05/18/2018
GAME COMMISSION EXPANDS CWD RULES
HARRISBURG, PA - Pennsylvanians who harvest deer anywhere in New York, Ohio, Maryland or West Virginia no longer may bring them home without first removing the carcass parts with the highest risk of transmitting chronic wasting disease (CWD).
As part of the fight to slow the spread of CWD in the Commonwealth, the Pennsylvania Game Commission has updated its executive order prohibiting the importation of high-risk deer parts into Pennsylvania.
While the order has always prohibited whole deer from being brought into Pennsylvania from most U.S. states and Canadian provinces where CWD exists, it previously permitted deer harvested in New York, Ohio, Maryland or West Virginia to be brought in, so long as the deer weren’t reported to have been harvested in any county where CWD has been detected.
The updated order gives Pennsylvania’s free-ranging deer better protection, said Game Commission Executive Director Bryan Burhans.
“The previous rules didn’t provide assurance that deer harvested in CWD-positive counties within New York, Ohio, Maryland or West Virginia weren’t making their way into the Commonwealth,” Burhans said. “While the order prohibited the high-risk parts of those deer from being imported into Pennsylvania, enforcement was difficult for many reasons.
“As we’ve seen in Pennsylvania, just because CWD appears confined to a specific area, doesn’t mean it won’t turn up somewhere completely new, miles away,” Burhans said. “Tightening up this order puts teeth in the Game Commission’s ability to enforce it, allowing us to better protect our deer and elk from CWD.”
Now that the updated order has taken effect, there are a total of 24 states and two Canadian provinces from which high-risk cervid parts cannot be imported into Pennsylvania.
The parts ban affects hunters who harvest deer, elk, moose, mule deer and other cervids in: Arkansas, Colorado, Illinois, Iowa, Kansas, Maryland, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Mexico, New York, North Dakota, Ohio, Oklahoma, South Dakota, Texas, Utah, Virginia, West Virginia, Wisconsin and Wyoming; as well as the Canadian provinces of Alberta and Saskatchewan.
Those harvesting cervids in the identified states and provinces must leave behind the carcass parts that have the highest risk for transmitting CWD. Those parts are: the head (including brain, tonsils, eyes and any lymph nodes); spinal cord/backbone; spleen; skull plate with attached antlers, if visible brain or spinal cord tissue is present; cape, if visible brain or spinal cord tissue is present; upper canine teeth, if root structure or other soft tissue is present; any object or article containing visible brain or spinal cord tissue; unfinished taxidermy mounts; and brain-tanned hides.
Hunters who are successful in those states and provinces from which the importation of high-risk parts into Pennsylvania is banned are allowed to import meat from any deer, elk, moose, mule deer or caribou, so long as the backbone is not present.
Successful hunters also are allowed to bring back cleaned skull plates with attached antlers, if no visible brain or spinal cord tissue is present; tanned hide or raw hide with no visible brain or spinal cord tissue present; capes, if no visible brain or spinal cord tissue is present; upper canine teeth, if no root structure or other soft tissue is present; and finished taxidermy mounts.
Pennsylvania first detected chronic wasting disease in 2012 at a captive deer facility in Adams County. The disease has since been detected in free-ranging and captive deer in parts of southcentral and northcentral Pennsylvania. To date, 104 free-ranging CWD-positive deer have been detected in Pennsylvania.
The Game Commission in late February also established its fourth Disease Management Area, DMA 4, in Lancaster, Lebanon and Berks counties in response to CWD turning up at a captive deer facility in Lancaster County.
Burhans said hunters who harvest deer, elk or moose in a state or province where CWD is known to exist should follow instructions from that state’s wildlife agency on how and where to submit the appropriate samples to have their animal tested. If, after returning to Pennsylvania, a hunter is notified that his or her harvest tested positive for CWD, the hunter is encouraged to immediately contact the Game Commission region office that serves the county in which they reside for disposal recommendations and assistance.
A list of region offices and contact information can be found at www.pgc.pa.gov by scrolling to the bottom of any page to select the “Connect with Us” tab.
First identified in 1967, CWD affects members of the cervid family, including all species of deer, elk and moose. To date, there have been no reported cases of CWD infection in people, according to the Centers for Disease Control and Prevention (CDC). But the disease is always fatal to the cervids it infects.
As a precaution, CDC recommends people avoid eating meat from deer and elk that look sick or that test positive for CWD.
More information on CWD can be found at CDC’s website, www.cdc.gov.
There currently is no practical way to test live animals for CWD, nor is there a vaccine. Clinical signs of CWD include poor posture, lowered head and ears, uncoordinated movement, rough-hair coat, weight loss, increased thirst, excessive drooling, and, ultimately, death.
Much more information on CWD, as well as a video showing hunters how they can process venison for transport and consumption, is available at the Game Commission’s website.
MEDIA CONTACT: Travis Lau - 717-705-6541
# # #
WEDNESDAY, APRIL 04, 2018
2017 Annual Report | Pennsylvania Game Commission Chronic Wasting Disease CWD TSE Prion
SATURDAY, JUNE 02, 2018
Wisconsin DATCP Quarantines Dane County Deer Farm and Richland County Elk Farm due to Positive CWD Results
FRIDAY, FEBRUARY 16, 2018
Wisconsin Deer from Now-Quarantined PA Lancaster County Farm Tests Positive for Chronic Wasting Disease CWD TSE Prion
2017 Annual Report | Pennsylvania Game Commission Chronic Wasting Disease CWD TSE Prion
2017 Annual Report | Pennsylvania Game Commission
Pennsylvania Managing the Spread and Prevalence of Chronic Wasting Disease
The Pennsylvania Game Commission collects samples from deer harvested across the state and tests them for chronic wasting disease (CWD), as part of the agency’s ongoing CWD surveillance. Within the state’s Disease Management Areas — where the disease has been detected in captive and free-ranging deer — intensified sampling occurs. During the 2017-18 deer hunting seasons, the Game Commission offered free CWD testing for hunters harvesting deer within Disease Management Areas (DMAs). Free testing offered hunters a way to have their deer tested prior to consuming it, and it provides the Game Commission with additional samples to better pinpoint areas where the disease exists, so specific problem spots might be addressed. Successful hunters within DMAs dropped off heads from more than 1,500 deer in head-collection containers. Game Commission staff collected more than 3,000 other samples within DMAs. In total, nearly 8,000 samples were collected statewide.
Slightly more than 5,700 whitetails were tested for CWD in 2016; 25 tested positive, all were in or near DMA 2, the only area of the state where CWD has been detected in the wild.
By mid-January 2018, 51 deer from 2017 had tested positive for CWD; all have been within the DMAs. Forty-eight were within DMA 2, in southcentral Pennsylvania; and three were within DMA 3 in northcentral Pennsylvania.
The majority of samples collected had yet to be analyzed at the time of this report. The agency continues to assess test results to evaluate the best response to confront CWD where it exists. DMA boundaries regularly have been adjusted in relation to newly detected CWD-positive animals. During 2017, the Game Commission partnered with the U.S. Department of Agriculture’s APHIS’s Wildlife Services on a CWD surveillance effort where 30 deer were removed by sharpshooters, one of which tested positive for chronic wasting disease. Attempting to control hot spots and remove animals with a greater likelihood of carrying the disease is the agency’s best chance at managing CWD on a larger scale, while minimizing the impact on the larger deer population or diminishing deer hunting opportunities. CWD is not a new disease, and other states have decades of experience dealing with CWD in the wild.
It first was detected in Pennsylvania in 2012 at a captive deer facility, and it was detected in free-ranging deer soon after.
By January 2018, in Pennsylvania, CWD had been detected in 98 free-ranging deer.
CWD is spread from deer to deer through direct and indirect contact. The disease attacks the brains of infected deer, elk, and moose, and will eventually result in the death of the infected animal. There is no live test for CWD and no known cure. There also is no evidence CWD can be transmitted to humans, however, it is recommended the meat of infected deer — or deer thought to be sick — not be consumed. For more information on CWD, the rules applying within DMAs, or what hunters can do to have harvested deer tested for CWD, visit the Game Commission’s website, www.pgc.pa.gov. Information can be found by clicking on the button titled “CWD Information” near the top of the homepage.
Subject: Pennsylvania NEW CWD MANAGEMENT AREA ESTABLISHED
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
https://www.regulations.gov/docketBrowser?rpp=25&so=DESC&sb=commentDueDate&po=0&dct=PS&D=APHIS-2018-0011
02/28/2018
NEW CWD MANAGEMENT AREA ESTABLISHED
HARRISBURG, PA - People who live and hunt deer within parts of Lancaster, Lebanon and Berks counties now need to comply with special rules intended to slow the spread of chronic wasting disease (CWD).
The Pennsylvania Game Commission today established Disease Management Area 4 (DMA 4) in response to a CWD-positive deer recently detected at a captive deer farm in Lancaster County.
DMA 4 encompasses 346 square miles in northeastern Lancaster County, southeastern Lebanon County and western Berks County. The northern part of DMA 4 runs roughly between the cities of Lebanon and Reading. The DMA includes the boroughs of Adamstown, Denver, Ephrata, Mohnton, Richland, Womelsdorf and Wyomissing. State Game Lands 46, 220, 225, 274 and 425 are included in DMA 4.
Within DMAs, special rules apply. The intentional feeding of deer is prohibited. Hunters may not use urine-based deer attractants or possess them while afield. And hunters who harvest deer within a DMA may not transport the carcass outside the DMA without first removing and properly disposing of all high-risk deer parts, including the head and backbone.
While the rules might pose an inconvenience, they are meant to slow the spread of CWD, which so far has been detected in only a few parts of the state.
“CWD is an increasing problem in Pennsylvania, and as the disease emerges in new areas, more Pennsylvanians are impacted,” said Game Commission Executive Director Bryan Burhans. “To this point, however, CWD has been detected in captive or free-ranging deer only in a few, isolated areas of the state. That’s good news for all Pennsylvanians who enjoy deer and deer hunting. And we continue to focus our resources on ways to minimize CWD’s impacts statewide.”
CWD, which is always fatal to deer, elk and other cervids, first was detected in Pennsylvania in 2012 at a captive deer farm in Adams County. CWD has been detected among free-ranging deer in two areas of the state.
In addition to establishing DMA 4, the Game Commission will increase its CWD sampling there.
Within DMA 4, the agency will begin testing all known road-killed deer for CWD. Come hunting season, bins for the collection of deer heads and other high-risk deer parts will be placed in areas for the public to use. Hunters who deposit the heads of the deer they harvest in designated collection bins will be able to have their deer tested, free of charge. And DMAP permits for use within DMA 4 will be available for purchase.
Wayne Laroche, the Game Commission’s special assistant for CWD response, said increased sampling within DMA 4 is necessary to find out whether CWD exists among free-ranging deer there, and adjust the response accordingly.
“We need to know the full extent of the CWD problem in any area where the disease exists,” Laroche said. “We have not detected CWD among free-ranging deer in DMA 4, and maybe we won’t. But if CWD is out there, we surely need to know about it to confront it head-on.”
Information on CWD and Pennsylvania’s DMAs, including maps of all DMAs, is available at www.pgc.pa.gov.
DMA 4 boundary
The exact boundary of DMA 4 is as follows: Beginning in the northwestern extent of the DMA in the city of Lebanon, at the intersection of state Route 897 and U.S. Route 422, proceed east on U.S. Route 422 for 12.3 miles to state Route 419. Turn left on state Route 419 and proceed north for 2.3 miles to Christmas Village Road (state Route 4010). Turn right, proceeding east on Christmas Village Road for 5.1 miles to North Heidelberg Road (state Route 3033). Turn left on North Heidelberg Road, proceeding northeast for 0.6 miles to state Route 183. Turn right on state Route 183, proceeding southeast for 7.7 miles to the U.S. 222. Turn right on U.S. 222 proceeding southwest for 3.2 miles to the interchange with U.S. Route 422 Bypass. Proceed on U.S. Route 422 Bypass for 2.4 miles to intersection with Business Route 222E (Lancaster Avenue). Proceed south on Business 222E for 0.6 miles to the intersection with state Route 625. Turn left onto state Route 625 and proceed south for 16.7 miles to the intersection with Route 23. Turn right on Route 23, proceeding westerly for 9.7 miles to intersection with state Route 772 (Glenbrook Road). Turn right on state Route 772, proceeding northwest for 9.3 miles to state Route 501 (Furnace Hills Pike). Turn right on state Route 501, proceeding northerly for 5 miles to the intersection with U.S. Route 322 (West 28th Division Highway). Turn left on U.S. Route 322, proceeding westerly for 1.3 miles to the Pennsylvania Turnpike (U.S. Route 76). Move right along U.S. Route 76, proceeding east for 0.7 miles to the western boundary of State Game Lands 46. Proceed north, then east for 1.2 miles along the game lands boundary to state Route 501 (Furnace Hills Pike). Turn left on state Route 501, proceeding north for 4.1 miles to the intersection with state Route 419. Turn left, proceeding west for 0.1 miles to state Route 897 (South 5th Street). Turn right on state Route 897, proceeding northwest for 6.2 miles to the starting point at the intersection of state Route 897 and U.S. Route 422.
CWD in Pennsylvania
In Pennsylvania, the Game Commission oversees the management and protection of all free-ranging deer, while farm-raised deer and facilities are overseen by the state Department of Agriculture. The agencies work together to monitor chronic wasting disease.
After CWD was detected in 2012 at a captive deer farm in Adams County, the Game Commission established Disease Management Area 1 (DMA 1), a nearly 600-square-mile area in Adams and York counties, in which restrictions regarding the hunting and feeding of deer applied.
CWD was detected among free-ranging deer a few months later, in three deer harvested by hunters in Bedford and Blair counties in the 2012 firearms season. The deer were detected through the Game Commission’s ongoing CWD surveillance program.
Those CWD-positive deer resulted in the creation of DMA 2, which initially encompassed nearly 900 square miles in parts of Bedford, Blair, Cambria and Huntingdon counties, but since has expanded annually due to the detection of additional free-ranging and captive CWD-positive deer. DMA 2 now encompasses more than 2,845 square miles in parts of Adams, Bedford, Blair Cambria, Clearfield, Cumberland, Franklin, Fulton, Huntingdon and Somerset counties.
So far, 104 free-ranging CWD-positive deer, and 46 of CWD-positive captive deer, have been detected within DMA 2.
In 2014, CWD was detected at a captive deer farm in Jefferson County, leading to the creation of DMA 3, which encompasses about 350 square miles in parts of Clearfield, Indiana and Jefferson counties. In July 2017, a sick-looking adult buck euthanized a month earlier on state game lands in Clearfield County, within DMA 3, was confirmed as CWD-positive. An additional CWD-positive deer was detected within DMA 3 in the 2017-18 hunting season.
In 2017, the Game Commission eliminated DMA 1 after five years of monitoring, which included the testing of 4,800 wild deer; CWD never was found in the wild within DMA 1.
Hunters harvesting deer within DMAs are prohibited from transporting the high-risk parts of those deer (head and backbone) outside the DMA. If those hunters live outside the DMA, and are processing the deer themselves, they must remove and properly dispose of the high-risk parts before taking other parts of the deer home.
Deer meat may be transported outside a DMA so long as the head and backbone have been removed.. Antlers may also be transported from a DMA if the skull plate is free of visible brain material.
Hunters using professional meat processors to process the meat from deer they harvest within a DMA must take the deer to processors within the DMA, or otherwise included on the list of approved processors associated with that DMA. There’s also a list of approved taxidermists associated with each DMA.
The feeding of deer and the use or field possession of urine-based deer lures while hunting also are prohibited within DMAs.
MEDIA CONTACT: Travis Lau - 717-705-6541
# # #
FRIDAY, FEBRUARY 23, 2018
Pennsylvania NEW CWD MANAGEMENT AREA TO BE ANNOUNCED
MONDAY, FEBRUARY 12, 2018
Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties
SATURDAY, JANUARY 20, 2018
Pennsylvania CWD TSE Prion Cases Explodes 51 deer from the 2017-18 hunting seasons have tested positive for CWD majority of samples collected still are being analyzed
FRIDAY, DECEMBER 15, 2017
Pennsylvania Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves
THURSDAY, SEPTEMBER 28, 2017
Pennsylvania GAME COMMISSION OFFERS FREE CWD TESTS FOR DMA-HARVESTED DEER
THURSDAY, SEPTEMBER 21, 2017
Pennsylvania Game Commission has scheduled a series of public meetings to ensure Pennsylvanians remain informed about chronic wasting disease CWD TSE Prion
SATURDAY, AUGUST 12, 2017
*** Pennsylvania 27 deer from Bedford County farm test positive for chronic wasting disease ***
WEDNESDAY, JULY 12, 2017
PENNSYLVANIA CWD FOUND IN THE WILD IN CLEARFIELD COUNTY
THURSDAY, JUNE 01, 2017
PENNSYLVANIA Third Case of CWD Discovered in a Captive Deer Farm in Four Months
Chronic wasting disease research becomes more crucial as cases grow in Pa. deer With fatal deer disease on the rise, Penn State researchers hunt for answers to help limit CWD's spread Jeff Mulhollem May 23, 2017 UNIVERSITY PARK, Pa, — The recent announcement by the Pennsylvania Game Commission that it found 25 more wild deer with chronic wasting disease last year underlines the importance of studies being conducted by a team of researchers in Penn State's College of Agricultural Sciences.
With the overarching goal of determining how the always-fatal-to-cervids disease will disburse through the state's free-ranging white-tailed deer herd, the research is aimed at informing the commission's efforts to slow or limit the spread of the disease, according to David Walter, adjunct assistant professor of wildlife ecology.
Often referred to as CWD, chronic wasting disease infects the brain and nervous system of cervids. The illness, which belongs to a group of diseases known as transmissible spongiform encephalopathies, or prion diseases, eventually produces enough damage to the brains of affected animals to result in death. While CWD is similar to so-called mad cow disease in cattle and scrapie in sheep, there is no known relationship between them.
There is no strong evidence, either, that humans can contract CWD, according to the U.S. Centers for Disease Control and Prevention, although the disease is similar to Creutzfeldt-Jakob disease, a rare, fatal syndrome that afflicts people.
Walter, who is assistant unit leader of the Pennsylvania Cooperative Fish and Wildlife Research Unit at Penn State, conducted research from 2007 to 2011 on the spread of the disease in Colorado and Nebraska in free-ranging mule deer and white-tailed deer. Since coming to Penn State in 2012, he has concentrated on the CWD outbreak spreading through deer herds in Virginia, West Virginia, Maryland and Pennsylvania.
Working under Walter's guidance in 2013-14, master's degree student Tyler Evans, now a wildlife biologist with the West Virginia Department of Natural Resources, investigated the geographic coordinates where deer testing positive for CWD were found, and he modeled the likely future spread of the disease in Pennsylvania.
Miller and a deer head Chronic wasting disease infects the brain and nervous system of cervids, and animals cannot be tested while they are alive. Here, researcher Will Miller (left) samples a deer head for the disease.
Image: Penn State "That research looked at what environmental variables were associated with the presence or absence of chronic wasting disease in the Northeast," Walter said. "We obtained the geographic coordinates of hunter-killed deer that tested positive for CWD and overlaid them on a map showing a variety of habitat and landscape features. The analysis showed a high prevalence of CWD in deer sampled from low-lying open and developed landscapes."
Now, Walter's advisee Will Miller, a doctoral degree candidate in the Intercollege Graduate Degree Program in Ecology, is continuing to study the spread of CWD in Pennsylvania. But he is focusing on whether some deer might be susceptible to the disease because of their genes, and how genetic variation in deer might influence where and how fast the disease spreads.
"It appears that deer in Pennsylvania's Northern Tier are less related to those in Maryland and in southern Pennsylvania," Walter said. "That may well have implications for how CWD spreads."
Walter and Miller are slated to travel to Edinburgh, Scotland, in late May to attend an international conference focused on prions and diseases the mysterious proteins cause. At the conference, Miller will present findings of his research focusing on genetic susceptibility of some deer in Pennsylvania to chronic wasting disease.
Detected in captive and free-ranging deer and elk in 23 states and two Canadian provinces, CWD was found last year in reindeer in Norway, Walter pointed out. "The Europeans are eager to learn what we know about the disease, based on our experience in North America," he said. "But despite all that we are learning about the disease, there is much we still don't know."
In the case of the outbreak in Pennsylvania's wild deer, that includes how the disease infected free-ranging deer in Pennsylvania. Among the possible sources, two include captive deer and wild deer moving from Maryland. Although researchers have seen evidence that deer may carry the disease over the border with Maryland, the Pennsylvania counties of Blair and Bedford, where CWD originally was found in 2012, also had the highest inventories of captive cervids in Pennsylvania.
map showing CWD outbreaks Genetics research focusing on "microsatellite markers" in white-tailed deer in Pennsylvania and surrounding states has indicated four clusters within deer herds with animal movement more likely within a cluster than between clusters.
Image: Penn State The location of the original outbreak, which was more than 40 miles from the Maryland border, makes it difficult to confirm the actual source of infection.
"In southern Fulton and Bedford counties, we have seen more CWD-positive deer along the border," Walter said. "We have seen over time that it is likely the disease is moving into this area from the West Virginia-Maryland outbreak."
The Game Commission tests both hunter-killed deer and animals killed on highways in parts of the state for CWD to assess the dimensions of the outbreak, Walter noted. The dual approach addresses sampling bias built into testing hunter harvests.
Because hunters are restricted by antler regulations from killing young male deer, and they mostly pass on taking young females and button bucks, some reached the mistaken conclusion that the disease primarily infects older deer. But road kills show that is not the case, Walter explained.
"It is a chronic disease, so it takes a while for the animal to succumb, but there is a fallacy out there that young deer can't get it — but they do, and we are detecting it now. Wisconsin has found CWD in fawns," he said.
"Most of the road kills with CWD are yearling males and females. We don't see that in hunter harvests, so our data from across the country has been skewed. Collecting and testing road kills has been a great investment of resources, and it has proved to be very valuable in finding this disease in areas we wouldn't find it otherwise."
Chronic wasting disease is not established in Pennsylvania yet, the way it is in Wisconsin and West Virginia, Walter believes, and he would like to see the Game Commission and state Department of Agriculture take steps, such as targeted culling of deer in CWD hotspots, to keep it at bay.
MEDIA CONTACTS: Jeff Muhollem jjm29@psu.edu Work Phone: 814-863-2719
MONDAY, MAY 15, 2017
Pennsylvania 25 more deer test positive for CWD TSE PRION in the wild
WEDNESDAY, MARCH 01, 2017
South central Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease
FRIDAY, JANUARY 13, 2017
Pennsylvania Deer Tests Positive for Chronic Wasting Disease four-year-old white-tailed deer Franklin County Hunting Preserve
Wednesday, May 11, 2016
PENNSYLVANIA TWELVE MORE CASES OF CWD FOUND: STATE GEARS UP FOR ADDITIONAL CONTROL MEASURES
Sunday, October 18, 2015
*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans Singeltary 2002 from speaking A smelly situation UPDATED 2015
Saturday, November 07, 2015
PENNSYLVANIA CHRONIC WASTING DISEASE CWD TSE PRION RULES EXPAND
Saturday, November 07, 2015
Pennsylvania 2015 September Minutes CWD Urine Scents
Tuesday, May 05, 2015
Pennsylvania CWD DETECTED IN SIX MORE FREE-RANGING DEER Disease Management Area 2 again expanded due to new cases Release #030-15
Sunday, July 13, 2014
Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape
Saturday, June 29, 2013
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA
Tuesday, June 11, 2013
*** CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania
Tuesday, May 28, 2013
Chronic Wasting Disease CWD quarantine Louisiana via CWD index herd Pennsylvania Update May 28, 2013
*** 6 doe from Pennsylvania CWD index herd still on the loose in Louisiana, quarantine began on October 18, 2012, still ongoing, Lake Charles premises.
Sunday, January 06, 2013
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
Wednesday, November 14, 2012
PENNSYLVANIA 2012 THE GREAT ESCAPE OF CWD INVESTIGATION MOVES INTO LOUISIANA and INDIANA
Tuesday, October 23, 2012
PA Captive deer from CWD-positive farm roaming free
Thursday, October 11, 2012
Pennsylvania Confirms First Case CWD Adams County Captive Deer Tests Positive
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
FRIDAY, MARCH 30, 2018
Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary Submission March 30, 2018
Terry S. Singeltary Sr., Bacliff, Texas USA 77518 flounder9@verizon..net
Attachments (1) Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary View Attachment:View as format pdf
USA MAD DEER ROUNDUP
Feb. 16, 2018
Durkin: Stop private deer industry from trucking CWD across state
Patrick Durkin, For USA TODAY NETWORK-Wisconsin Published 10:13 a.m. CT Feb. 16, 2018
A Waupaca County captive-deer shooting preserve that discovered its first two cases of chronic wasting disease in October found 10 more CWD cases last fall, with 11 of the deer coming from a breeding facility in Iowa County — Wisconsin’s most infected county.
Hunt’s End Deer Ranch near Ogdensburg is one of 376 fenced deer farms in Wisconsin, according to the Department of Agriculture, Trade and Consumer Protection. Hunt’s End bought the diseased deer from Windy Ridge Whitetails, a 15-acre, 110-deer breeding facility south of Mineral Point in Iowa County. Of Wisconsin’s 4,175 CWD cases in wild deer, 2,261 (54 percent) are in Iowa County.
Since CWD’s discovery in three wild deer shot during the November 2001 gun season, CWD has been detected on 18 Wisconsin deer farms, of which 11 were “depopulated.” DATCP has identified 242 CWD cases in captive facilities the past 16 years.
The state’s worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for this always-fatal disease from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70-acre pen in January 2006, 60 of the remaining 76 deer carried CWD, a nearly 80 percent infection rate.
The Department of Natural Resources bought the heavily contaminated site for $465,000 in 2011 and has kept it fenced and deer-free since.
The last time DATCP exterminated a captive herd was November 2015, when it killed 228 deer at Fairchild Whitetails, a 10-acre breeding facility in Eau Claire County, and paid its owner, Richard Vojtik, $298,770 in compensation. Tests revealed 34 of those deer carried CWD (15 percent), but two bucks had escaped earlier. Those bucks roamed five months before being shot and tested. They, too, had CWD.
Both operations were outside the endemic CWD region in southern Wisconsin; Buckhorn Flats by about 60 miles and Fairchild Whitetails by about 120. Wisconsin’s four most active CWD outbreaks on deer farms are north of U.S. 10, and farther away from the endemic region — basically the DNR’s Southern Farmlands district — which had 584 CWD cases 2017-18 and 4,148 since 2001.
Those businesses are:
• Wilderness Whitetails, near Eland in Marathon County: 68 CWD cases, including 43 in 2017-18. DATCP first reported CWD there in December 2013 in a 5-year-old buck shot by a facility client. The operation also found three cases in 2014, nine in 2015 and 12 in 2016.
The preserve held about 310 deer in its 351-acre pen last summer. Since beginning tests in 2002, the facility tested 373 deer before finding its first case 11 years later.
• Hunt’s End, Waupaca County: 12 cases, all in 2017-18. The owners, Dusty and Mandy Reid, didn’t detect CWD on the 84-acre shooting facility until two 4-year-old bucks tested positive last fall. DATCP announced those cases Oct. 20, and disclosed 10 additional cases in response to my open-records request in January.
Both Oct. 20 bucks originated from Windy Ridge Whitetails. Nine other bucks from Windy Ridge, owned by Steven and Marsh Bertram, tested positive for CWD after being shot by Hunt’s End clients.
Now DATCP records covering the past five years showed Hunt’s End acquired 31 deer from Windy Ridge, which also sent a combined 67 whitetails to nine other Wisconsin deer farms during that period.
Paul McGraw, DATCP’s state veterinarian and administrator in animal health, quarantined three Hunt’s End properties Oct. 20, but let its owners, continue selling hunts because “properly handled dead animals leaving the premises do not pose a disease risk.”
McGraw also quarantined Windy Ridge, but the specifications let the business move more deer to the Waupaca shooting facility. It made two more shipments to Hunt’s End, the last occurring Nov. 13.
• Apple Creek Whitetails, Oconto County: 11 cases. Since discovering CWD in September 2016 in an 18-month-old doe killed inside the facility near Gillett, DATCP has identified 10 more cases, including three in 2017-18. The preserve held about 1,850 deer on 1,363 acres, and tested 466 in 2016. After first testing for CWD in 2009, the business processed 1,192 deer before finding its first case 18 months ago.
• Three Lakes Trophy Ranch, Oneida County: Nine cases. Since discovering CWD in December 2015 in a 3-year-old buck at Three Lakes, DATCP has identified eight more cases, including two in 2017-18. The preserve held about 545 whitetails on 570 acres.
Although the Hunt’s End outbreak traces to Iowa County deer, Windy Ridge Whitetails sent even more deer, 42, to Vojtik’s American Adventures Ranch near Fairchild with no documented problems. DATCP reports no CWD cases there, and Vojtik, who also owned the 10-acre Fairchild Whitetails breeding facility, said he hasn’t bought Windy Ridge deer the past two years.
Vojtik said Wednesday that he and his clients shoot out his enclosure’s herd of about 200 deer each year to reduce CWD risks. And because he’s not in DATCP’s herd-status program, he must only test 50 percent of deer dying there.
Meanwhile, Wilderness Whitetails tests all of its dead deer. It leads the state with 68 CWD cases, even though it has maintained a “closed herd” since opening its Eland facility in 2004, said its owner, Greg Flees, when reached Wednesday. Flees said all deer in the 351-acre facility were born there or came from his family’s Portage County breeding pen, which began in the 1970s and has never had CWD.
Flees said the jump from 12 CWD cases in 2016 to 43 in 2017 is no mystery or surprise. “We shot more deer to lower our densities, so we found more CWD,” he said. He thinks CWD was in the facility’s soils when they enclosed it with an 8-foot-high fence 14 years ago, or it arrived in alfalfa bales brought in for feed.
Perhaps the bigger mystery is why DATCP allows any deer from Iowa County to be shipped anywhere. Windy Ridge Whitetails is one of eight captive-deer facilities in CWD-infected counties — Sauk, Dane, Iowa, Rock, Walworth and Richland — enrolled in DATCP’s herd-status program, which allows deer transfers if facilities follow specified guidelines.
That won’t change soon, either. In a letter Jan. 30 responding to my open records request, Paul Dedinsky, DATCP’s chief legal counsel, wrote, “The Department is not proposing any rule changes to prohibit movement from CWD endemic areas.”
No doubt Wisconsin’s wild deer provide a vast, mostly undocumented pool for spreading CWD, but sick deer can only carry disease as far as they walk. With DATCP’s approval, privately owned deer could spread CWD wherever they’re trucked.
Patrick Durkin is a freelance writer who covers outdoors for USA TODAY NETWORK-Wisconsin.. Email him at patrickdurkin56@gmail.com.
FRIDAY, FEBRUARY 16, 2018
Wisconsin Stop private deer industry from trucking CWD across state
Tuesday, December 20, 2011
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011
The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.
SUMMARY:
captive deer farmers breeders entitlement program, i.e. indemnity program, why?
how many states have $465,000., and can quarantine and purchase there from, each cwd said infected farm, but how many states can afford this for all the cwd infected cervid game ranch type farms, and why do tax payers have to pay for it ???
WEDNESDAY, FEBRUARY 10, 2016
Wisconsin Two deer that escaped farm had chronic wasting disease CWD
WEDNESDAY, MARCH 07, 2018
***> Michigan DNR CWD National Perspective: Captive Herd Certification Program - Dr. Tracy Nichols
***> CURRENT STATUS OF CWD IN CAPTIVE CERVID HERDS IN 16 STATES AS OF MAY 2017
43 ELK HERDS
37 WTD HERDS
1 RED DEER HERD
6 MIX SPECIES HERDS
85 CWD-POSITIVE CAPTIVE HERDS
snip...see
TUESDAY, MARCH 27, 2018
Hunters and citizens invited to collaborate on Michigan's chronic wasting disease response
FRIDAY, MARCH 30, 2018
Michigan Mecosta County man sentenced following DNR investigation Game ranch owner falsified information related to chronic wasting disease testing
maybe what happened to old Davy Crocket will happen to Gov Walker...LOL...Terry
"A gentleman from Nacogdoches, in Texas, informs us, that, whilst there, he dined in public with col. Crockett, who had just arrived from Tennessee. The old bear-hunter, on being toasted, made a speech to the Texians, replete with his usual dry humor. He began nearly in this style: "I am told, gentlemen, that, when a stranger, like myself, arrives among you, the first inquiry is - what brought you here? To satisfy your curiosity at once to myself, I will tell you all about it. I was, for some years, a member of congress. In my last canvass, I told the people of my district, that, if they saw fit to re-elect me, I would serve them as faithfully as I had done; but, if not, they might go to hell, and I would go to Texas. I was beaten, gentlemen, and here I am." The roar of applause was like a thunder-burst. [Louisville Journal.
LISTEN TO THIS NICE LITTLE CWD BLUES DIDDY BY TAMI ABOUT WISCONSIN CWD TSE PRION. WOW, ANNUAL UPDATES NOW, FROM HERE ON OUT, ABOUT CWD...200,000 CWD TESTS, WITH OVER 3500 CWD POSITIVE CASES, SEEING INCREASING TRENDS IN PREVALENCE AND DISTRIBUTION...CARCASS DISPOSAL SIGNIFICANT CHALLENGE...CWD SAMPLING EFFORTS GONE DONE, WHILE CWD POSITIVES HAVE GONE UP...ALSO, 40 SELF SERVING KIOSKS ACROSS STATE AND FREE HUNTER SERVICE CWD TESTING AND SICK DEER POLICY REPORTING AND TESTING ACROSS STATE!
PLEASE WATCH THIS VIDEO, AND BE SURE TO SEE AROUND THE 8 MINUTE MARK, VERY, VERY, DISTURBING...terry
MONDAY, APRIL 16, 2018
***> Rumor has it, Dr. Kroll to speak for Michigan DNR about Chronic Wasting Disease CWD TSE Prion, God Help Michigan!
FRIDAY, APRIL 13, 2018
***> WISCONSIN DATCP Resolutions target spread of chronic wasting disease depopulation of Copper Hills Hunting Preserve near Oulu has begun
TUESDAY, APRIL 17, 2018
***> Chronic wasting disease: Bambi vs. the prion
Research Project: Immunodiagnostics to Detect Prions and Other Important Animal Pathogens
Location: Produce Safety and Microbiology Research
THURSDAY, APRIL 05, 2018
Boone and Crocket Club B&C News Release CHRONIC WASTING DISEASE TSE Prion
THURSDAY, APRIL 19, 2018
Theodore Roosevelt Conservation Partnership Chronic Wasting Disease CWD What You Can Do!
SUNDAY, APRIL 8, 2018
Transmissible Spongiform Encephalopathy TSE Prion Disease Global Pandemic Urgent Update April 9, 2018
SATURDAY, MARCH 10, 2018
Chronic Wasting Disease CWD TSE Prion Goes Global Finland Falls, Behind Norway and S. Korea
FINLAND REPORTS FIRST CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN A moose or European elk (Alces alces)
WEDNESDAY, MARCH 28, 2018
The executioner in Nordfjella and Chronic Wasting Disease CWD TSE Prion Skrantesjuke
TUESDAY, FEBRUARY 27, 2018
NORWAY CWD TSE PRION Skrantesjuke Nordfjella zone 1 Complete Eradication Complete
WEDNESDAY, MARCH 21, 2018
World Animal Organization (OIE) Appoints Veterinary Institute as first European reference laboratory for land animal health field of CWD or skrantesjuke scratch disease
CWD TSE Prion Zoonosis to squirrel monkey and macaque
Prion 2017 Conference Abstracts CWD
2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
SATURDAY, JULY 29, 2017
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}...TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip...
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.
see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”
From: TSS (216-119-163-189.ipset45.wt.net)
Subject: CWD aka MAD DEER/ELK TO HUMANS ???
Date: September 30, 2002 at 7:06 am PST
From: "Belay, Ermias"
To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"
Sent: Monday, September 30, 2002 9:22 AM
Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Dear Sir/Madam,
In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.
Ermias Belay, M.D. Centers for Disease Control and Prevention
-----Original Message-----
From: Sent: Sunday, September 29, 2002 10:15 AM
Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS
Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS
Thursday, April 03, 2008
A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.
snip...
*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,
snip... full text ;
> However, to date, no CWD infections have been reported in people.
key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
I urge everyone to watch this video closely...terry
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
Justin Greenlee1, S JO Moore1, Jodi Smith1, M Heather WestGreenlee2 and Robert Kunkle1
1National Animal Disease Center; Ames, IA USA
2Iowa State University; Ames, IA USA
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy.
***In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
***> CWD TO PIGS <***
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin
Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:
Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.
Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.6>
Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:6>6>
This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.
CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....
snip...see much more here ;
WEDNESDAY, APRIL 05, 2017
Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
WEDNESDAY, APRIL 05, 2017
*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***
cattle are highly susceptible to white-tailed deer CWD and mule deer CWD
***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.
SNIP...
price of prion poker goes up for cwd to cattle;
Monday, April 04, 2016
*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***
THURSDAY, MARCH 08, 2018
Cervid, Wild Hogs, Coyotes, Wolves, Cats, Rodents, Gut Piles and Scavengers, A Potential Risk as Regards Disease Transmission CWD TSE Prion
the tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
=========================
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).
Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).
Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.
Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.
Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).
The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.
When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.
Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.
It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.
Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.
Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.
Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.
In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.
In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).
As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.
False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).
This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.
This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.
In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.
Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.
The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.
In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).
A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).
This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.
Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
161: Prion soil binding may explain efficient horizontal CWD transmission
Nathaniel Denkers1, Davin Henderson1, Shannon Bartelt-Hunt2, Jason Bartz3 and Edward Hoover1
1Colorado State University; Fort Collins, Colorado USA
2University of Nebraska-Lincoln; Omaha, Nebraska USA
3Creighton University; Omaha, Nebraska USA
Background Chronic wasting disease (CWD) is unique due to the facile spread in nature. The interaction of excreted CWD prions and soil is a hypothesized contributor in environmental transmission. The present study examines whether and to what degree CWD prions bind to silty clay loam (SCL) using an adapted version of real-time quaking-induced conversion (RT-QuIC) methodology.
Materials and Methods Varying amounts (50–3.12 mg) of SCL were incubated with 1 mL-serial dilutions of CWD (+), CWD (−), or no brain homogenate (BH). Samples were centrifuged, washed, diluted 1:10 in 0.1% SDS, and 2.5 uL seeded in RT-QuIC assays employing recombinant Syrian hamster prion PrP substrate. Multiple well replicates of sample and supernatant fractions were assayed for positive seeding activity (recorded as thioflavin T fluorescence emission; 480 nm). Samples were considered positive if they crossed a threshold of 25,000. Reaction rates (RR) were calculated, averaged, and expressed as 1/RR.
Results Positive seeding activity was detected for most SCL samples incubated with CWD (+) BH dilutions. Higher SCL concentrations (50 mg) produced low fluorescent readings due to optical interference. Lower SCL concentrations (6.25 mg) produced minimal optical interference and removed the vast majority of seeding activity from CWD+ BH in a concentration-dependent manner; determined by seeding activity in residual BH supernatants. Control SCL and supernatants produced minimal false-positive reactions (8 of 240 replicates; 3.3%). We estimated the prion binding capacity of SCL to be 0.16 ng/mg.
Conclusion Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.
TSE Scrapie, CWD, BSE, Prion, Soil
Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois
Sheena J. Dorak, Michelle L. Green, Michelle M. Wander, Marilyn O. Ruiz, Michael G. Buhnerkempe, Ting Tian, Jan E. Novakofski & Nohra E. Mateus-Pinilla
Scientific Reportsvolume 7, Article number: 18062(2017) doi:10.1038/s41598-017-18321-x
Download Citation
Ecological epidemiology Ecological modelling Infectious diseases Prions
Received: 21 August 2017
Accepted: 08 December 2017
Published online: 22 December 2017
Abstract
Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.
Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles
Author Summary
Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
tse prion soil
cwd tse prion and soil, see more ;
Terry S. Singeltary Sr.trucking and spreading cwd around...tss
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency's (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.
***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.
spreading cwd around...tss
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea
Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.
On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea.
These consisted of 23 elk in 1994 originating from the so-called "source farm" in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the "source farm".
Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.
All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify.
CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises.
In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.
*Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.
*Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.
*Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program.
Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).
*In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive.
*Consequently, all cervid - 54 elks, 41 Sika deer and 5 Albino deer - were culled and one elk was found to be positive.
Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.
*Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis.
*Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.
All cervids at Farm 3 and Farm 4 - 15 elks and 47 elks - were culled and confirmed as negative.
Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.
*In December 2010, one elk was confirmed as positive at Farm 5.
*Consequently, all cervid - 3 elks, 11 Manchurian Sika deer and 20 Sika deer - were culled and one Manchurian Sika deer and seven Sika deer were found to be positive.
This is the first report of CWD in these sub-species of deer.
*Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.
*In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo.
All cervid - 19 elks, 15 crossbreed (species unknown) and 64 Sika deer - of Farm 6 were culled, but all confirmed as negative.
: Corresponding author: Dr. Hyun-Joo Sohn (+82-31-467-1867, E-mail: shonhj@korea.kr) 2011 Pre-congress Workshop: TSEs in animals and their environment 5
Friday, May 13, 2011
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea
MONDAY, MARCH 05, 2018
TRUCKING AROUND AND SPREADING CHRONIC WASTING DISEASE CWD TSE PRION VIA MOVEMENT OF CERVID AND TRANSPORTATION VEHICLES
to date, there is no cervid that has been documented to be totally resistant to cwd tse prion.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion
Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD
In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
PRION 2016 CONFERENCE TOKYO
http://prion2016.org/dl/newsletter_03.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
Subject: cwd genetic susceptibility
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§
Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g
snip...
Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations.
http:// http://forest.wisc.edu/files/pdfs/samuel/2009%20blanchong%20et%20al%20genetic%20susceptibility%20chronic%20wasting.pdf
http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1083&context=nrem_pubs
http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4667/epdf
http://www.tandfonline.com/doi/full/10.1080/19336896.2015.1115179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/pdf/kprn-09-06-1115179.pdf
http://www.sciencedirect.com/science/article/pii/S1567134809001956?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
P-145 Estimating chronic wasting disease resistance in cervids using real time quaking- induced conversion
Nicholas J Haley1, Rachel Rielinqer2, Kristen A Davenport3, W. David Walter4, Katherine I O'Rourke5, Gordon Mitchell6, Juergen A Richt2 1 Department of Microbiology and Immunology, Midwestern University, United States; 2Department of Diagnostic Medicine and Pathobiology, Kansas State University; 3Prion Research Center; Colorado State University; 4U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit; 5Agricultural Research Service, United States Department of Agriculture; 6Canadian Food Inspection Agency, National and OlE Reference Laboratory for Scrapie and CWD
In mammalian species, the susceptibility to prion diseases is affected, in part, by the sequence of the host's prion protein (PrP). In sheep, a gradation from scrapie susceptible to resistant has been established both in vivo and in vitro based on the amino acids present at PrP positions 136, 154, and 171, which has led to global breeding programs to reduce the prevalence of scrapie in domestic sheep. In cervids, resistance is commonly characterized as a delayed progression of chronic wasting disease (CWD); at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified. To model the susceptibility of various naturally-occurring and hypothetical cervid PrP alleles in vitro, we compared the amplification rates and efficiency of various CWD isolates in recombinant PrPC using real time quaking-induced conversion. We hypothesized that amplification metrics of these isolates in cervid PrP substrates would correlate to in vivo susceptibility - allowing susceptibility prediction for alleles found at 10 frequency in nature, and that there would be an additive effect of multiple resistant codons in hypothetical alleles. Our studies demonstrate that in vitro amplification metrics predict in vivo susceptibility, and that alleles with multiple codons, each influencing resistance independently, do not necessarily contribute additively to resistance. Importantly, we found that the white-tailed deer 226K substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo are warranted to determine if absolute resistance to CWD is possible.
***at present, no cervid PrP allele conferring absolute resistance to prion infection has been identified.
PRION 2016 CONFERENCE TOKYO
http://prion2016.org/dl/newsletter_03.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
''There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.''
c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.
https://www.gov.uk/government/uploa...nt_data/file/209755/Part_1_-_Introduction.pdf
Subject: cwd genetic susceptibility
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms§
Julie A. Blanchong a, *, Dennis M. Heisey b , Kim T. Scribner c , Scot V. Libants d , Chad Johnson e , Judd M. Aiken e , Julia A. Langenberg f , Michael D. Samuel g
snip...
Identifying the genetic basis for heterogeneity in disease susceptibility or progression can improve our understanding of individual variation in disease susceptibility in both free-ranging and captive populations. What this individual variation in disease susceptibility means for the trajectory of disease in a population, however, is not straightforward. For example, the greater, but not complete, resistance to CWD in deer with at least one Serine (S) at amino acid 96 of the Prnp gene appears to be associated with slower progression of disease (e.g., Johnson et al., 2006; Keane et al., 2008a). If slower disease progression results in longer-lived, infected deer with longer periods of infectiousness, resistance may lead to increased disease transmission rates, higher prion concentrations in the environment, and increased prevalence, as has been observed in some captive deer herds (Miller et al., 2006; Keane et al., 2008a). Alternatively, if the slower progression of disease in resistant deer is not associated with longer periods of infectiousness, but might instead indicate a higher dose of PrPCWD is required for infection, transmission rates in the population could decline especially if, as in Wisconsin, deer suffer high rates of mortality from other sources (e.g., hunting). Clearly, determining the relationship between genetic susceptibility to infection, dose requirements, disease progression, and the period of PrPCWD infectiousness are key components for understanding the consequences of CWD to free-ranging populations.
http:// http://forest.wisc.edu/files/pdfs/samuel/2009%20blanchong%20et%20al%20genetic%20susceptibility%20chronic%20wasting.pdf
http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1083&context=nrem_pubs
http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4667/epdf
http://www.tandfonline.com/doi/full/10.1080/19336896.2015.1115179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/pdf/kprn-09-06-1115179.pdf
http://www.sciencedirect.com/science/article/pii/S1567134809001956?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964855/
December 2014, Volume 36, Issue 6, pp 1049–1061 | Cite as
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4.
Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
https://rd.springer.com/article/10.1007/s10653-014-9600-0
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf
http://chronic-wasting-disease.blogspot.com/2009/08/third-international-cwd-symposium-july.html
Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer
Authors Authors and affiliations Michael J. LavelleEmail authorGregory E. PhillipsJustin W. FischerPatrick W. BurkeNathan W. SewardRandal S. StahlTracy A. NicholsBruce A. WunderKurt C. VerCauteren 1. 2. 3. 4.
Article First Online: 08 April 2014 258 Downloads 1 Citations
Abstract
Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.
Keywords Cervus elaphus Chronic wasting disease Elk Geophagy Mineral lick Mule deer Odocoileus hemionus
https://rd.springer.com/article/10.1007/s10653-014-9600-0
Elk and Deer Use of Mineral Licks: Implications for Disease Transmission
Kurt C. VerCauteren1*, Michael J. Lavelle1, Gregory E. Phillips1, Justin W. Fischer1, and Randal S. Stahl1 1United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA *Cooresponding author e-mail: kurt.c.vercauteren@aphis.usda.gov
North American cervids require and actively seek out minerals to satisfy physiological requirements. Minerals required by free-ranging cervids exist within natural and artificial mineral licks that commonly serve as focal sites for cervids. Ingestion of soils contaminated with the agent that causes chronic wasting disease (CWD) may result in risk of contracting CWD. Our objective was to evaluate the extent and nature of use of mineral licks by CWD-susceptible cervid species. We used animal-activated cameras to monitor use of 18 mineral licks between 1 June and 16 October 2006 in Rocky Mountain National Park, north-central Colorado. We also assessed mineral concentrations at mineral licks to evaluate correlations between visitation rates and site-specific characteristics. We collected > 400,000 images of which 991 included elk, 293 included deer, and 6 included moose. We documented elk and deer participating in a variety of potentially risky behaviors (e.g., ingesting soil, ingesting water, defecating, urinating) while at mineral licks. Results from the mineral analyses combined with camera data revealed that visitation was highest at sodium-rich mineral licks. Mineral licks may play a role in disease transmission by acting as sites of increased interaction as well as reservoirs for deposition, accumulation, and ingestion of disease agents.
http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf
http://chronic-wasting-disease.blogspot.com/2009/08/third-international-cwd-symposium-july.html
what does sound science and the prion Gods say...
Sunday, January 06, 2013
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
USDA TO PGC ONCE CAPTIVES ESCAPE
*** "it‘s no longer its business.”
http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no.html
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.
https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
SHOOTING PENS (HIGH/LOW FENCE), CAPTIVE CERVID FARMING, BREEDING, SPERM MILLS, ANTLER MILLS, URINE MILLS, a petri dish for cwd tse prion disease...
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
https://web.archive.org/web/20170126060744/http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
https://web.archive.org/web/20170126060744/http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
NEW TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE (MAD CAMEL DISEASE) IN A NEW SPECIES
NEW OUTBREAK OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE IN A NEW SPECIES
Subject: Prion Disease in Dromedary Camels, Algeria
Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.
Wednesday, May 30, 2018
Dromedary camels in northern Africa have a neurodegenerative prion disease that may have originated decades ago
Terry S. Singeltary Sr.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.