Monday, August 28, 2017
News Release
CWD tests mandatory for deer harvested in central, north-central and southeast
August 28, 2017
Captive deer infected with CWD in Crow Wing, Meeker counties trigger DNR disease response
Precautionary testing during the first two days of firearms deer season will determine whether chronic wasting disease may have spread from captive deer to wild deer in central and north-central Minnesota.
“Wild deer in these areas are not known to have CWD,” said Lou Cornicelli, wildlife research manager for the Minnesota Department of Natural Resources. “Mandatory testing of wild deer that hunters harvest is a proactive and preventative measure to protect Minnesota’s wild deer herd.”
All hunters in affected deer permit areas will be required to have their harvested deer tested on Saturday, Nov. 4, or Sunday, Nov. 5. After field dressing their deer, hunters must take them to a sampling station. DNR staff will remove lymph nodes, which will be submitted for laboratory testing.
Hunters must register their deer by phone, internet or in person. Harvest registration will not be available at CWD sampling stations.
Central Minnesota deer permit areas with mandatory testing are 218, 219, 229, 277, 283 and 285.
North-central Minnesota deer permit areas with mandatory testing are 155, 171, 172, 242, 246, 247, 248 and 249.
Deer harvested in southeastern Minnesota’s permit areas 343, 345, 346, 347, 348 and 349 also are subject to mandatory testing on Nov. 4-5 because of their proximity to CWD-infected wild deer in permit area 603.
Testing in north-central and central Minnesota became necessary after CWD was found in multiple captive deer on farms near Merrifield in Crow Wing County and Litchfield in Meeker County. Test results will determine whether CWD may have been passed from these captive deer to wild deer.
For sampling to accurately detect whether CWD exists in wild deer, the DNR wants to collect 3,600 samples in the north-central area, 1,800 in the central area and 1,800 in the southeast.
Proactive surveillance and precautionary testing for disease is a proven strategy that allows DNR to manage CWD by finding it early and reacting quickly and aggressively to control it. These actions, which were taken in 2005 to successfully combat bovine tuberculosis in northwestern Minnesota deer and in 2010 to eliminate a CWD infection in wild deer near Pine Island, provide the best opportunity to eliminate disease spread.
“Without precautionary testing, early detection would not be possible,” Cornicelli said. “Without early detection, there’s nothing to stop CWD from becoming established at a relatively high prevalence and across a large geographic area. At that point, there is no known way to control it.”
Additional details on mandatory testing will be released throughout the fall as firearms deer season approaches. Complete information about mandatory CWD testing this fall, sampling station locations and a related precautionary feeding ban are available now on the DNR website on the chronic wasting disease page.
A new deer feeding ban is in place until 2019 for 11 central and north-central Minnesota counties surrounding two farms where multiple captive deer were infected with chronic wasting disease.
“Feeding bans in central and north-central Minnesota are precautionary,” said Lou Cornicelli, wildlife research manager for the Minnesota Department of Natural Resources. “Wild deer in these areas are not know to have CWD. These feeding bans are a proactive step to keep CWD at bay.”
Central Minnesota counties affected by the ban are Kandiyohi; McCloud; Meeker; Stearns; Wright; and the portion of Renville County north of U.S. Highway 212.
North-central Minnesota counties affected are Aitkin; Crow Wing; Morrison; the portion of Cass County south of Minnesota highways 34 and 200; and the portion of Mille Lacs County north of County Road 11.
In Fillmore, Houston, Olmsted, Mower and Winona counties, a ban on deer feeding and deer attractants that has been in place since December 2016 remains in effect through Wednesday, June 27, 2018.
“Feed is not just a pile of corn or grain,” Cornicelli said. “It includes salt and mineral blocks that many hunters use as well as fruits, vegetables, nuts, hay and other food that is capable of attracting or enticing deer.”
One of the most probable mechanisms for CWD spread among deer is over a food or attractant source that concentrates animals. Feeding bans are intended to reduce the number of areas where deer can come into close contact, either directly or indirectly.
The feeding ban in southeastern Minnesota also includes attractants such as deer urine, blood, gland oil, feces or other bodily fluids. These products include such things as bottled estrus and mock scrape drips.
People who feed birds or small mammals must do so in a manner that prevents access by deer or places the food at least six feet above the ground.
Food placed as a result of normal agricultural practices is generally exempted from the feeding ban. But cattle operators should take steps that minimize contact between deer and cattle.
The new deer feeding ban for central and north-central Minnesota became effective Monday, Aug. 28, and extends through Thursday, Feb. 28, 2019.
“Not feeding deer is a simple step that anyone can take to help prevent the spread of disease,” Cornicelli said. “Although well-intentioned, feeding wildlife often does more harm than good.”
Mandatory precautionary CWD testing will be done in portions of the new feeding ban areas to determine whether the disease may have spread from captive to wild deer. Samples will be collected from 5,400 deer harvested in permit areas immediately surrounding CWD-infected farms near Merrifield in Crow Wing County and Litchfield in Meeker County.
Precautionary testing also will be mandatory for 1,800 deer harvested in permit areas adjoining southeastern Minnesota’s CWD management zone, deer permit area 603.
More information about the precautionary feeding ban and mandatory CWD testing this fall are available on the DNR’s website on the chronic wasting disease page.
TUESDAY, AUGUST 22, 2017
Mandatory testing for deer taken in SE Minnesota chronic wasting disease management zone
SUNDAY, AUGUST 20, 2017
Minnesota Fearing spread of CWD, agency pushing animal health board to suspend farmer's license
Minnesota Chronic Wasting Disease CWD TSE Prion
Minnesota Department of Natural Resources Chronic Wasting Disease Response Plan
FRIDAY, JANUARY 20, 2017
Minnesota Chronic Wasting Disease investigation traces exposure to Meeker County farm
News Release For immediate release: January 20, 2017
Contact: Michael Crusan
Chronic Wasting Disease investigation traces exposure to Meeker County farm White-tailed deer tests positive for the disease near Dassel, Minnesota
The Minnesota Board of Animal Health confirms CWD on a Meeker County farm near Dassel. Positive CWD samples came from a two-year-old female white-tailed deer that died on the farm. In accordance with state law, tissue samples were collected from the carcass and submitted for CWD testing. Farmed deer, 12 months of age and older, are required to be tested for CWD if they die or are slaughtered.
Samples are tested at the University of Minnesota Veterinary Diagnostic Laboratory and forwarded to the National Veterinary Services Laboratory in Ames, Iowa, which officially confirms CWD. The Board shares information with the Minnesota Department of Natural Resources and works with the USDA as it investigates CWD cases in farmed deer. The DNR responds to and manages CWD in wild deer, while the Board of Animal Health regulates farmed deer.
The Board’s records show this positive deer was born on the CWD positive Crow Wing County farm and moved to the Meeker County farm in December 2014. As of December 30, 2016, there are three confirmed CWD positive farmed deer in Minnesota. Two are associated with the previously reported case in Crow Wing County. The third, and most recent case in Meeker County, was part of a herd of 14 white-tailed deer, which remain quarantined on the farm.
“This is why it’s important for the Board to maintain accurate animal identification and herd inventories,” said Dr. Paul Anderson, assistant director at the Board of Animal Health. “We were able to look back at five years of recorded deer movements out of the infected Crow Wing County herd, locate herds that received deer from it, and investigate those farms for a CWD infection. This tracing led to the discovery in Meeker County.”
Update on Crow Wing County case: The original quarantine remains in place on the Crow Wing County herd after two female deer tested positive for CWD. The Board is reviewing animal movement records into and out of the herd during the past five years.
Movement records out of the herd show deer were moved to four other Minnesota farms during the five year trace-back period. One of those herds is the Dassel farm in Meeker County. All associated herds remain under movement restrictions.
Movement records into the herd show one of the two CWD infected deer was moved into the herd in 2014 from a deer farm that is no longer in business. The other positive deer was born on the farm.
CWD is a disease of deer and elk caused by an abnormally shaped protein, a prion, which can damage brain and nerve tissue. There is no danger to other animal species. The disease is most likely transmitted when infected deer and elk shed prions in saliva, feces, urine, and other fluids or tissues. The disease is always fatal and there are no known treatments or vaccines. CWD is not known to affect humans, though consuming infected meat is not advised.
Information about Minnesota’s farmed deer and elk herds can be found on the Board of Animal Health website: https://www.bah.state.mn.us/deer-elk/.
--30--
FRIDAY, JANUARY 20, 2017
Minnesota Chronic Wasting Disease investigation traces exposure to Meeker County farm
Wednesday, January 11, 2017
Minnesota DNR CWD found in 2 more deer; 5-county feeding ban now in place
TUESDAY, NOVEMBER 22, 2016
Minnesota Tests confirm 2 CWD-positive deer near Lanesboro
TESTS CONFIRM 2 CWD-POSITIVE DEER NEAR LANESBORO
November 22, 2016
DNR initiates disease response plan; offers hunters information on field dressing
Test results show two deer harvested by hunters in southeastern Minnesota were infected with Chronic Wasting Disease, according to the Department of Natural Resources.
One deer has been confirmed as CWD-positive. Confirmation of the second is expected later this week. The deer, both male, were killed near Lanesboro in Fillmore County during the first firearms deer season.
The two deer were harvested approximately 1 mile apart. These are the only deer to test positive from 2,493 samples collected Nov. 5-13. Results are still pending from 373 additional test samples collected during the opening three days of the second firearms season, Nov. 19-21.
CWD is a fatal brain disease to deer, elk and moose but is not known to affect human health. While it is found in deer in states bordering southeastern Minnesota, it was only found in a single other wild deer in Minnesota in 2010.
The DNR discovered the disease when sampling hunter-killed deer this fall in southeastern Minnesota as part of its CWD surveillance program. Dr. Lou Cornicelli, DNR wildlife research manager, said hunter and landowner cooperation on disease surveillance is the key to keeping the state’s deer herd healthy.
“We were proactively looking for the disease, a proven strategy that allows us to manage CWD by finding it early, reacting quickly and aggressively to control it and hopefully eliminating its spread,” he said.
It is unknown how the two CWD-positive deer, which were harvested 4 miles west of Lanesboro in deer permit area 348, contracted the disease, Cornicelli said.
“We want to thank hunters who have brought their deer to our check stations for sampling,” he said. “While finding CWD-positive deer is disappointing, we plan to work with hunters, landowners and other organizations to protect the state’s deer herd and provide hunters the opportunity to pass on their deer hunting traditions.”
These are the first wild deer found to have CWD since a deer harvested in fall 2010 near Pine Island tested positive. It was found during a successful disease control effort prompted by the detection in 2009 of CWD on a domestic elk farm. The DNR, landowners and hunters worked together to sample more than 4,000 deer in the Pine Island area from 2011 to 2013, and no additional infected deer were found.
The National Centers for Disease Control and Prevention as well as the World Health Organization have found no scientific evidence that the disease presents a health risk to humans who come in contact with infected animals or eat infected meat. Still, the CDC advises against eating meat from animals known to have CWD...
snip...see more here;
TUESDAY, NOVEMBER 22, 2016
Minnesota Tests confirm 2 CWD-positive deer near Lanesboro
Thursday, September 19, 2013
Chronic Wasting Disease CWD surveillance, deer feeding ban continues in southeastern Minnesota
Friday, September 28, 2012
Stray elk renews concerns about deer farm security Minnesota
Friday, May 25, 2012
Chronic Wasting Disease CWD found in a farmed red deer from Ramsey County Minnesota
SATURDAY, MARCH 17, 2012
Minnesota CWD DNR, Can chronic wasting disease jump from deer to humans? yes, maybe some day YOUTUBE
Tuesday, January 25, 2011
Minnesota, National Veterinary Services Laboratory in Ames, Iowa, has confirmed CWD case near Pine Island
Friday, January 21, 2011
MINNESOTA HIGHLY SUSPECT CWD POSITIVE WILD DEER FOUND NEAR PINE ISLAND
Saturday, October 31, 2009
Elk from Olmsted County herd depopulated to control CWD Three additional elk from the 558-head herd tested positive
Tuesday, January 27, 2009
Chronic Wasting Disease found in a farmed elk from Olmsted County ST. PAUL, Minn.
CHRONIC WASTING DISEASE UPDATE September 6, 2002
Minnesota has announced the finding of CWD in a captive elk in Aitkin County. The animal was a five-year-old male. It had been purchased from a captive facility in Stearns County in August of 2000. The herd where the elk was found has been placed under quarantine as has two additional facilities where the infected elk had resided prior to it coming to the farm in Aitkin County. Minnesota DNR officials will test wild deer in the area to determine if there is any sign of CWD in the free-ranging population. This is the first case of CWD in either captive or freeranging cervids in Minnesota. Several more states have passed bans on the importation of deer and elk carcasses from states where CWD has been found in wild animals. Previously the states of Colorado, Illinois and Iowa and the province of Manitoba had passed such bans. The states of Vermont, Oregon and Missouri have enacted similar bans. Numerous states have issue voluntary advisories to their out-of-state hunters encouraging them not to bring the carcass or carcass parts of deer and elk into their state. The bans do permit the importation of boned out meat, hides or cape with no meat attached, clean skull cap with antler attached, finished taxidermy heads or the ivories of elk. The state of Georgia has recently banned the importation of live cervids into that state also. Some citizens of Colorado have formed a new political action group called Colorado Wildlife Defense (just happens that the acronym is CWD). The stated goal of this group are; Elimination of big game diseases, especially CWD; promotion of healthy wildlife habitat; promotion of scientifically sound wildlife research; promotion of a discussion of the ethics of hunting and wildlife management; education of the hunting and non hunting public. Their action plan calls for; requiring double fencing of all game farms at owners expense; all game farmers provide annual proof of bonding; prohibit new licenses for deer and elk farms; prohibit expansion in acreage of existing game farms; prohibit the transfer of game farm licenses; prohibit charging for hunting behind high wire; prohibit blocking of traditional migratory paths by high fences; requiring game farms to maintain environmental controls and prohibit the escape of contaminated water or soil; requiring immediate reporting of missing deer or elk from game farms; and requiring all game farm deer and elk to be tested for brucellosis and TB. Wisconsin has announced that 7 more free-ranging deer have tested positive for CWD. They have expanded their eradication zone by an additional 15 square miles to cover these findings. The total number of free-ranging CWD positive in Wisconsin is now 31 white-tail deer.
In 2000, a elk farmer in Wisconsin received elk from a CWD exposed herd in Colorado. At that time, the farmer advised the Wisconsin Department of Agriculture that both animals from the exposed herd in Colorado were dead. He has now advised Wisconsin Ag. that he was mistaken and that one of the animals is still alive in his herd. The second draft of the implementation documents for the National CWD Plan was distributed to committee members and others on Friday, August 30. The final documents are due to APHIS and USFWS on Friday, September 13. The herd of captive elk in Oklahoma that had been exposed to CWD will be destroyed this week. This herd had an elk test positive for CWD in 1997 but the depopulation of the herd was not agreed to by the owners and federal representatives until this week. Since the discovery of CWD in the herd, the remaining animals have been under quarantine, however, in the meantime the herd has dropped from 150 animals to 74. Due to a lack of communication, not all of the 76 animals that died in the interim were tested for CWD. All remaining animals will be tested but the true degree of infection rate of the herd will never be known.
The owners of the facility will not be permitted to restock the area with cervids for a period of five years. A New York based organization, BioTech Research Fund I LLC has committed a $1 million line of credit to fund commercialization of tests for brain-wasting disorders and production of various vaccines to Gene-Thera of Wheat Ridge, Colorado. Gene-Thera has spent three years developing new ways not only to diagnose CWD, but create vaccines for mad cow disease, E. coli contaminants and foot-and-mouth disease. Its tests for CWD have been successful in more than 100 samples from Colorado and Wisconsin according to company officials. Gene-Thera plans to license and market some o fits disease test kits by the end of the year, then begin volume distribution by mid-2003. The abstracts of the presentations from the CWD Conference in Denver August 6 and 7 have been posted on the Colorado Division of Wildlife web site. You will need adobe acrobat reader to read them.
The Division web site is: http://wildlife.state.co.us/CWD/Symposium_booklet.pdf
Minnesota: Second case in a game farmed elk discovered in Stearns Co.
This is a trace forward from the previously affected game farm in Aitkins Co. An additional game farm in Benton Co is under quarantine.
snip...
Supporting Documents: Colorado: CWD-Exposed Elk Used in 1990 Study- Wildlife officials call W. Slope move a mistake
Date: January 17, 2003 Source: Denver Post Contacts: Theo Stein Environment Writer
The Colorado Division of Wildlife knowingly used a herd of captive elk exposed to chronic wasting disease in a grazing study on the Western Slope in January 1990, possibly introducing the disease to the elk-rich area. "It was a bad call," said Jeff Ver Steeg, the division's top game manager. "I can't deny it." About 150 wild elk were allowed to graze in the same pens near Maybell after the research herd was removed and may have picked up the abnormal protein that causes the disease from the feces and urine left by the captive elk. While the Division of Wildlife has expressed concern before that its animals might have helped spread CWD, this is the first time the agency has acknowledged it knowingly moved elk exposed to CWD deep into an area where the disease was not known to already exist. Studies that could help determine the source of CWD on the Western Slope are incomplete, and officials say what data that do exist are so new and so spotty they may not provide all the answers. So far, it appears that less than 1 percent of deer and elk in the area are infected, compared with as much as 15 to 20 percent in hotspots in northeastern Colorado. But as wildlife officials grapple with CWD's appearance in northwestern Colorado, officials now admit the decision to continue the grazing study over the objections of some biologists was an error. At the time, biologists wanted to see whether elk grazing on winter range depleted forage that ranchers wanted for fattening cattle in spring. "I think in hindsight a lot of good people probably did some dumb things, myself included," said Bruce Gill, a retired wildlife manager who oversaw research efforts and remembers the debate over the project. "Had we known CWD would explode into such a potentially volatile ecologic and economic issue, we wouldn't have done it." Elk ranchers, who have been blamed for exporting the disease from its stronghold on the Colorado and Wyoming plains to seven states and two Canadian provinces, say the agency's belated disclosure smacks of a coverup. "It's pure negligence," said Jerry Perkins, a Delta banker and rancher who is now demanding a legislative inquiry. "If I'd have moved animals I knew to be infected around like that, I'd be in jail." Grand Junction veterinarian and sportsman Dick Steele said he faults the agency for not disclosing information about CWD-exposed research animals before October, when information was posted on the Division of Wildlife website. "This went way beyond poor judgment," he said. "My main concern is that this has been hidden for the last 12 years. It would have been real important to our decision-making process on how to deal with CWD." While the Maybell information is new, Perkins and other ranchers have long suspected Division of Wildlife research facilities near Meeker and Kremmling, which temporarily housed mule deer kept in heavily infected pens at the Fort Collins facility, have leaked CWD to the wild. Fear of an outbreak led the agency to sample 450 deer around the Meeker and Kremmling facilities. None tested positive, but the sample size was only large enough to detect cases if the infection rate was greater than 1 percent. This fall, tests on 23,000 deer and elk submitted by hunters statewide have revealed 48 CWD cases north of Interstate 70 and west of the Continental Divide. Biologists believe the infection rate in that area, which includes the Maybell, Meeker and Kremmling sites, is still well below 1 percent. But CWD has never been contained in a wild population, so experts fear the problem will grow worse.
The Division of Wildlife says it will be months before a statistical analysis of the fall's sampling results can be completed, an exercise that may shed light on the disease's origin on the Western Slope. "We're just not going to speculate at this point," said Ver Steeg of the possible Maybell connection. "This is one possibility, but certainly not the only possibility." Some biologists think a defunct elk ranch near Pagoda, which had dozens of unexplained deaths in the mid-'90s, is another, a suggestion Perkins rejects. "It may be inconclusive to them," said Perkins. "It isn't inconclusive to us."
To date, 19 CWD-positive animals have been found on six Wisconsin farms.
*** All have been white-tailed deer except for one elk imported from a Minnesota herd later found to be infected.
More than 8,000 farm-raised deer and elk have been tested in Wisconsin, and about 540 herds are enrolled in the CWD monitoring program.
CWD disease detected on Lac qui Parle County cervid farm southwestern Minnesota (2006-03-15)
Date: March 15, 2006 at 12:36 pm PST
Chronic wasting disease detected on Lac qui Parle County cervid farm (2006-03-15) The Board of Animal Health announced today that chronic wasting disease (CWD) has been detected in one domestic white-tailed deer on a cervid farm in Lac qui Parle County, which is located in southwestern Minnesota.
Immediately, DNR officials will conduct a local deer survey to determine the number of wild deer in the area. It is expected that not many deer will be found because the area is highly agricultural, with little deer habitat surrounding the farm. DNR will conduct opportunistic sampling of deer, like road kills, in the immediate area now and will conduct intensive hunter-harvested surveillance during the 2006 firearm deer season.
Although this positive animal is a captive deer, DNR has conducted surveillance for CWD in wild deer in the area. The farm is located near the northern boundary of deer permit area 447, where wild deer surveillance for CWD last occurred in 2003.
Lou Cornicelli, DNR big game program coordinator, said, "In 2003, we conducted wild deer CWD surveillance in adjoining permit areas 433, 446 and 447. In total, we collected 392 samples from those permit areas during the regular firearm deer season and CWD was not detected."
The sampling of wild deer was designed statistically to have a 95 percent confidence of detecting a 1 percent infection rate, according to Mike DonCarlos, DNR wildlife programs manager.
"This situation is very similar to the positive elk farm discovered in Stearns County in 2003, which followed the first discovery of CWD in an Aitkin County elk farm," DonCarlos said. “The DNR response will be similar to the Stearns County action and will include an initial assessment of wild deer populations in the area and development of a surveillance program for next fall."
From 2002 to 2004, DNR staff collected nearly 28,000 CWD samples statewide and no disease found in the wild herd.
"The intensive surveillance conducted in 2003 indicated CWD was not present in wild deer," Cornicelli said. “In addition, all indications are that this positive captive deer has not contacted any wild deer, but we will conduct additional surveillance this fall to be sure."
Friday, August 05, 2016
MINNESOTA CHRONIC WASTING DISEASE SURVEILLANCE AND TESTING CWD TSE PRION UPDATE
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
*** INFECTIOUS AGENT OF SHEEP SCRAPIE MAY PERSIST IN THE ENVIRONMENT FOR AT LEAST 16 YEARS ***
GUDMUNDUR GEORGSSON1, SIGURDUR SIGURDARSON2 AND PAUL BROWN3
the tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
Using in vitro prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
***Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
with CWD TSE Prions, I am not sure there is any absolute yet, other than what we know with transmission studies, and we know tse prion kill, and tse prion are bad. science shows to date, that indeed soil, dirt, some better than others, can act as a carrier. same with objects, farm furniture. take it with how ever many grains of salt you wish, or not. if load factor plays a role in the end formula, then everything should be on the table, in my opinion...tss
Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles
Author Summary
Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
tse prion soil
Wednesday, December 16, 2015
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.
>>>Particle-associated PrPTSE molecules may migrate from locations of deposition via transport processes affecting soil particles, including entrainment in and movement with air and overland flow. <<<
Fate of Prions in Soil: A Review
Christen B. Smith, Clarissa J. Booth, and Joel A. Pedersen*
Several reports have shown that prions can persist in soil for several years. Significant interest remains in developing methods that could be applied to degrade PrPTSE in naturally contaminated soils. Preliminary research suggests that serine proteases and the microbial consortia in stimulated soils and compost may partially degrade PrPTSE. Transition metal oxides in soil (viz. manganese oxide) may also mediate prion inactivation. Overall, the effect of prion attachment to soil particles on its persistence in the environment is not well understood, and additional study is needed to determine its implications on the environmental transmission of scrapie and CWD.
P.161: Prion soil binding may explain efficient horizontal CWD transmission
Conclusion. Silty clay loam exhibits highly efficient prion binding, inferring a durable environmental reservoir, and an efficient mechanism for indirect horizontal CWD transmission.
>>>Another alternative would be an absolute prohibition on the movement of deer within the state for any purpose. While this alternative would significantly reduce the potential spread of CWD, it would also have the simultaneous effect of preventing landowners and land managers from implementing popular management strategies involving the movement of deer, and would deprive deer breeders of the ability to engage in the business of buying and selling breeder deer. Therefore, this alternative was rejected because the department determined that it placed an avoidable burden on the regulated community.<<<
Wednesday, December 16, 2015
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
Timm Konold1*, Stephen A. C. Hawkins2, Lisa C. Thurston3, Ben C. Maddison4, Kevin C. Gough5, Anthony Duarte1 and Hugh A. Simmons1
1 Animal Sciences Unit, Animal and Plant Health Agency Weybridge, Addlestone, UK, 2 Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, UK, 3 Surveillance and Laboratory Services, Animal and Plant Health Agency Penrith, Penrith, UK, 4 ADAS UK, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK, 5 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.
snip...
Discussion
Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20). Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22). Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing. Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building. Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9). The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture. When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep. Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease. It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled. Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases. Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA. Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice. In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals. In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions). As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay. False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28). This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm. This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc. In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc. Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing. The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material. In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12). A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30). This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model. Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
MONDAY, JUNE 12, 2017
Rethinking Major grain organizations opposition to CFIA's control zone approach to Chronic Wasting CWD TSE Prion Mad Deer Type Disease 2017?
WEDNESDAY, MAY 17, 2017
*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.
''Successful transmission of an emergent strain of CWD prion, H95+, into mice resulted in infection. Thus, emergent CWD prion strains may have higher zoonotic potential than common strains.''
Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion
Allen Herbst,1 Camilo Duque Velásquez,1 Elizabeth Triscott, Judd M. Aiken, Debbie McKenzie
Author affiliation: University of Alberta, Edmonton, Alberta, Canada DOI: https://doi.org/10.3201/eid2309.161474
Human and mouse prion proteins share a structural motif that regulates resistance to common chronic wasting disease (CWD) prion strains. Successful transmission of an emergent strain of CWD prion, H95+, into mice resulted in infection. Thus, emergent CWD prion strains may have higher zoonotic potential than common strains. Chronic wasting disease (CWD) is a contagious prion disease of cervids that is spreading globally. CWD is enzootic in multiple cervid species, including deer and elk; the major foci of disease are Colorado/Wyoming (USA), Wisconsin/Illinois (USA), and Alberta/Saskatchewan (Canada). CWD is also present in captive cervids in South Korea and wild reindeer and moose in Norway (https://www.nwhc. usgs.gov/images/cwd/cwd_map.jpg). CWD results from the conformational transformation of the host-encoded cellular prion protein (PrPC) into protease-resistant, detergent-insoluble, β-sheet rich, amyloidogenic conformers, termed prions (PrPCWD). Within their conformation, prion strains encipher the information that directs the templated misfolding and aggregation of PrPC molecules into additional prions (1).
Although the sequence homology of PrP among mammals is high, the ability of particular prion strains to cause disease in different species is determined by the conformational compatibility between a given strain and the host PrPC (2). We previously identified 2 strains of CWD prion in white-tailed deer (3), Wisc-1 and H95+ ; these strains exhibit distinct biological properties in deer and transgenic cervidized mice. To ascertain the host range of different strains from cervids, we inoculated CWD prions isolated from experimentally infected deer with different PRNP genotypes (Q95G96 [wild type (wt)], S96/wt, H95/wt, and H95/S96) and from elk (CWD2 strain) into hamsters and mice. All isolates have been successfully transmitted into transgenic mice expressing wt cervid PrP and contain high titers of CWD prions (3).
Mice inoculated with H95+ CWD prions succumbed to clinical disease at 575 ± 47 or 692 ± 9 days, depending on the H95+ isolate (Table). Mice inoculated with Wisc-1 or elk CWD or uninfected deer homogenates were euthanized at day 708 after infection with no signs of prion disease. Clinical signs of H95+ CWD in C57Bl/6 mice included ataxia, lethargy, tail rigidity, and dermatitis. Protease-resistant PrPCWD was present in all mice infected with H95+ prions and was not detected in mice infected with Wisc-1 or CWD2 (online Technical Appendix, https://wwwnc.cdc. gov/EID/article/23/9/16-1474-Techapp1.pdf).
In contrast to mice, hamsters succumbed to clinical disease when inoculated with Wisc-1 CWD prions but were less susceptible to H95+ CWD prions (Table). Clinical signs of CWD in hamsters began with lethargy and, upon arousal, retrocollis; as the disease progressed, lethargy declined with increased dystonic movement including ataxia and tremors. Hyperesthesia was not observed. Subclinical disease (no clinical signs but PrP-res positive by Western blot) was observed in a subset of hamsters (online Technical Appendix).
Successful interspecies prion transmission at the molecular level depends on the compatibility of the invading prion conformers and structural determinants imposed by host PrPC. One structural motif is the loop region between β sheet 2 and α helix 2 of PRPC at aa 170–174 (online Technical Appendix). Host species containing PrPC molecules with a flexible β2-α2 loop (mice and humans) are hypothesized to be incompatible with prions derived from species containing a rigid loop (deer and elk) (4,5). Previous attempts to transmit CWD to mice have failed (6,7). Our data show that prions from a prototypic rigid-loop species (deer) can transmit to a flexible-loop species (mice). The transmission is strain dependent. H95+ overrides the conformational restriction imposed by the mouse PrP flexible loop that Wisc-1 and CWD2 cannot overcome, suggesting that the invading prion strain is a dominant contributor to the species/transmission barrier. How the N terminal amino acid polymorphism (Q95H) affects the conformation of PrP, altering the deer-to-mouse transmission barrier, is unknown. Further structural studies may clarify the effect of N terminal residues on β2-α2 loop rigidity.
Transmission of H95+ CWD prions to mice further confirms the value of specifying strain when defining species barriers. Experimental transmission of CWD prion into macaques and transgenic mice expressing human PrP suggests a considerable transmission barrier to CWD prions (although squirrel monkeys are susceptible), and human prion protein is converted inefficiently in vitro (8,9). Successful infection of a flexible-loop species (mice) with H95+ CWD raises concerns for the potential pathogenicity of H95+ prions to other flexible-loop species. Transmission studies with Wisc-1 and H95+ in transgenic humanized and bovinized mice are ongoing.
The increasing prevalence of CWD indicates selection for cervids with resistance alleles, such as S96 and H95. Genetic resistance to a given prion strain selects for the emergence of novel prion strains with altered properties such as H95+ and Nor98 (3,10). The iterative transmission of CWD prions to cervids with protective alleles of PrPC and the consequent emergence of new CWD prion strains highlights the dynamics of the CWD panzootic and the value of characterizing the host range of emergent CWD prion strains.
''Successful transmission of an emergent strain of CWD prion, H95+, into mice resulted in infection. Thus, emergent CWD prion strains may have higher zoonotic potential than common strains.''
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
*** We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
*** CWD is unique among prion diseases in its rapid spread in natural populations.
*** BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species.
*** This adaptation has consequences for surveillance of humans exposed to CWD.
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
you can see more evidence here ;
2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves.
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice.
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
SATURDAY, JULY 29, 2017
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
TUESDAY, JULY 04, 2017
*** PRION 2017 CONFERENCE ABSTRACTS ON CHRONIC WASTING DISEASE CWD TSE PRION ***
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD
URINE
SUNDAY, JULY 16, 2017
*** Temporal patterns of chronic wasting disease prion excretion in three cervid species ***
WEDNESDAY, JULY 26, 2017
Chronic wasting disease continues to spread Disease of cervids causing local population declines
SUNDAY, AUGUST 06, 2017
*** USA Chronic Wasting Disease CWD TSE Prion Emergency Response Plan Singeltary et al ***
WEDNESDAY, AUGUST 16, 2017
Norway Nordfjella 2 out of apprx 150 animals shot now suspect for Chronic Wasting Disease CWD Skrantesjuke
WEDNESDAY, JULY 26, 2017
Chronic wasting disease continues to spread Disease of cervids causing local population declines
THURSDAY, AUGUST 03, 2017
Wisconsin CWD Showing Up in Northern Wisconsin Deer Farms
Wednesday, February 10, 2016
*** Wisconsin Two deer that escaped farm had chronic wasting disease CWD ***
SATURDAY, AUGUST 12, 2017
Pennsylvania 27 deer from Bedford County farm test positive for chronic wasting disease
WEDNESDAY, AUGUST 16, 2017
OHIO Chronic Wasting Disease CWD TSE Prion UPDATE?
Iowa Supreme Court rules law allows quarantine of CWD deer, not land
This is very, very concerning imo.
IF this ruling is upheld as such ;
''The Iowa Supreme Court upheld the district court ruling — saying the law gives the DNR only the authority to quarantine the deer — not the land. The ruling says if the Iowa Legislature wants to expand the quarantine powers as suggested by the DNR, then it is free to do so.''
IF a 'precedent' is set as such, by the Legislature not intervening to expand quarantine powers to the DNR for CWD TSE Prion, and the precedent is set as such that the cervid industry and land there from, once contaminated with the CWD TSE Prion, are free to repopulate, sell the land, etc, imo, this will blow the lid off any containment efforts of this damn disease CWD TSE Prion. The Iowa Supreme Court did not just pass the cwd buck down the road, the Supreme Court of Iowa just threw the whole state of Iowa under the bus at 100 MPH. i remember the litigation that took place and the fuss over all those 'healthy' looking deer standing out in the pasture, i remember the photo postings and thread on the web on the deer farmers board, of all those healthy looking deer. the big rally behind the owners on the web, how they were going to come and cut the fences, folks liking the comments, 100 deer farmers were going to show up and stop the officials from coming in to test the deer. yep, it was on the www. all those healthy deer, while the litigation was going on, well, they were incubating the cwd tse prion, loading up the land even more, and in the end, 79.8% of those healthy looking deer had CWD TSE Prion. what about the exposure to the other species that come across that land, and then off to some other land? this makes no sense to me, if this is set in stone and the Legislation does not stop it, and stop if fast, any containment of the cwd tse prion will be futile, imo...terry
FRIDAY, JUNE 16, 2017
Iowa Supreme Court rules law allows quarantine of CWD deer, not land
MONDAY, AUGUST 14, 2017
Texas Chronic Wasting Disease CWD TSE Prion History
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
you can see more evidence here ;
THURSDAY, AUGUST 17, 2017
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States revisited 2017
Terry S. Singeltary Sr.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home