Confirmed scranty sickness at two reindeer cows in Nordfjella
Published 23.02.2018
The Veterinary Institute has today confirmed to the Norwegian Food Safety Authority that two new cases of scanty disease (CWD) in Nordfjella have been confirmed.
Head from a previous reindeer examined in 2017. Photo: Marianne Heum, Veterinary Institute The Veterinary Institute has confirmed to the Norwegian Food Safety Authority that two new cases of surgical illness (CWD) in Nordfjella have been confirmed.
This time on two adult wild bushes shot during state felling respectively 13th and 17th February this year.
The diagnosis of the institute is based on ELISA and Western Blot examination of the brain and lymph node. Both studies gave positive results in both lymph nodes and brain tissue on both animals.
With these two, 17 reindeer were detected with scar tissue from Nordfjella.
- See more at: https://www.vetinst.no/nyheter/bekreftet-skrantesjuke-pa-to-reinsdyrbukker-i-nordfjella#sthash.XDaQAZbF.dpuf
UPDATE CWD IN NORWAY
PAFF Committee, Animal Health and Welfare 25 October 2017 Norwegian Food Safety Authority (NFSA)
Kristin Ruud Alvseike / Fredrik W. Andersen
CWD testing 2016-2017
per 23 October 2017
• 23.823 CWD-tests
• 2016: 10.043
• 2017: 13.780
• 10 positive samples
• 7 wild reindeer in Nordfjella
• 3 moose in Selbu and Lierne
Reindeer cases Nordfjella Zone 1
Data from the Norwegian Veterinary Institute Sex Age Dead Comment Brain Lymph node
Female 3-4 years 15 March 2016 Observed sick/dying +++ ++
Male 7 years 20 August 2016 Hunting (+) ++
Female 4 years 10 September 2016 Hunting + ++
Male Adult 21 June 2017 GPS collared – positive rectal biopsy, euthanized - ++
Female 3 years 11 August 2017 Hunting - ++
Male 8 years 12 August 2017 Hunting - ++
Male Adult 4 October 2017 Hunting ++ ++
Moose cases
Sex Location Dead Comment Age Brain Lymph node
Female Selbu 12 May 2016 Killed 13 years ++ -
Female Selbu 27 May 2016 Found dead 14 years ++ Not available
Female Lierne 6 October 2017 Hunted Abnormal behaviour – sick 13 years + -
Data from the Norwegian Veterinary Institute
Immunohistochemical (IHC) different from other CWD
CWD testing 2017 per species per 23 October 2017
• Wild reindeer 2384
• Semi-domesticated reindeer 3894
• Wild red deer 1602
• Farmed red deer 212
• Moose 4112
• Roe deer 1339
• Unknown 237
Total 13 780
CWD Regulations in Norway
• Regulation 11 July 2016 No 913 concerning measures to reduce the spread of Chronic Wasting Disease (CWD)
• Regulation 12 June 2017 No 734 on zones on the detection of Chronic Wasting Disease (CWD Zone)
• Regulation 15 September 2017 No 1414 on culling of wild reindeer in and from Nordfjella Zone 1, Buskerud, Hordaland and Sogn and Fjordane
Scientific opinions
The Norwegian Scientific Committee for Food Safety
- First report June 2016
- Second report March 2017
- Update statement September 2017 reviewed research project on CWD in apes
Eradication plan Nordfjella Zone 1
Culling of all wild reindeer in Nordfjella Zone 1 (~2000 animals) by
- regular hunting (10 August – 31 October)
- official hunting teams (begins around 1 November)
- herding into fenced area and killed (similar for semi domesticated reindeer) (begins this winter)
Deadline: 1 May 2018
Due to the risk of spread of disease, meat from reindeer culled by the official hunting teams or those herded into the fenced area and killed will be destroyed.
Subject: Scientific opinion on chronic wasting disease (II) EFSA Panel on Biological Hazards (BIOHAZ)
ADOPTED: 6 December 2017 doi: 10.2903/j.efsa.2018.5132
Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ),
Antonia Ricci, Ana Allende, Declan Bolton, Marianne Chemaly, Robert Davies, Pablo Salvador Ferna ndez Esca mez, Rosina Girone s, Lieve Herman, Kostas Koutsoumanis, Roland Lindqvist, Birgit Nørrung, Lucy Robertson, Giuseppe Ru, Moez Sanaa, Panagiotis Skandamis, Emma Snary, Niko Speybroeck, Benno Ter Kuile, John Threlfall, Helene Wahlstro€m, Sylvie Benestad, Dolores Gavier-Widen, Michael W Miller, Glenn C Telling, Morten Tryland, Francesca Latronico, Angel Ortiz-Pelaez, Pietro Stella and Marion Simmons
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, ‘are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided’, and ‘update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union’. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeETM SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago. © 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
Keywords: chronic, wasting, cervids, diagnostic, occurrence
Requestor: European Commission Question number: EFSA-Q-2016-00411 Correspondence: biohaz@efsa.europa.eu
Summary
In 2016, the European Food Safety Authority (EFSA) was asked by the European Commission to deliver a scientific opinion on three Terms of Reference (ToRs): (1) surveillance, (2) public health and (3) (animal health risk-based measures) by 31 December 2016. On 18 January 2017, EFSA published a scientific opinion on chronic wasting disease (CWD) in cervids addressing these three ToRs (EFSA BIOHAZ Panel, 2017a). Within the same mandate, EFSA was asked to deliver by 31 December 2017 a scientific opinion on the following ToR: (4) are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for CWD still valid? If not, an update should be provided, and (5) update the conclusions of the 2010 EFSA opinion on the results of the European Union (EU) survey on CWD in cervids, as regards the occurrence of CWD in the cervid population in the EU.
No formal validation of test performance equivalent to the existing EU requirements for tests used for statutory surveillance in cattle and sheep has been undertaken for cervid material. A qualitative evaluation of the suitability of the Bio-Rad and the IDEXX rapid tests (RT) commercially available for the diagnosis of CWD was carried out by means of literature review (both an ad hoc literature review on the diagnosis of CWD and the references retrieved by the search conducted for the 2017 Opinion (EFSA BIOHAZ Panel, 2017a)), the data provided by the manufacturers, and the knowledge and expertise of the Working Group (WG) members.
A review of the available approaches to the diagnosis of CWD including the considerations underpinning the selection of animals, tissues and diagnostic tests has been conducted, as well as a review of the different diagnostic methods applied for the detection of CWD, both in the context of large-scale surveillance and for research purposes. Screening tests and confirmatory diagnostic methods have been reviewed along with methods for classification of isolates based on data from confirmatory testing, bioassay in potential natural host species and bioassay in rodent models. Requirements for the validation of new diagnostic tests, in particular, the steps and different pathways as defined by the International Organization of Animal Health (OIE) for validation of tests for wild populations, were considered. A review of all the validation exercises of RT for the detection of bovine spongiform encephalopathy (BSE) and for the diagnosis of transmissible spongiform encephalopathies (TSE) in small ruminants conducted in the EU has been included for comparison with the data current available for the rapid tests presently used for the detection of CWD in North America. Sensitive amplification methods, such as protein misfolding cyclic amplification (PMCA) and real- time quaking-induced conversion (rtQuiC) that are currently under development for in vivo screening, or for the detection of environmental contamination, are also considered, but they are not yet at a point in their development where they could be applied in a statutory surveillance context.
To demonstrate how the potential for patchy CWD distribution could complicate surveillance in a heterogeneous geographic area the size of Europe, historical and contemporary maps of CWD distribution in the 28 contiguous US states east of the Mississippi River, spanning ~ 2.5 M km2, were used. This area approximates the EU (28 Member States (MS): > 4.4 M km2) with respect to several ecological, epidemiological and jurisdictional features relevant to CWD surveillance in the context of ToR 5. Data on surveillance in Europe in 2015, 2016 and 2017 were extracted from annual reports submitted by the MS, and from the background information provided by the European Commission, and included in the mandate and the European Commission database. Surveillance data from Norway for the period 1 January 2017–27 November 2017 have been provided by the Norwegian Veterinary Institute, upon request. These data were used together with historical surveillance data from five Colorado mule deer herds collected over 15–21 years to provide a temporal reference of the estimated prevalence in new incursions of CWD and potential time lags in ‘epidemic’ emergence. Data from North America were used to generate a composite epidemic curve, and data from a published model were graphed for comparison with the observed data. The point estimate of comparable survey data from Norwegian reindeer (Nordfjella 1 region) was also calculated.
The experience in Norway so far shows that the Bio-Rad RT (TeSeETM SAP) has detected cases of CWD in reindeer, moose and red deer. It has also been shown that antibodies raised against the core or C-terminal parts of the prion protein used for immunohistochemistry (IHC) and western blot (WB) were able to detect these cases. Developments in immunoblotting techniques have resulted in the ability to discriminate experimental BSE from CWD in red deer. However, there is only limited information on the biological and molecular characteristics that define different strains in the North American cervid population against which the EU isolates could be compared and classified.
The conclusions (1, 2, 3, 4) and recommendations (3, 5, 6, 7) of the 2004 EFSA opinion on diagnostic methods for CWD remain valid. The available formal data on the performance of authorised RT for the detection of CWD in cervids in North America are not comprehensive and are much more limited than those available for the detection of BSE in cattle and scrapie in sheep. The lack of sufficient positive reference samples Europe, and a current lack of information on the strain(s) that might be circulating, make the estimation of the diagnostic sensitivity (DSe) of any test unfeasible for cervid samples, and preclude the development of alternative tests for use in European TSE surveillance in cervids. No direct comparison of test performance (i.e. parallel testing on the same panel of samples) can be made from the data available so there is no possibility to identify any differences between the two RT available on the market. The generation of positive control material for European CWD strain/s, as recommended in both the 2004 and 2010 EFSA opinions (EFSA, 2004a,b; EFSA BIOHAZ Panel, 2010), for example, by experimental inoculation of a range of cervid species would be useful but is very difficult to perform, and would raise a number of practical and welfare issues. It would require the maintenance of experimentally infected individuals from non-domesticated species in high biosafety facilities for a long period of time. In the absence of the specific pathogenesis data that such studies would provide and in the light of the results from the Norwegian surveillance, both brainstem and lymphoid tissue should be tested from each animal to improve sensitivity possible from collected material. The added sensitivity conferred by the testing of lymphoid tissues in addition to the brainstem is further corroborated by the experience from the testing conducted in Norway; three out of the eight positive reindeer were positive on lymphoid tissue only and five were positive in both brainstem and lymphoid tissue. Similarly, the Norwegian experience indicates that there was no detectable lymphoid involvement in the moose and red deer cases.
The tissue distribution of infectivity in some CWD-infected cervids is now known to extend beyond the central nervous system and lymphoid tissues. While the removal of these specific tissues from the food chain, as recommended in the 2004 Opinion, would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. The conclusions (1, 2, 4, 5, 6) and all recommendations (1, 2, 3, 4) of the 2010 EFSA opinion remain valid. Shortcomings in the 2006–2010 EU CWD survey design and subsequent implementation limited the reliability of inferences that could be made about the potential occurrence of CWD in Europe. Despite the lack of substantial surveillance in the EU since that time, cases of CWD have now been detected in wild Norwegian reindeer, moose and red deer, confirming the long-held suspicion that at least some European cervid species are susceptible. Since the implementation of the 2006–2010 EU survey, testing activity has been low in Europe until the detection of CWD in Norway triggered a substantial testing effort in this country in 2016 and 2017. The surveillance programme proposed in the 2017 EFSA opinion supersedes the specifications of the EU-wide survey that was implemented following the recommendations of the 2004 EFSA opinion.
Current available data do not preclude the possibility that CWD was present in Norway and perhaps elsewhere in Europe before the 2006–2010 EU CWD survey was conducted, whether in epidemic form or not. Comparing the point estimates of CWD prevalence among ‘adult’ (> 1 year old) reindeer harvested in Nordfjella 1 in 2016 (0.97%, 95% C.I.: 0.2–2.8%) and for the period 1 January–27 November 2017 (0.68%, 95% CI: 0.22–1.6%) to the epidemic curve for mule deer in investigated herds in the US, it appears plausible that CWD could have become established in Norway more than a decade ago.
Adhering to contemporary surveillance recommendations (EFSA BIOHAZ Panel, 2017a), especially with respect to focusing sampling on high-risk individuals and developing a biologically meaningful spatial sampling framework relevant to the populations being monitored, with the aim of achieving set target sample sizes at the primary sampling unit level, should improve the reliability and value of data arising from renewed CWD surveillance efforts by some MS in coming years. The finding of the first case of CWD in red deer in Norway means that the surveillance scheme as in Reg. 999/2001, as amended, does not cover geographically all the MS in which red deer are present. Further recommendations have been made, among them, the incorporation of sampling and testing for CWD into any wildlife health surveillance programmes, and the increase of awareness and dissemination of information about CWD in appropriate forums in the EU in order to improve the reporting of suspect cases. In addition, it is recommended to use only trained personnel for sample collection, and to avoid any test or detection method that uses antibodies for which the epitope is known to be polymorphic in cervids, unless successful binding in positive animals with those polymorphisms can be demonstrated. Residual samples, including relevant metadata, should be retained from all positive animals, and from as many tissues as possible, for isolate classification, future test evaluation, epidemiology or research purposes. Complementary studies should be conducted to identify any relevant differences influencing the epidemiology of the disease and to investigate the presence and frequency of potentially resistant alleles in the European cervid population. Finally, it is recommended to keep the performance of all currently applied tests, including those still being developed, under review and revise and update statutory testing protocols as new data become available.
Snip...
5. Recommendations
To incorporate sampling and testing for CWD into any wildlife surveillance programmes. Such programmes would need to take into account the knowledge gained in the CWD field and apply it to the surveillance strategies as suggested by OIE. In particular, surveillance should focus on clinical suspects and other high-risk animals. To increase awareness and to disseminate information about CWD in appropriate forums in the EU in order to improve the reporting of suspect cases.
FRIDAY, DECEMBER 22, 2017
Norway reports more cases of Chronic Wasting Disease CWD TSE Prion Skrantesjuke
Two new cases of scarcity in Nordfjella
21.12.2017 06:17 | FSA
It has been confirmed two new cases of the fatal degenerative disease disease. After almost two months of state felling of wild goose in Nordfjella, 531 animals were shot. Five of these were infected with scarcity.
The new case was discovered on two adult simples, and the findings were made in both brain tissue and lymph nodes. In total, twelve cases of erectile dysfunction have now been discovered in the area since 2016. In addition, four cases of another variant of the disease on elk and deer, in Trøndelag and in Møre og Romsdal have been discovered.
"Until now, approximately one third of the reindeer in Nordfjella has been taken out, so the fall goes according to plan. The number of ill animals is as expected and this confirms that the decision to remove the flock is both correct and important, says Julie Enebo Grimstad, Senior Adviser and Veterinarian, at Section Animal Health in Mattilsynet.
The villages in Nordfjella will be taken to prevent the spread of scanty disease. Animal disease exposes the animals that are infected with severe disorders until they end up. The Norwegian National Inspectorate has the regimen of the state withdrawal that has taken place since the beginning of November, and the Norwegian Food Safety Authority is responsible for sampling and infection management. The reindeer fields are transported down from the mountain to a base area where sample material is taken. Samples of all animals are collected and the samples are analyzed by the Veterinary Institute. There is now a break in the fall until the new year.
STATUS FOR NASJONAL KARTLEGGING AV SKRANTESJUKE 35232 CWD-prøver undersøkt fra 2016
16 positive tilfeller per dags dato
Innsamlingen er et samarbeid mellom Mattilsynet, Miljødirektoratet, NINA or Veterinærinstituttet.
NORWAY CHRONIC WASTING DISEASE CWD TSE PRION
TUESDAY, DECEMBER 05, 2017
Norway 30,000 deer animals have so far been tested for Skrantesyke chronic wasting disease CWD TSE PRION DISEASE
THURSDAY, NOVEMBER 30, 2017
Norway Animal welfare surveillance at Nordfjella Skrantesjuke CWD TSE Prion Update
WEDNESDAY, NOVEMBER 29, 2017
Norway another case of Skrantesjuke CWD TSE Prion Adult Reindeer pitcher field in Nordfjella (preliminary testing) 13th case if confirmed
FRIDAY, NOVEMBER 24, 2017
Norwegian Food Safety Authority makes changes to measures to limit the spread of disease Skrantesjuke (CWD) in deer wildlife
SATURDAY, NOVEMBER 18, 2017
Norway detects more Chronic Wasting Disease CWD TSE Prion Skrantesjuke
This is the eighth case of the lethal deer disease in the area since the survey started in 2016.
The reindeer cub was shot by a flock from the Norwegian National Guard, and the infectious agent was detected in the animal's lymph nodes.
WEDNESDAY, NOVEMBER 01, 2017
Norway detects CWD Skrantesjuke Deer possibly atypical Nor-98-type TSE?
Greetings TSE prion world,
i am seeing more and more references to the atypical Nor-98-type CWD TSE Prion in Norway as being of the non-infectious or non-infective variant. with science documented to date, i do not believe that any CWD Skrantesjuke TSE Prion typical or atypical in Norway or anywhere else can be classified as ''non-infective variant''. IF, Norway takes the USDA OIE views and makes atypical Nor-98 type CWD in Deer a International trading commodity fueled by junk science, as they did with sheep, i.e. no trade restrictions for Nor-98 in sheep, the world should then weep...terry
Nor-98 atypical Scrapie Transmission Studies Review
snip...see full text;
FRIDAY, OCTOBER 13, 2017
Norway, Two More New Cases of Chronic Wasting Disease CWD TSE Prion Skrantesjuke
TUESDAY, OCTOBER 10, 2017
Norway detects another case of CWD TSE PRION Skrantesjuke
SATURDAY, SEPTEMBER 30, 2017
Norway, CWD TSE Prion, Humans, Zoonosis, Fortsatt lite sannsynlig at mennesker kan smittes av skrantesyke?
MONDAY, AUGUST 14, 2017
NORWAY CWD, SHEEP GRAZING, and Scrapie, What If?
TUESDAY, JUNE 20, 2017
Norway Confirms 6th Case of Skrantesjuke CWD TSE Prion Disease
Tuesday, December 13, 2016
Norway Chronic Wasting Disease CWD TSE Prion disease Skrantesjuke December 2016 Update
Thursday, September 22, 2016
NORWAY DETECTS 5TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION Skrantesjuke
Saturday, September 03, 2016
NORWAY Regulation concerning temporary measures to reduce the spread of Chronic Wasting Disease (CWD) as 4th case of skrantesjuke confirmed in Sogn og Fjordane
Wednesday, August 31, 2016
*** NORWAY CONFIRMS 4TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN SECOND CARIBOU
Wednesday, August 31, 2016
NORWAY CONFIRMS 4TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN SECOND CARIBOU
Tuesday, August 02, 2016
Chronic wasting disease of deer – is the battle to keep Europe free already lost?
Tuesday, June 14, 2016
*** Chronic Wasting Disease (CWD) in a moose from Selbu in Sør-Trøndelag Norway ***
Thursday, July 07, 2016
Norway reports a third case Chronic Wasting Disease CWD TSE Prion in 2nd Norwegian moose
14/06/2016 - Norway reports a third case
Tuesday, April 12, 2016
The first detection of Chronic Wasting Disease (CWD) in Europe free-ranging reindeer from the Nordfjella population in South-Norway.
Saturday, April 9, 2016
The Norwegian Veterinary Institute (NVI, 2016) has reported a case of prion disease Cervid Spongiform Encephalopathy detected in free ranging wild reindeer (Rangifer tarandus tarandus)
Department for Environment, Food and Rural Affairs
Saturday, July 16, 2016
Chronic wasting Disease in Deer (CWD or Spongiform Encephalopathy) The British Deer Society 07/04/2016
Red Deer Ataxia or Chronic Wasting Disease CWD TSE PRION?
could this have been cwd in the UK back in 1970’S ???
Clinical Communication Enzootic ataxia in Red deer
P.R. Wilson , Marjorie B. Orr & E.L. Key Pages 252-254 | Published online: 23 Feb 2011
SEE FULL TEXT ;
Feb. 16, 2018
Durkin: Stop private deer industry from trucking CWD across state
Patrick Durkin, For USA TODAY NETWORK-Wisconsin Published 10:13 a.m. CT Feb. 16, 2018
A Waupaca County captive-deer shooting preserve that discovered its first two cases of chronic wasting disease in October found 10 more CWD cases last fall, with 11 of the deer coming from a breeding facility in Iowa County — Wisconsin’s most infected county.
Hunt’s End Deer Ranch near Ogdensburg is one of 376 fenced deer farms in Wisconsin, according to the Department of Agriculture, Trade and Consumer Protection. Hunt’s End bought the diseased deer from Windy Ridge Whitetails, a 15-acre, 110-deer breeding facility south of Mineral Point in Iowa County. Of Wisconsin’s 4,175 CWD cases in wild deer, 2,261 (54 percent) are in Iowa County.
Since CWD’s discovery in three wild deer shot during the November 2001 gun season, CWD has been detected on 18 Wisconsin deer farms, of which 11 were “depopulated.” DATCP has identified 242 CWD cases in captive facilities the past 16 years.
The state’s worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for this always-fatal disease from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70-acre pen in January 2006, 60 of the remaining 76 deer carried CWD, a nearly 80 percent infection rate.
The Department of Natural Resources bought the heavily contaminated site for $465,000 in 2011 and has kept it fenced and deer-free since.
The last time DATCP exterminated a captive herd was November 2015, when it killed 228 deer at Fairchild Whitetails, a 10-acre breeding facility in Eau Claire County, and paid its owner, Richard Vojtik, $298,770 in compensation. Tests revealed 34 of those deer carried CWD (15 percent), but two bucks had escaped earlier. Those bucks roamed five months before being shot and tested. They, too, had CWD.
Both operations were outside the endemic CWD region in southern Wisconsin; Buckhorn Flats by about 60 miles and Fairchild Whitetails by about 120. Wisconsin’s four most active CWD outbreaks on deer farms are north of U.S. 10, and farther away from the endemic region — basically the DNR’s Southern Farmlands district — which had 584 CWD cases 2017-18 and 4,148 since 2001.
Those businesses are:
• Wilderness Whitetails, near Eland in Marathon County: 68 CWD cases, including 43 in 2017-18. DATCP first reported CWD there in December 2013 in a 5-year-old buck shot by a facility client. The operation also found three cases in 2014, nine in 2015 and 12 in 2016.
The preserve held about 310 deer in its 351-acre pen last summer. Since beginning tests in 2002, the facility tested 373 deer before finding its first case 11 years later.
• Hunt’s End, Waupaca County: 12 cases, all in 2017-18. The owners, Dusty and Mandy Reid, didn’t detect CWD on the 84-acre shooting facility until two 4-year-old bucks tested positive last fall. DATCP announced those cases Oct. 20, and disclosed 10 additional cases in response to my open-records request in January.
Both Oct. 20 bucks originated from Windy Ridge Whitetails. Nine other bucks from Windy Ridge, owned by Steven and Marsh Bertram, tested positive for CWD after being shot by Hunt’s End clients.
Now DATCP records covering the past five years showed Hunt’s End acquired 31 deer from Windy Ridge, which also sent a combined 67 whitetails to nine other Wisconsin deer farms during that period.
Paul McGraw, DATCP’s state veterinarian and administrator in animal health, quarantined three Hunt’s End properties Oct. 20, but let its owners, continue selling hunts because “properly handled dead animals leaving the premises do not pose a disease risk.”
McGraw also quarantined Windy Ridge, but the specifications let the business move more deer to the Waupaca shooting facility. It made two more shipments to Hunt’s End, the last occurring Nov. 13.
• Apple Creek Whitetails, Oconto County: 11 cases. Since discovering CWD in September 2016 in an 18-month-old doe killed inside the facility near Gillett, DATCP has identified 10 more cases, including three in 2017-18. The preserve held about 1,850 deer on 1,363 acres, and tested 466 in 2016. After first testing for CWD in 2009, the business processed 1,192 deer before finding its first case 18 months ago.
• Three Lakes Trophy Ranch, Oneida County: Nine cases. Since discovering CWD in December 2015 in a 3-year-old buck at Three Lakes, DATCP has identified eight more cases, including two in 2017-18. The preserve held about 545 whitetails on 570 acres.
Although the Hunt’s End outbreak traces to Iowa County deer, Windy Ridge Whitetails sent even more deer, 42, to Vojtik’s American Adventures Ranch near Fairchild with no documented problems. DATCP reports no CWD cases there, and Vojtik, who also owned the 10-acre Fairchild Whitetails breeding facility, said he hasn’t bought Windy Ridge deer the past two years.
Vojtik said Wednesday that he and his clients shoot out his enclosure’s herd of about 200 deer each year to reduce CWD risks. And because he’s not in DATCP’s herd-status program, he must only test 50 percent of deer dying there.
Meanwhile, Wilderness Whitetails tests all of its dead deer. It leads the state with 68 CWD cases, even though it has maintained a “closed herd” since opening its Eland facility in 2004, said its owner, Greg Flees, when reached Wednesday. Flees said all deer in the 351-acre facility were born there or came from his family’s Portage County breeding pen, which began in the 1970s and has never had CWD.
Flees said the jump from 12 CWD cases in 2016 to 43 in 2017 is no mystery or surprise. “We shot more deer to lower our densities, so we found more CWD,” he said. He thinks CWD was in the facility’s soils when they enclosed it with an 8-foot-high fence 14 years ago, or it arrived in alfalfa bales brought in for feed.
Perhaps the bigger mystery is why DATCP allows any deer from Iowa County to be shipped anywhere. Windy Ridge Whitetails is one of eight captive-deer facilities in CWD-infected counties — Sauk, Dane, Iowa, Rock, Walworth and Richland — enrolled in DATCP’s herd-status program, which allows deer transfers if facilities follow specified guidelines.
That won’t change soon, either. In a letter Jan. 30 responding to my open records request, Paul Dedinsky, DATCP’s chief legal counsel, wrote, “The Department is not proposing any rule changes to prohibit movement from CWD endemic areas.”
No doubt Wisconsin’s wild deer provide a vast, mostly undocumented pool for spreading CWD, but sick deer can only carry disease as far as they walk. With DATCP’s approval, privately owned deer could spread CWD wherever they’re trucked.
Patrick Durkin is a freelance writer who covers outdoors for USA TODAY NETWORK-Wisconsin. Email him at patrickdurkin56@gmail.com.
FRIDAY, FEBRUARY 16, 2018
Wisconsin Stop private deer industry from trucking CWD across state
FRIDAY, FEBRUARY 16, 2018
Wisconsin Deer from Now-Quarantined PA Lancaster County Farm Tests Positive for Chronic Wasting Disease CWD TSE Prion
FRIDAY, JANUARY 26, 2018
WISCONSIN REPORTS 588 CWD TSE PRION POSITIVE CASES FOR 2017 WITH 4170 CASES CONFIRMED TO DATE
Tuesday, December 20, 2011
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011
The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.
SUMMARY:
captive deer farmers breeders entitlement program, i.e. indemnity program, why?
how many states have $465,000., and can quarantine and purchase there from, each cwd said infected farm, but how many states can afford this for all the cwd infected cervid game ranch type farms, and why do tax payers have to pay for it ???
For Immediate Release Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov
*** TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease ***
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD).
For Immediate Release
Thursday, October 2, 2014
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov Share on facebook Share on twitter Share on email Share on print More Sharing Services 1
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected
CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.
On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.
The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.
The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.
Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.
Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.
The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.
-30-
79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship, which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected
CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.
On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Lab in Ames, IA confirmed that a male white tail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.
The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.
The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.
Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.
Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.
The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD.
INFORM: Cervid Health and States Indemnity FY 2015
USDA Animal and Plant Health Inspection Service sent this bulletin at 09/19/2014 05:22 PM EDT
Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) received a total of $3 million in appropriated funding to support cervid health activities in fiscal year (FY) 2014, and made approximately $1.0 million of this funding available for indemnity of chronic wasting disease (CWD) positive, suspect, and exposed farmed cervids. All of the available FY2014 indemnity funding was used to depopulate three CWD-infected herds. However, several States have asked about the availability of Federal indemnity funds for CWD-exposed animals in the future.
VS plans to offer Federal indemnity for CWD-exposed cervids beginning in FY2015. Briefly, we will prioritize the highest risk CWD-exposed animals for indemnity based on the availability of funding. Any newly reported CWD-positive herds will be considered for indemnity as they are identified, based first on funding availability and secondly on the risk presented by the herd.
We will reassess our fiscal year funding on a quarterly basis so that providing indemnity for exposed animals does not exhaust available funding early in the fiscal year. By taking this fiscally cautious approach, we hope to provide indemnity for positive herds identified later in the fiscal year while removing high-risk animals from the landscape as soon as possible to minimize the risk for disease spread. Further, removal and testing of these exposed animals will provide a better understanding of the disease risk presented by these animals/herds.
VS plans to work with our State and industry stakeholders on the criteria to assess the risk and on the process through which States can request this indemnity. These will be finalized in a VS Guidance Document in the near future. We look forward to working with you to implement this process in the coming year.
***
FRIDAY, FEBRUARY 23, 2018
Pennsylvania NEW CWD MANAGEMENT AREA TO BE ANNOUNCED
MONDAY, FEBRUARY 12, 2018
Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties
WEDNESDAY, FEBRUARY 21, 2018
Maryland Chronic Wasting Disease CWD TSE Prion Found In Ten Deer Allegany and Washington Counties
SATURDAY, FEBRUARY 17, 2018
Montana Special Hunts 9 more cases CWD TSE Prion to date, more samples still pending
FRIDAY, FEBRUARY 09, 2018
Mississippi Chronic Wasting Disease confirmed in a White-tailed Deer
TUESDAY, FEBRUARY 13, 2018
*** MISSISSIPPI STATE DEPARTMENT OF HEALTH Chronic Wasting Disease: Public Health Recommendations ***
WEDNESDAY, NOVEMBER 22, 2017
Minnesota Chronic Wasting Disease discovered in Winona County farm
FRIDAY, NOVEMBER 24, 2017
Todd Robbins-Miller President of Minnesota Deer Farmers Association is oblivious to Chronic Wasting CWD TSE PRION DISEASE risk factors
WEDNESDAY, FEBRUARY 21, 2018
TEXAS TPWD CWD TSE PRION 2 MORE FROM BREEDER RELEASE SITE TOTALS 81 CASES TO DATE
WEDNESDAY, JANUARY 24, 2018
TEXAS CHRONIC WASTING DISEASE CWD TSE PRION MOUNTING, JUMPS TO 79 CASES TO DATE
FRIDAY, FEBRUARY 16, 2018
Texas Deer Breeders Continue fight against the state’s wildlife agency and its regulations trying to contain CWD TSE Prion
WEDNESDAY, FEBRUARY 07, 2018
New Mexico Bans All Live Cervid Importation Due To CWD TSE Prion still NO Final 2017 Positives Update for N.M.
FRIDAY, FEBRUARY 09, 2018
Virginia 2017 Hunt Confirms 16 Cases Chronic Wasting Disease CWD TSE Prion
MONDAY, FEBRUARY 05, 2018
Nebraska Chronic Wasting Disease CWD TSE Prion 2017 Survey Confirms 203 Positives From 1,807 Deer Sampled
SATURDAY, FEBRUARY 03, 2018
Arkansas Reports 346 Positive CWD TSE Prion cases found as of January 8, 2018
THURSDAY, FEBRUARY 08, 2018
Utah Chronic Wasting Disease CWD TSE Prion Update to date from 2017 Hunting Season
TUESDAY, JANUARY 30, 2018
Colorado Chronic Wasting Disease CWD TSE Prion 7/2015-6/2016 Results (2017?)
THURSDAY, JANUARY 25, 2018
Ohio Chronic Wasting Disease CWD TSE Prioin aka mad deer update 2016-2017 SEASON SUMMARY
SATURDAY, JANUARY 20, 2018
Pennsylvania CWD TSE Prion Cases Explodes 51 deer from the 2017-18 hunting seasons have tested positive for CWD majority of samples collected still are being analyzed
WEDNESDAY, JANUARY 24, 2018
Illinois Chronic Wasting Disease CWD TSE Prion cases mounting with 75 confirmed 2017 and 685 total to date
THURSDAY, FEBRUARY 08, 2018
Iowa DNR Wayne County Confirms CWD with 7 additional CWD positive tests so far from deer in northeast from 2017 season
SATURDAY, FEBRUARY 10, 2018
Chronic wasting disease management in ranched elk using rectal biopsy testing Research Paper 09 Feb 2018
January 14, 2018
Michigan’s Chronic Wasting Disease Working Group Recommendations Report to the Natural Resources Commission Prepared December 2017 CWD Confirmed Cases holding for now at 57 cases
Michigan UPDATE, see also ;
Addressing deer disease: DNR, MSU collaborate on deer movement study in south-central Michigan
Contact: Dwayne Etter (DNR), 517-284-4725 or David Williams (MSU), 517-917-0716 Agency: Natural Resources
Jan. 30, 2018
Michigan State University and the Michigan Department of Natural Resources will be placing location-tracking collars on white-tailed deer in south-central Michigan as part of a multiyear study of deer disease, including chronic wasting disease.
January 14, 2018
Missouri MDC REPORTS 15 NEW CASES OF CWD TSE Prion in Deer
MONDAY, JANUARY 29, 2018
Wyoming, Hanna, WGFD diagnosed chronic wasting disease (CWD) for the first time in Deer Hunt Area 161
MONDAY, JANUARY 29, 2018
North Dakota CWD Confirmed whitetail buck and a mule deer doe 2017 deer gun season from unit 3F2
TUESDAY, DECEMBER 12, 2017
*** Chronic Wasting Disease CWD TSE Prion (aka mad deer disease) Update USA December 14, 2017 ***
(zoonosis and environmental risk factors towards the bottom, after state by state reports)
MONDAY, MARCH 13, 2017
CHRONIC WASTING DISEASE CWD TSE PRION UDATE March 13, 2017
SATURDAY, JANUARY 14, 2017
CHRONIC WASTING DISEASE CWD TSE PRION GLOBAL UPDATE JANUARY 14, 2017
Decontaminating Equipment Personal protective equipment (PPE), such as boots, gloves, clothing, etc., supplies, facilities, and vehicles exposed to potentially CWD infected tissues and environments should be properly cleaned and disinfected after each use.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip...
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip...
snip...
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip...
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip...
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip...
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip...
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip...
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip...
ZOONOSIS OF TSE PRION DISEASE
PRION CONFERENCES 2015, 2016, AND 2017
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
Volume 23, Number 9—September 2017
Research Letter Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion
***Thus, emergent CWD prion strains may have higher zoonotic potential than common strains.
2017
Subject: ***CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
Chronic Wasting Disease (CWD)
Prevention
* Strongly consider having the deer or elk tested for CWD before you eat the meat.
* If you have your deer or elk commercially processed, consider asking that your animal be processed individually to avoid mixing meat from multiple animals.
* If your animal tests positive for CWD, do not eat meat from that animal.
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
TUESDAY, SEPTEMBER 12, 2017
CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat
SATURDAY, JANUARY 27, 2018
CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
Prion 2017 Conference Abstracts CWD
2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
TUESDAY, JULY 04, 2017
*** PRION 2017 CONFERENCE ABSTRACTS ON CHRONIC WASTING DISEASE CWD TSE PRION ***
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
SATURDAY, JULY 29, 2017
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC
BSE INQUIRY
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
https://web.archive.org/web/20170126073306/http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane
BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.
The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
https://web.archive.org/web/20170126073306/http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html
*** I urge everyone to watch this video closely...terry
From: Sent: Sunday, September 29, 2002 10:15 AM
To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html
*** I urge everyone to watch this video closely...terry
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
https://histodb11.usz.ch/Images/videos/video-004/video-004.html
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;
Some unofficial information from a source on the inside looking out -
Confidential!!!!
As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
GENETICS CWD TSE PRION
TO DATE, there is no cervid that has been documented to be totally resistant to cwd tse prion.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion
Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD
In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
PRION 2016 CONFERENCE TOKYO
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
Subject: cwd genetic susceptibility
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§
Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g
snip...
Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations.
kind regards, terry
December 2014, Volume 36, Issue 6, pp 1049–1061 | Cite as
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4. Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids. Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
URINE
SUNDAY, JULY 16, 2017
*** Temporal patterns of chronic wasting disease prion excretion in three cervid species ***
trucking and spreading cwd around...tss
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency's (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.
***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.
spreading cwd around...tss
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.
On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea.
These consisted of 23 elk in 1994 originating from the so-called "source farm" in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the "source farm".
Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify.
CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises.
In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.
*Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
*Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.
*Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program.
Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).
*In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive.
*Consequently, all cervid - 54 elks, 41 Sika deer and 5 Albino deer - were culled and one elk was found to be positive.
Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.
*Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis.
*Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 - 15 elks and 47 elks - were culled and confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.
*In December 2010, one elk was confirmed as positive at Farm 5.
*Consequently, all cervid - 3 elks, 11 Manchurian Sika deer and 20 Sika deer - were culled and one Manchurian Sika deer and seven Sika deer were found to be positive.
This is the first report of CWD in these sub-species of deer.
*Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.
*In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo.
All cervid - 19 elks, 15 crossbreed (species unknown) and 64 Sika deer - of Farm 6 were culled, but all confirmed as negative.
: Corresponding author: Dr. Hyun-Joo Sohn (+82-31-467-1867, E-mail: shonhj@korea.kr) 2011 Pre-congress Workshop: TSEs in animals and their environment 5
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population CWD TSE PRION disease in cervids
***SINGELTARY SUBMISSION
The Scottish Parliament's Rural Affairs, Climate Change and Environment Committee has been looking into deer management, as you can see from the following press release,
***and your email has been forwarded to the committee for information:
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population
Sunday, July 21, 2013
Welsh Government and Food Standards Agency Wales Joint Public Consultation on the Proposed Transmissible Spongiform Encephalopathies (Wales) Regulations 2013
*** Singeltary Submission WG18417
Sunday, June 23, 2013
National Animal Health Laboratory Network Reorganization Concept Paper (Document ID APHIS-2012-0105-0001)
***Terry S. Singeltary Sr. submission
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive Deer, Elk, and Moose
DOCUMENT ID: APHIS-2006-0118-0411
***Singeltary submission
Singeltary submission ;
Program Standards: Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive Deer, Elk, and Moose
*** DOCUMENT ID: APHIS-2006-0118-0411
still feeding banned potential mad cow protein to ruminants and other animals, SRMs, MRMs, SBOs, ???
i am thinking of that 10,000,000 POUNDS OF BLOOD LACED MEAT AND BONE MEAL IN COMMERCE WARNING LETTER back in 2007, see;
SATURDAY, NOVEMBER 4, 2017
FDA 589.2000, Section 21 C.F.R. Animal Proteins Prohibited in Ruminant Feed WARNING Letters and FEED MILL VIOLATIONS OBSERVATIONS 2017 to 2006
FRIDAY, NOVEMBER 3, 2017
BSE MAD COW TSE PRION DISEASE PET FOOD FEED IN COMMERCE INDUSTRY VS TERRY S. SINGELTARY Sr. A REVIEW
''I have a neighbor who is a dairy farmer. He tells me that he knows of several farmers who feed their cattle expired dog food. These farmers are unaware of any dangers posed to their cattle from the pet food contents. For these farmers, the pet food is just another source of protein.''
IN CONFIDENCE
SUNDAY, FEBRUARY 11, 2018
Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein
Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy
Ivett Ackermann, Anne Balkema-Buschmann, Reiner Ulrich, Kerstin Tauscher, James C. Shawulu, Markus Keller, Olanrewaju I. Fatola, Paul Brown and Martin H. GroschupEmail authorView ORCID ID profile
Veterinary Research201748:88
https://doi.org/10.1186/s13567-017-0495-5© The Author(s) 2017
Received: 22 August 2017Accepted: 1 December 2017Published: 19 December 2017
Abstract
In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earliest time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplification (PMCA) assays. For the first time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indicate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.
snip...
In summary, our study demonstrates for the first time PrPBSE (by PMCA) and prion infectivity (by mouse bioassay) in the ileal Peyer’s patch (IPP) of young calves as early as 2 months after infection. From 4 mpi nearly all calves showed PrPBSE positive IPP follicles (by IHC), even with PrPBSE accumulation detectable in FDCs in some animals. Finally, our results confirm the IPP as the early port of entry for the BSE agent and a site of initial propagation of PrPBSE and infectivity during the early pathogenesis of the disease. Therefore, our study supports the recommendation to remove the last four metres of the small intestine (distal ileum) at slaughter, as designated by current legal requirements for countries with a controlled BSE risk status, as an essential measure for consumer and public health protection.
FRIDAY, DECEMBER 22, 2017
Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy
Thursday, November 16, 2017
Texas Natural Meats Recalls Beef Products Due To Possible Specified Risk Materials Contamination
*** Subject: USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS 2017
TUESDAY, DECEMBER 12, 2017
Bovine Spongiform Encephalopathy BSE TSE Prion (aka mad cow disease) Report December 14, 2017 2017
TUESDAY, DECEMBER 12, 2017
Chronic Wasting Disease CWD TSE Prion (aka mad deer disease) Update USA December 14, 2017
FRIDAY, DECEMBER 15, 2017
Canada CFIA updating its national CWD TSE PRION efforts to eradicate disease farmed cervid NOT successful December 14, 2017
TUESDAY, DECEMBER 12, 2017
SCRAPIE TSE PRION UPDATE USA DECEMBER 14, 2017
TUESDAY, DECEMBER 12, 2017
Creutzfeldt Jakob Disease CJD National Prion Disease Pathology Surveillance Center Cases Examined to December 14, 2017
Tuesday, December 12, 2017
Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology
Terry S. Singeltary Sr.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.