE Prion Surveillance and Testing in Texas, a very concerning situation

 


 

Saturday, May 28, 2016

 

TPWD gives in to Breeders again and postponed their decision regarding proposed changes to state regulations for managing CWD allowing the TSE Prion to spread further

 


 

Sunday, May 22, 2016

 

TEXAS CWD DEER BREEDERS PLEA TO GOVERNOR ABBOTT TO CIRCUMVENT TPWD SOUND SCIENCE TO LET DISEASE SPREAD

 


 

Sunday, June 12, 2016

 

TPWD Special Meeting Chronic Wasting Disease Response Rules June 20, 2016

 


 

Wednesday, May 04, 2016

 

TPWD proposes the repeal of §§65.90 -65.94 and new §§65.90 -65.99 Concerning Chronic Wasting Disease - Movement of Deer Singeltary Comment Submission

 


 

Friday, April 22, 2016

 

*** Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer

 


 

Monday, April 25, 2016

 

TEXAS Nilgai Exotic Antelope Let Loose for Trophy Hunts Blamed for Spreading Cattle Tick Fever, and what about CWD TSE Prion Disease ?

 


 

Saturday, April 02, 2016

 

TEXAS TAHC BREAKS IT'S SILENCE WITH TWO MORE CASES CWD CAPTIVE DEER BRINGING TOTAL TO 10 CAPTIVES REPORTED TO DATE

 


 

Friday, February 26, 2016

 

TEXAS Hartley County Mule Deer Tests Positive for Chronic Wasting Disease CWD TSE Prion

 


 

Friday, February 05, 2016

 

TEXAS NEW CHRONIC WASTING DISEASE CWD CASE DISCOVERD AT CAPTIVE DEER RELEASE SITE

 


 

Saturday, January 23, 2016

 

Texas new interim rule governing Deer Management Permit (DMP) activities as part of the state’s response to the detection of chronic wasting disease (CWD) in captive deer populations

 


 

Sunday, January 17, 2016

 

Texas 10,000 deer in Texas tested for deadly disease CWD TSE, but not tested much in the most logical place, the five-mile radius around the Medina County captive-deer facility where it was discovered

 


 

Friday, January 15, 2016

 

TEXAS PARKS & WILDLIFE CWD Ante-Mortem Testing Symposium Texas Disposal Systems Events Pavilion January 12, 2016

 


 

Sunday, January 10, 2016

 

TEXAS MEDIA REPORTING A BIT OF GOOD NEWS ON CWD TESTING SO FAR INSTEAD OF TAHC which is still mum, still refusing timely updates to the public TSE PRION DISEASE

 


 

Tuesday, December 29, 2015

 

*** TEXAS MONTHLY CHRONIC WASTING DISEASE CWD JANUARY 2016 DEER BREEDERS STILL DON'T GET IT $

 

Chronic Wasting Unease

 

*** The emergence of a deadly disease has wildlife officials and deer breeders eyeing each other suspiciously. ***

 


 

Monday, November 16, 2015

 

*** TEXAS PARKS AND WILDLIFE DEPARTMENT EXECUTIVE DIRECTOR ORDER NO. 015-006

 

*** Chronic Wasting Disease (CWD) immediate danger to the white-tailed deer and mule deer resources of Texas

 


 

Saturday, November 14, 2015

 

TEXAS CAPTIVE BREEDER CHRONIC WASTING DISEASE CWD 2 MORE SUSPECTS DECTECTED BRINGING NUMBER TO 7 DETECTED IN CAPTIVE BREEDER (if/when the last two are confirmed).

 


 

Thursday, November 05, 2015

 

*** TPW Commission Adopts Interim Deer Breeder Movement Rules

 


 

Friday, October 09, 2015

 

Texas TWA Chronic Wasting Disease TSE Prion Webinars and Meeting October 2015

 


 

Saturday, October 03, 2015

 

TEXAS CHRONIC WASTING DISEASE CWD TSE PRION GOD MUST NOT BE A TEXAN 2002 TO 2015

 


 

Thursday, September 24, 2015

 

TEXAS Hunters Asked to Submit Samples for Chronic Wasting Disease CWD TSE Prion Testing

 

*** I cannot stress enough to all of you, for the sake of your family and mine, before putting anything in the freezer, have those deer tested for CWD. ...terry

 


 

***raw and uncut

 

Sunday, August 23, 2015

 

TAHC Chronic Wasting Disease CWD TSE Prion and how to put lipstick on a pig and take her to the dance in Texas

 


 

Friday, August 07, 2015

 

*** Texas CWD Captive, and then there were 4 ?

 


 

Thursday, August 06, 2015

 

*** WE HAVE LOST TEXAS TO CWD TASK FORCE CATERING TO INDUSTRY

 


 

Tuesday, July 21, 2015

 

*** Texas CWD Medina County Herd Investigation Update July 16, 2015 ***

 


 

Thursday, July 09, 2015

 

TEXAS Chronic Wasting Disease (CWD) Herd Plan for Trace-Forward Exposed Herd with Testing of Exposed Animals

 


 

Wednesday, July 01, 2015

 

TEXAS Chronic Wasting Disease Detected in Medina County Captive Deer

 


 

Wednesday, March 18, 2015

 

Chronic Wasting Disease CWD Confirmed Texas Trans Pecos March 18, 2015

 


 

Wednesday, March 25, 2015

 

Chronic Wasting Disease CWD Cases Confirmed In New Mexico 2013 and 2014 UPDATE 2015

 


 

Thursday, May 02, 2013

 

*** Chronic Wasting Disease (CWD) Texas Important Update on OBEX ONLY TEXTING

 


 

Friday, February 26, 2016

 

TEXAS Hartley County Mule Deer Tests Positive for Chronic Wasting Disease

 


 

Thursday, May 02, 2013

 

*** Chronic Wasting Disease (CWD) Texas Important Update on OBEX ONLY TEXTING

 


 

Monday, February 11, 2013

 

TEXAS CHRONIC WASTING DISEASE CWD Four New Positives Found in Trans Pecos

 


 

Tuesday, July 10, 2012

 

Chronic Wasting Disease Detected in Far West Texas

 


 

Monday, March 26, 2012

 

Texas Prepares for Chronic Wasting Disease CWD Possibility in Far West Texas

 


 

2011 – 2012

 

Friday, October 28, 2011

 

CWD Herd Monitoring Program to be Enforced Jan. 2012 TEXAS

 

Greetings TAHC et al,

 

A kind greetings from Bacliff, Texas.

 

In reply to ;

 

Texas Animal Health Commission (TAHC) Announcement October 27, 2011

 

I kindly submit the following ;

 


 


 

***for anyone interested, here is some history of CWD along the Texas, New Mexico border, and my attempt to keep up with it...terry

 

snip...

 

see history CWD Texas, New Mexico Border ;

 

Monday, March 26, 2012

 

3 CASES OF CWD FOUND NEW MEXICO MULE DEER SEVERAL MILES FROM TEXAS BORDER

 


 

Sunday, October 04, 2009

 

CWD NEW MEXICO SPREADING SOUTH TO TEXAS 2009 2009 Summary of Chronic Wasting Disease in New Mexico New Mexico Department of Game and Fish

 


 

I could go on, for more see ;

 

Thursday, March 31, 2016

 

*** Chronic Wasting Disease CWD TSE Prion Roundup USA April 1, 2016 ***

 


 


 

Thursday, April 07, 2016

 

*** What is the risk of chronic wasting disease being introduced into Great Britain? An updated Qualitative Risk Assessment March 2016 ***

 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008).

 

***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.

 

snip...

 

For the purpose of the qualitative risk assessment developed here it is necessary to estimate the probability that a 30-ml bottle of lure contains urine from an infected deer. This requires an estimate of the proportion of deer herds in the USA which are infected with CWD together with the within herd prevalence.

 

The distribution map of CWD in US shows it is present mainly in central states (Figure 1). However, Virginia in the east of the country has recorded seven recent cases of CWD (Anon 2015a). Some US manufacturers claim to take steps to prevent urine being taken from infected animals eg by sourcing from farms where the deer are randomly tested for CWD (Anon 2015a). However, if disease is already present and testing is not carried out regularly, captive populations are not necessarily disease free (Strausser 2014). Urine-based deer lures have been known to be collected from domestic white-tailed deer herds and therefore there is a recognised risk. This is reflected by 6 US States which have

 

14

 

banned the use of natural deer urine for lures, as the deer urine may be sourced from CWD-endemic areas in the USA as well as from areas free of CWD. For example, the US State of Virginia is banning the use of urine-based deer lures on July 2015 and Vermont from 2016 due to the risk of spread of CWD. Alaska banned their use in 2012 (Anon 2015a). Pennsylvania Game Commission has banned urine-based deer lures and acknowledged that there is no way to detect their use (Strausser 2014). On the basis of unpublished data (J. Manson, Pers. Comm.) it appears that up to 50% of deer herds can be infected with 80-90% of animals infected within some herds.

 

*** It is therefore assumed that probability that a 30-ml bottle of deer urine lure imported from the USA is sources from an infected deer is medium.

 

SNIP...

 

In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. ***For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. ***However, this recommendation is guidance and not a requirement by law.

 

***Animals considered at high risk for CWD include:

 

***1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

 

***2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

 

***Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB cannot be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the very low tonnage of non-fish origin processed animal proteins that were imported from US into GB.

 

*** Overall, therefore, it is considered there is a greater than negligible risk that (non-ruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

 

SNIP...

 


 

Summary and MORE HERE ;

 

What is the risk of chronic wasting disease being introduced into Great Britain? An updated Qualitative Risk Assessment March 2016

 


 

Tuesday, April 12, 2016

 

*** The first detection of Chronic Wasting Disease (CWD) in Europe ***

 


 

Tuesday, June 14, 2016

 

*** Chronic Wasting Disease (CWD) in a moose from Selbu in Sør-Trøndelag Norway ***

 


 

I strenuously once again urge the FDA and its industry constituents, to make it MANDATORY that all ruminant feed be banned to all ruminants, and this should include all cervids, as well as non-ruminants such as cats and dogs as well, as soon as possible for the following reasons...

 

31 Jan 2015 at 20:14 GMT

 

*** Ruminant feed ban for cervids in the United States? ***

 

31 Jan 2015 at 20:14 GMT

 

see Singeltary comment ;

 


 

*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***

 

Sunday, March 20, 2016

 

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission

 


 

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission

 


 


 


 

*** Docket No. APHIS-2007-0127 Scrapie in Sheep and Goats Terry Singeltary Sr. Submission ***

 

Monday, November 16, 2015

 

*** Docket No. APHIS-2007-0127 Scrapie in Sheep and Goats Terry Singeltary Sr. Submission ***

 


 

Draft Guidance for Industry on Ensuring Safety of Animal Feed Maintained and Fed On-Farm; Availability

 

# 203 entitled “Ensuring Safety of Animal Feed Maintained and Fed On-Farm.”

 


 

Terry S. Singeltary Sr. submission ;

 


 

Docket No. APHIS-2014-0107 Bovine Spongiform Encephalopathy; Importation of Animals and Animal Products Singeltary Submission

 

Posted: 12/30/2014ID: APHIS-2014-0107-0001

 


 

Notice: Environmental Impact Statements; Availability, etc.: Animal Carcass Management

 

Document ID: APHIS-2013-0044-0001 Docket ID: APHIS-2013-0044 Comment ID: APHIS-2013-0044-0002

 


 

(APHIS) Notice: Agency Information Collection Activities; Proposals, Submissions, and Approvals: Chronic Wasting Disease Herd Certification Program Agency Information Collection Activities; Proposals, Submissions, and Approvals: Chronic Wasting Disease Herd Certification Program (Document ID APHIS-2011-0032-0001)

 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.

 

Claudio Soto

 

Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.

 

Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.

 

=========================

 

***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

 

========================

 

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.

 


 

see ;

 

with CWD TSE Prions, I am not sure there is any absolute yet, other than what we know with transmission studies, and we know tse prion kill, and tse prion are bad. science shows to date, that indeed soil, dirt, some better than others, can act as a carrier. same with objects, farm furniture. take it with how ever many grains of salt you wish, or not. if load factor plays a role in the end formula, then everything should be on the table, in my opinion. see ;

 

***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

 

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.

 


 

see ;

 


 

Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles

 

Author Summary

 

Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.

 


 

tse prion soil

 


 


 


 


 

Wednesday, December 16, 2015

 

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

 


 

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.

 


 

>>>Particle-associated PrPTSE molecules may migrate from locations of deposition via transport processes affecting soil particles, including entrainment in and movement with air and overland flow. <<<

 

Fate of Prions in Soil: A Review

 

Christen B. Smith, Clarissa J. Booth, and Joel A. Pedersen*

 

Several reports have shown that prions can persist in soil for several years. Significant interest remains in developing methods that could be applied to degrade PrPTSE in naturally contaminated soils. Preliminary research suggests that serine proteases and the microbial consortia in stimulated soils and compost may partially degrade PrPTSE. Transition metal oxides in soil (viz. manganese oxide) may also mediate prion inactivation. Overall, the effect of prion attachment to soil particles on its persistence in the environment is not well understood, and additional study is needed to determine its implications on the environmental transmission of scrapie and CWD.

 


 

P.161: Prion soil binding may explain efficient horizontal CWD transmission

 

Conclusion. Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.

 


 

>>>Another alternative would be an absolute prohibition on the movement of deer within the state for any purpose. While this alternative would significantly reduce the potential spread of CWD, it would also have the simultaneous effect of preventing landowners and land managers from implementing popular management strategies involving the movement of deer, and would deprive deer breeders of the ability to engage in the business of buying and selling breeder deer. Therefore, this alternative was rejected because the department determined that it placed an avoidable burden on the regulated community.<<<

 

Wednesday, December 16, 2015

 

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

 

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

 

Timm Konold1*, Stephen A. C. Hawkins2, Lisa C. Thurston3, Ben C. Maddison4, Kevin C. Gough5, Anthony Duarte1 and Hugh A. Simmons1

 

1 Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK, 2 Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK, 3 Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK, 4 ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK, 5 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

 

Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

 

snip...

 

Discussion

 

Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).

 

Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.

 

This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.

 

PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.

 

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.

 

Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification

 


 

Wednesday, December 16, 2015

 

*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***

 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

>>>Another alternative would be an absolute prohibition on the movement of deer within the state for any purpose. While this alternative would significantly reduce the potential spread of CWD, it would also have the simultaneous effect of preventing landowners and land managers from implementing popular management strategies involving the movement of deer, and would deprive deer breeders of the ability to engage in the business of buying and selling breeder deer. Therefore, this alternative was rejected because the department determined that it placed an avoidable burden on the regulated community.<<<

 

Circulation of prions within dust on a scrapie affected farm

 

Kevin C Gough1, Claire A Baker2, Hugh A Simmons3, Steve A Hawkins3 and Ben C Maddison2*

 

Abstract

 

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

 

snip...

 

Discussion

 

We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

 

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.

 


 

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

 


 

Saturday, April 16, 2016

 

APHIS [Docket No. APHIS-2016-0029] Secretary's Advisory Committee on Animal Health; Meeting May 2, 2016, and June 16, 2016 Singeltary Submission

 


 

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle

 

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

 

snip...

 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...

 


 


 


 

In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

 

3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

Monday, May 09, 2016

 

A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation

 


 

Monday, June 20, 2016

 

Specified Risk Materials SRMs BSE TSE Prion Program

 


 

Sent: Monday, January 08,2001 3:03 PM

 

TO: freas@CBS5055530.CBER.FDA.GOV

 

FDA CJD BSE TSE Prion Scientific Advisors and Consultants Staff January 2001 Meeting Singeltary Submission

 

2001 FDA CJD TSE Prion Singeltary Submission

 


 

15 November 1999

 

British Medical Journal

 

vCJD in the USA * BSE in U.S.

 


 

2 January 2000

 

British Medical Journal

 

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well

 


 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

 

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

 

Terry S. Singeltary, Sr Bacliff, Tex

 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.

 


 

26 March 2003

 

Terry S. Singeltary, retired (medically) CJD WATCH

 

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?

 


 

Singeltary Submission 2016

 

Alzheimer-type brain pathology may be transmitted by grafts of dura mater 26/01/2016

 


 

 

Terry S. Singeltary Sr. Bacliff, Texas USA 77518 flounder9@verizon.net

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home