Saturday, June 03, 2023

Pennsylvania CWD Since July 1, 2022, 400+ Wild Deer Test Positive, Captive Deer Total CWD?

Pennsylvania CWD Since July 1, 2022, 400+ Wild Deer Test Positive, Captive Deer Total CWD?

GAME COMMISSION UPDATES PUBLIC ON CWD SURVEILLANCE 06/02/2023

HARRISBURG, PA - With a little time yet to go in the 2022-23 surveillance year, the Game Commission has already detected Chronic Wasting Disease (CWD) in more deer this year than the one before, once again highlighting the threat the disease poses to Pennsylvania’s deer and elk, and hunting heritage.

CWD is an always-fatal neurological disease affecting cervids, including deer and elk. There is no vaccine and no cure for animals that get it. 

Since July 1, 2022, the Game Commission collected nearly 11,000 CWD samples from deer. Hunter-harvested samples made up the bulk of those, with more than 7,000.

To date, a total of more than 400 wild deer tested positive for CWD, 243 of them harvested by hunters. Both numbers are up from the year before when 261 deer overall, 174 of them harvested by hunters, tested positive.

The public can view the results of this ongoing surveillance effort on the CWD Surveillance Dashboard available at https://pgcdatacollection.pa.gov/CWDResultsLookup. It’s updated weekly and allows the public to view past and current information related to CWD and gives hunters who submitted their deer for testing access to results online.

“CWD surveillance is crucial to managing the disease,” said agency CWD Section Supervisor Andrea Korman. “CWD is a serious threat to deer and elk. Knowing where the disease is allows us to focus our efforts to keep more deer from becoming infected.” 

One of those efforts is using CWD Deer Management Assistance Program (DMAP) units to focus harvest and surveillance. For 2022-23, there were 15 specific CWD DMAP units across the state. Hunters could purchase up to two additional antlerless permits to be used within these CWD DMAP areas.

In addition to CWD DMAP units, the Game Commission selected three areas last fall as Containment Zones (CZs). CZs are small areas – with about a 1-mile radius, or the average size of a deer’s home range – around the location of a high priority CWD-positive deer, meaning one in a completely new area or on the leading edge of CWD’s spread.

Landowners and hunters within these smaller CZs are offered additional opportunities to harvest deer that may have come into contact with the infected deer. These opportunities include both special regulations and extended hunting seasons. The Game Commission continued to work with these landowners after the hunting seasons to harvest additional deer surrounding the initial CWD detection.

“The results of this year’s efforts around recent detections were encouraging,” said Korman. “Landowners and hunters were supportive and eager to help protect deer in their area. This increased sampling close to the detections found no new CWD-positive animals.”

As with previous years, most of the deer that tested positive for CWD in the 2022-23 hunting season came from Disease Management Area 2 (DMA 2), located in southcentral Pennsylvania, and were concentrated in the Established Area (EA) that covers portions of Bedford, Blair, Franklin, Fulton, and Huntingdon counties. This area, where CWD is considered established within the deer population, has produced nearly 90% of Pennsylvania’s CWD-positives since the disease first was detected here in 2012.

That’s why the Game Commission, in cooperation with the Cooperative Fish and Wildlife Research Unit at Penn State University and the Wildlife Futures Program at Penn Vet, the University of Pennsylvania’s School of Veterinary Medicine, is conducting a CWD research study in that area. Crews captured 32 deer last winter in Bedford and Fulton counties and gave them ear tags and GPS collars.

“Based on the number of CWD-positive animals we continue to detect in this area, it’s clear that CWD is a persistent problem and will require long-term management,” Korman said. “People in Pennsylvania believe that responding to wildlife disease is one of the Game Commission’s most important roles.”

A critical part of this research is testing deer that have been ear tagged or collared. If you find or harvest a tagged deer, please call the number on the ear tags so samples can be collected.

In the meantime, this past season in Wildlife Management Unit (WMU) 4A, which includes the EA, one in three hunter-harvested adult deer (more than 1 year old) tested positive for CWD. This is up from just a year ago when it was one in five. CWD was also detected in a free-ranging wild deer on the east side of the Susquehanna River for the first time, in Dauphin County.

Changes to DMA boundaries that result from newly detected CWD-positives will be developed and announced at a later date.

“Because of this continued spread, we increased the antlerless allocations in WMUs where CWD has been detected for this upcoming hunting season,” Korman said. “We will be closely monitoring the harvest to see if that increased allocation was sufficient to slow the spread of the disease, and if not, other options will be considered, including extending the seasons to create more opportunities for hunters to harvest deer in these areas.”

Agencies are limited in what can be done to address CWD, she added. Reducing deer populations is one of the only tools that has shown results.

“Hunters are passionate about deer in Pennsylvania,” said Bryan Burhans, Game Commission Executive Director. “And they will do just about anything to protect them. In this case, we need them to do what they do best. Hunt more!”

More information about CWD in Pennsylvania, including access to the CWD Surveillance Dashboard and the CWD Response Plan, is available at www.pgc.pa.gov/cwd.

MEDIA CONTACT: Travis Lau - 717-705-6541

# # # 

Pennsylvania CWD Since July 1, 2022, 400+ Wild Deer Test Positive 


Pennsylvania Total CWD To Date 1,406 Detected, and Mounting! 


SEE MAP video of how CWD has expanded in Pennsylvania;




Now, figuring out total number of Pennsylvania CAPTIVE CWD POSITIVES to date, …Good Luck with that! 


BELOW is a bit of history of CWD in Pennsylvania from the beginning, you can see where the captive cervid farming industry has help spread CWD in Pennsylvania. I tried year, after year, after year, to warn Pennsylvania of Chronic Wasting Disease CWD TSE Prion way, way, back, what was coming around 2002, but they did not want to hear nothing about Chronic Wasting Disease CWD in Pennsylvania, until it was too late, and they had help spread cwd to hell and back...imo...terry

SATURDAY, OCTOBER 23, 2021 

PENNSYLVANIA NEWLY DETECTED CWD-POSITIVE LEADS TO DMA3 EXPANSION AND A NEW DMA 


Wednesday, May 26, 2021 

Pennsylvania Department of Agriculture today announced a confirmed positive for CWD in a white-tailed deer on a Warren County hunting preserve


THURSDAY, APRIL 08, 2021 

Pennsylvania 2020 2021 had 162 CWD Violations with 196 Positive for the year


TUESDAY, MARCH 09, 2021 

Pennsylvania 2020 Annual Report Updated CWD samples collected so far this year 196 were positive


FRIDAY, MARCH 06, 2020 

Pennsylvania CWD TSE Prion deer and State Rep. David Maloney, R-Berks


THURSDAY, MARCH 05, 2020 

PGC Audit Reeks of Politics Research Representative Maloney Wants To Gut wildlife management and hunting and help spread CWD in Pennsylvania


WEDNESDAY, MARCH 04, 2020 

Politicians State Rep. David Maloney, R-Berks Helping to Spread Chronic Wasting Disease CWD TSE Prion


MONDAY, NOVEMBER 04, 2019 

Legislators legislating, or throwing away your money for battling cwd tse prion, State Rep. Steve Green, R-Fosston more money to deer farms for antibiotics?


BMC Genomics. 2022 Jan 21;23(1):69. doi: 10.1186/s12864-022-08306-0.

Neural transcriptomic signature of chronic wasting disease in white-tailed deer

Eóin O'Hara 1 2, Allen Herbst 1, Arun Kommadath 3, Judd M Aiken 1, Debbie McKenzie 4, Negin Goodarzi 5, Pamela Skinner 5, Paul Stothard 6 Affiliations expand

*** > An association between CWD and spiroplasma infection was not found.

***> we mined our data to address the speculative hypothesis that specific bacteria are the etiological agent of CWD, but found no evidence to support this hypothesis. 



Maloney to Join Press Conference on Chronic Wasting Disease JAN. 25, 2019 

WHAT: After decades of intensive research, Dr. Frank Bastian at Louisiana State University believes he has discovered the true cause of chronic wasting disease (CWD) and the press event will detail an agreement between Unified Sportsmen of Pennsylvania and LSU toward raising funding to eradicate CWD from Pennsylvania and throughout America.

WHO: Maloney, other concerned state legislators, LSU research scientist Dr. Frank Bastian and Unified Sportsmen of Pennsylvania.

WHEN: Monday, Feb. 4, 10:30 a.m.

WHERE: Main Rotunda state Capitol

LIVE WEBSTREAMING: RepMaloney.com

Media contact: Charles Lardner, 717.260.6443, clardner@pahousegop.com


All Efforts to Cure CWD are Welcome, Maloney Says FEB. 05, 2019 

HARRISBURG – Rep. David Maloney (R-Berks) applauded the public-private partnership that was announced yesterday between Unified Sportsmen of Pennsylvania and Louisiana State University (LSU) scientist Frank Bastian aimed at curing chronic wasting disease (CWD) in white-tailed deer and other animals.

At a Capitol press conference on Monday, leadership members of the Unified Sportsmen of Pennsylvania announced they were self-funding the research partnership with Dr. Bastian because his research thus far on CWD shows more promise than previous years of state-funded research that have so far yielded no results.

After decades of intensive research, Bastian, an LSU AgCenter animal scientist, believes he has isolated the cause of CWD. He believes it is a bacterium called a spiroplasma. It is this spiroplasma that causes the CWD proteins known as “prions.”

“For years, the Game Commission and the Department of Agriculture have been telling us that prions are the cause of chronic wasting disease,” Maloney said. “Yet, despite decades of efforts, we are no further along to finding a cure than we were when CWD was first discovered some 30 years ago. It seems to me we should welcome a different approach while current efforts continue to be pursued. A closed mind has never solved anything.”

The entire press conference can be viewed here.

Maloney’s remarks following the press conference can be viewed here.

Representative David Maloney 130th District Pennsylvania House of Representatives Media Contact: Charles Lardner 717.260.6443 clardner@pahousegop.com RepMaloney.com


NEWS FLASH ON MALONEY'S FAKE NEWS ABOUT BASTIAN'S CWD CURE;

to date, there is no vaccine that will cure or stop cwd tse prion, and for the ones that might come into play once validated, if validated, that slows the progression of the cwd tse prion in the brain and throughout the body, it would only give that cervid longer to spread the cwd tse prion throughout the environment...it's just science...terry


FRIDAY, JANUARY 03, 2020

Ground-breaking study could reveal true cause of fatal chronic wasting disease CWD TSE Prion...NOT!


YOU CANNOT LEGISLATE CHRONIC WASTING DISEASE CWD TSE PRION WITH JUNK SCIENCE, just like i said back in 2020, what i said years before, Bastian and his spiroplasma theory has never ever been proven, and i tried to warn that Pennsylvania et al were just throwing more cwd research money down the drain in a chase for spiroplasma, but no, legislators like Representative David Maloney 130th District Pennsylvania House of Representatives just love to throw money away and something he knows nothing about, and it's what you get when you chase junk science down a rabbit hole, just to please the cervid captive game farm industry...imo.

I TRIED TO TELL YOU!

BMC Genomics. 2022 Jan 21;23(1):69. doi: 10.1186/s12864-022-08306-0.

Neural transcriptomic signature of chronic wasting disease in white-tailed deer

Eóin O'Hara 1 2, Allen Herbst 1, Arun Kommadath 3, Judd M Aiken 1, Debbie McKenzie 4, Negin Goodarzi 5, Pamela Skinner 5, Paul Stothard 6 Affiliations expand

*** > An association between CWD and spiroplasma infection was not found.

***> we mined our data to address the speculative hypothesis that specific bacteria are the etiological agent of CWD, but found no evidence to support this hypothesis. 



SUNDAY, APRIL 12, 2020 

PENNSYLVANIA REVISED CWD RESPONSE PLAN DRAFT AVAILABLE FOR REVIEW


WEDNESDAY, MARCH 04, 2020 

Pennsylvania YOUR STATE WILDLIFE AGENCY 2019 ANNUAL REPORT CWD TSE Prion 123 tested positive


SATURDAY, JANUARY 04, 2020 

Pennsylvania 2020 CWD Response Plan Proposal 

My submission to Pennsylvania Draft CWD Response Plan: Public Comment will be the same as my recent submission to Texas and other states, with a few additions, and is as follows;


SUNDAY, DECEMBER 22, 2019 

Pennsylvania Steady Climb of CWD TSE Prion Confirms 250 Positive To Date In Wild Cervid As At September 12, 2019 

Pennsylvania Captive Cervid Industry Total CWD TSE Prion ??? anyone's guess...


THURSDAY, OCTOBER 24, 2019 

Pennsylvania NEWLY DETECTED CWD-POSITIVE DEER CAPTIVE-RAISED WILL EXPAND DMA 4 IN 2020


THURSDAY, FEBRUARY 21, 2019 

Pennsylvania More CWD Bethel Township, Fulton County breeding farm 


SATURDAY, NOVEMBER 10, 2018 

Pennsylvania Thirty-Eight Deer Test Positive for Chronic Wasting Disease on Fulton and Bedford County Deer Farms


FRIDAY, JUNE 15, 2018 

Pennsylvania CWD Cases Triple in One Year


FRIDAY, FEBRUARY 23, 2018

Pennsylvania NEW CWD MANAGEMENT AREA TO BE ANNOUNCED


MONDAY, FEBRUARY 12, 2018 

Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties


WEDNESDAY, APRIL 04, 2018 2017 

Annual Report | Pennsylvania Game Commission Chronic Wasting Disease CWD TSE Prion


MONDAY, FEBRUARY 12, 2018

Pennsylvania Deer found near Jefferson County elementary school tests positive for CWD TSE Prion


MONDAY, FEBRUARY 12, 2018 

Pennsylvania CWD TSE Prion has been found in captive deer in Huntingdon and Lancaster counties


SATURDAY, JANUARY 20, 2018

Pennsylvania CWD TSE Prion Cases Explodes 51 deer from the 2017-18 hunting seasons have tested positive for CWD majority of samples collected still are being analyzed


FRIDAY, DECEMBER 15, 2017 

Pennsylvania Four Deer Test Positive for Chronic Wasting Disease on Franklin, Fulton County Quarantined Hunting Preserves


THURSDAY, SEPTEMBER 28, 2017

Pennsylvania GAME COMMISSION OFFERS FREE CWD TESTS FOR DMA-HARVESTED DEER


THURSDAY, SEPTEMBER 21, 2017

Pennsylvania Game Commission has scheduled a series of public meetings to ensure Pennsylvanians remain informed about chronic wasting disease CWD TSE Prion


SATURDAY, AUGUST 12, 2017

*** Pennsylvania 27 deer from Bedford County farm test positive for chronic wasting disease ***


WEDNESDAY, JULY 12, 2017

PENNSYLVANIA CWD FOUND IN THE WILD IN CLEARFIELD COUNTY


THURSDAY, JUNE 01, 2017

PENNSYLVANIA Third Case of CWD Discovered in a Captive Deer Farm in Four Months


MONDAY, MAY 15, 2017 

Pennsylvania 25 more deer test positive for CWD TSE PRION in the wild


WEDNESDAY, MARCH 01, 2017 

South central Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease 


FRIDAY, JANUARY 13, 2017 

Pennsylvania Deer Tests Positive for Chronic Wasting Disease four-year-old white-tailed deer Franklin County Hunting Preserve


Saturday, November 07, 2015 

PENNSYLVANIA CHRONIC WASTING DISEASE CWD TSE PRION RULES EXPAND 


Saturday, November 07, 2015 

Pennsylvania 2015 September Minutes CWD Urine Scents 


*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans Singeltary 2002 from speaking A smelly situation UPDATED 2015 

snip...

Terry S. Singeltary Sr. member

Reged: Sep 17 2002 Posts: 129 Loc: TEXAS

Greetings Samuel and Hunters of PA,

i will no longer be able to post here for reasons posted below. sorry for making the posting above. i had not seen this yet. ... good luck...tss

Welcome Terry S. Singeltary Sr.. [Logout] My Home · Main Index · Search · Active Topics Who's Online · FAQ · User List · Calendar

CWD Postings.

From: Samuel

Terry,

I have to request that you discontinue from posting information on CWD. I have received concerns from individuals on the validity of your information. Since I am not educated on the subject, I cannot validate that the information is correct and or factual. As time moves on, this subject will become quite a "touchy subject" and any information, factual or not, will be scrutinized. From now on, we will have to rely on the PGC to educate the residents here in PA on the subject.

Thank you for your concern in this matter and keeping a close vigil on the topic.

Samuel

===========================

Reged: Sep 17 2002

Posts: 132 Loc: TEXAS

POSTINGS AND DISCUSSIONS ON CWD HERE #514778 - Wed Dec 21 2005 11:26 AM

Greetings PA Hunters,

I have been ask not to post anymore here about CWD. SO, i will adhere to there request. i really have no other alternative. i would like to say, this is very disturbing to me, and should be very concerning for you hunters. i have been researching this for almost 8 years and this is the only state that has banned me from posting about TSE. Big Brother is working everywhere, including this board. ...TSS

From: Samuel Your post was deleted due to it being a double post. The press release is posted in the PGC Press Release Thread.

Like I had asked you, please refrain from posting information on CWD.

Thank you.

=========================


Pennsylvania Game Commission Law and Law Makers Message Board HUNTING PA.COM 

snip...see full report;

*** Pennsylvania Game Commission Law and Law Makers CWD TSE PRION Bans Singeltary 2002 from speaking A smelly situation UPDATED 2015 


Wednesday, May 11, 2016 

PENNSYLVANIA TWELVE MORE CASES OF CWD FOUND: STATE GEARS UP FOR ADDITIONAL CONTROL MEASURES 


Tuesday, May 05, 2015 

Pennsylvania CWD DETECTED IN SIX MORE FREE-RANGING DEER Disease Management Area 2 again expanded due to new cases Release #030-15 


Sunday, July 13, 2014 

Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape 


Saturday, June 29, 2013 

PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA 


Tuesday, June 11, 2013 

CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania 


Tuesday, May 28, 2013 

Chronic Wasting Disease CWD quarantine Louisiana via CWD index herd Pennsylvania Update May 28, 2013 

*** 6 doe from Pennsylvania CWD index herd still on the loose in Louisiana, quarantine began on October 18, 2012, still ongoing, Lake Charles premises. 


Sunday, January 06, 2013

USDA TO PGC ONCE CAPTIVES ESCAPE

*** "it‘s no longer its business.”


”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province!” page 26. 


Wednesday, November 14, 2012 

PENNSYLVANIA 2012 

THE GREAT ESCAPE OF CWD INVESTIGATION MOVES INTO LOUISIANA and INDIANA 


Tuesday, October 23, 2012 

PA Captive deer from CWD-positive farm roaming free 


Thursday, October 11, 2012 

Pennsylvania Confirms First Case CWD Adams County Captive Deer Tests Positive 


Pennsylvania Has Confirmed 3 Cases Of Atypical Nor-98 TSE Prion To Date

THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021


Subject: Pennsylvania Scrapie Outbreak August 2018

Ag Secretary, State Veterinarian: New Animal ID Rules Help Track Disease, Prevent Outbreaks

09/18/2020

Harrisburg, PA - Agriculture Secretary Russell Redding and State Veterinarian Dr. Kevin Brightbill today reminded small-ruminant producers that new requirements for scrapie tags and premises IDs will help ensure better, faster disease tracing and control. Adhering to new federal requirements will help keep scrapie instances from becoming full-blown outbreaks, ultimately saving producers from devastating livestock and financial losses.

“We have made significant progress in eradicating this costly and fatal disease,” said Redding. “Our commonwealth must continue efforts to ensure the protection of our herds and flocks from scrapie as it threatens Pennsylvania agriculture. Establish a premises identification number for your herd or flock.” 

Scrapie is known to be transmissible from infected to uninfected sheep and goats through exposure from birthing fluids and tissues. Clinical signs may be noticed 18 months to 5 years after exposure and include progressive weight loss despite no decrease in appetite, difficulty walking, fine tremors/shaking of ears and head and, most notably, extreme itching. At this time, there is no vaccine to protect animals against scrapie, and there is no known cure or treatment for the disease. 

“Scrapie is a fatal infectious and progressive disease affecting the brain and spinal cord of sheep and goats and belongs to a group of diseases called transmissible spongiform encephalopathies (TSEs),” said Brightbill. “There is no evidence humans have ever been infected with scrapie.”

In August 2018, a Pennsylvania goat sampled at slaughter in July 2018, was confirmed positive for classical scrapie. The goat was traced to a Pennsylvania herd that has both sheep and goats. The herd was designated as a source flock by the United States Department of Agriculture (USDA). An additional five sheep and one goat were confirmed positive for classical scrapie within that herd at the time of partial herd depopulation. Only sheep and goats shown to be genetically susceptible to scrapie were depopulated. 

To establish a premises identification number (PIN) for your herd or flock please visit the Pennsylvania Department of Agriculture Premises Registration Form to enroll your premises.

After a PIN has been established, dial USDA’s toll-free tag line at (866) 873-2824 to order scrapie tags for your herd or flock. The Pennsylvania Veterinary Diagnostic Laboratory (PVL) is offering genetic screening for owners interested in identifying scrapie resistant animals in their flocks. To find out more ask your veterinarian or call PVL at (717) 787-8808. Additionally, USDA APHIS offers free scrapie testing for deceased animals over the age of 14 months.

All sheep and goats born in Pennsylvania must be identified with a PDA-approved form of official individual identification, prior to being transported live off the birth premises. No sheep or goat, of any age, shall be imported or shipped into the Commonwealth of Pennsylvania without a department-approved form of individual identification. Additionally, per the Final Rule of the National Scrapie Eradication ProgramOpens In A New Window, all sheep and goats must be accompanied in transit by either a valid Interstate Health Certificate or owner shipper statement if the animals are moving in slaughter channels.

Up until January 1, 2021 the department will offer educational outreach and written notices of violation to gently prompt compliance. After January 1, 2021, entities failing to comply will be subject to enforcement and penalties as are allowed under the provisions of Pennsylvania’s Domestic Animal Law, including revocation of license, criminal prosecution and/or civil penalties of up to $10,000 per violation and injunctive.

Additional questions may be addressed by calling the Bureau of Animal Health and Diagnostic Services at 717-772-2852 or RA-ahds@pa.gov. Questions directed toward USDA APHIS may be addressed by calling Dr. Stephanie Ringler at 717-599-9957.

MEDIA CONTACT: Shannon Powers - 717.783.2628

# # #





NOTICES DEPARTMENT OF AGRICULTURE General Quarantine Order; Scrapie [50 Pa.B. 675] [Saturday, February 1, 2020]

NOTICES DEPARTMENT OF AGRICULTURE General Quarantine Order; Scrapie [50 Pa.B. 675] [Saturday, February 1, 2020] Recitals

 A. Scrapie is an infectious and progressive disease affecting the central nervous system (CNS) of ovine and caprine animals and belongs to a group of diseases called transmissible spongiform encephalopathies (TSEs).

 B. There is no vaccine to protect animals against Scrapie, nor is there a known cure or treatment for this disease.

 C. Scrapie is known to be transmissible from infected to uninfected ovine and caprine animals by birthing tissues and fluids.

 D. Scrapie is specifically designated a ''dangerous transmissible disease'' of animals (3 Pa.C.S. § 2321(a)(40) (relating to dangerous transmissible diseases)).

 E. The Department of Agriculture (Department) has broad authority under 3 Pa.C.S. §§ 2301—2389 (relating to the Domestic Animal Law) to regulate the keeping and handling of domestic animals to exclude, contain or eliminate dangerous transmissible diseases, such as Scrapie.

 F. The Department also has broad authority under the Domestic Animal Law to issue general quarantines with respect to any area or locality within the Commonwealth of Pennsylvania (Commonwealth) to exclude, contain or eliminate dangerous transmissible diseases, such as Scrapie (3 Pa.C.S.A. § 2329(d)).

 G. Scrapie is of particular concern to the ovine and caprine production industries, in that presence of Scrapie may result in the Department ordering the condemnation and destruction of the entire affected flock or herd and may severely limit the market for ovine and caprine animal products from this Commonwealth.

 H. Scrapie is known to be present in ovine and caprine animals in States, Commonwealths and territories of the United States and in foreign countries outside of the Commonwealth of Pennsylvania and is occasionally diagnosed among ovine and caprine animals within this Commonwealth. In August 2018, a Pennsylvania goat, which had been sampled at slaughter in July, was confirmed positive for classical scrapie. The goat was traced to a Pennsylvania herd that has both sheep and goats. The herd was designated as a source flock by the United States Department of Agriculture (USDA) in September 2018. An additional 5 sheep and 1 goat were confirmed positive for classical scrapie within that herd.

 I. As a condition of maintaining this Commonwealth's ''Scrapie Consistent State Status'' under the United States Department of Agriculture's ongoing Scrapie eradication effort, it is critical that the Department have the ability to promptly and accurately identify the source of a Scrapie-infected ovine or caprine animal originating or residing within this Commonwealth.

Order of Quarantine.

 With the foregoing recitals incorporated into this Order by reference, the Pennsylvania Department of Agriculture (PDA) hereby establishes, under authority of the Domestic Animal Law, at 3 Pa.C.S.A. § 2329(d) and § 1702 of the Administrative Code of 1929 (71 P.S. § 442), an Order of General Quarantine for the entire Commonwealth of Pennsylvania related to the dangerous transmissible disease Scrapie. Compliance and assurance of compliance with the provisions and terms of this Quarantine Order shall be the responsibility of all persons, individuals and entities subject to its terms. The terms of this Order are as follows:

 1. Quarantine Area. This General Quarantine is applicable to the entire Commonwealth of Pennsylvania.

 2. The current Quarantine Order, published on August 26, 2006 at 36 Pa.B. 4734 will remain in place and be rescinded upon the effective date, May 1, 2020, of this Quarantine Order.

 3. Applicable definitions:

 ''Department-approved form of identification/PDA-approved form of identification''—Approved form of individual identification, as set forth in Paragraph 7 of this Order.

 ''Direct movement to slaughter''—Transported to a facility for slaughter, without stops or unloading unless required by the United States Department of Agriculture to unload for a minimum of five hours for rest, water and food, but no longer than 24 hours during which time the animals are not commingled with any other animals.

 ''Interstate health certificate''—A legible official document, made on a form issued by the chief livestock health official of the state of origin or the United States Department of Agriculture, prepared by an accredited veterinarian of the state of origin certifying the health of the animal described therein, and validated by the chief livestock health official of the state of origin.

 ''Owner-shipper statement or owner/hauler statement''—A statement which meets the definition of 9 CFR § 79.1:

 A. A signed written statement by the owner or hauler that includes:

 i. The name, address, and phone number of the owner and, if different, the hauler;

 ii. The date the animals were moved;

 iii. The flock identification number or PIN assigned to the flock or premises of the animals;

 iv. If moving individually unidentified animals or other animals required to move with a group/lot identification number, the group/lot identification number and any information required to officially identify the animals;

 v. The number of animals;

 vi. The species, breed, and class of animals. If breed is unknown, for sheep the face color and for goats the type (milk, fiber, or meat) must be recorded instead; and

 vii. The name and address of point of origin, if different from the owner's address, and the destination name and address.

 B. An existing document that includes the information required in paragraphs (1)(i) to (vii) of this definition and that is signed by the owner or the hauler may be used as an owner/hauler statement.

 ''Pennsylvania health certificate''—A legible official document, made on a form (AAI-13) provided by the Department, prepared by an accredited Pennsylvania veterinarian or a representative of the Department certifying the health of animals described therein according to the health requirements established by this chapter.

 ''Ship''—Transport or transportation by means of any conveyance.

 ''Slaughter establishment''—Any slaughtering facility operating under the Federal Meat Inspection Act (21 U.S.C. 601 et seq.), the Poultry Products Inspection Act (21 U.S.C. 451 et seq.) or a State meat or poultry inspection act that is approved in accordance with 9 CFR 71.21.

 ''Slaughter channels''—Animals in slaughter channels including any animal that is sold, transferred, or moved either directly to or through a restricted animal sale or restricted livestock facility to an official slaughter establishment that is under United States Department of Agriculture, Food Safety and Inspection Service (FSIS) jurisdiction per the Federal Meat Inspection Act (FMIA) or under State inspection that FSIS has recognized as at least equal to Federal inspection or to a custom exempt slaughter establishment as defined by FSIS (9 CFR 303.1) for immediate slaughter or to an individual for immediate slaughter for personal use or to a terminal feedlot.

 ''Source of origin''—An ovine flock or caprine herd in which an animal was born; or an ovine flock or caprine herd in which an ewe or doe was used for breeding or lambed or kidded; or a ram or buck which was used for breeding.

 ''Terminal feedlot''—(1) A dry lot approved by a State or United States Department of Agriculture, APHIS (APHIS) representative or an accredited veterinarian who is authorized by the APHIS Administrator to perform this function where animals in the terminal feedlot are separated from all other animals by at least 30 feet at all times or are separated by a solid wall through, over, or under which fluids cannot pass and contact cannot occur and must be cleaned of all organic material prior to being used to contain ovine or caprine animals that are not in slaughter channels, where only castrated males are maintained with female animals and from which animals are moved only to another terminal feedlot or directly to slaughter; or (2) A dry lot approved by a State or APHIS representative or an accredited veterinarian authorized by the APHIS Administrator to perform this function where only animals that either are not pregnant based on the animal being male, an owner certification that any female animals have not been exposed to a male in the preceding 6 months, an ICVI issued by an accredited veterinarian stating the animals are not pregnant; or the animals are under 6 months of age at time of receipt, where only castrated males are maintained with female animals, and all animals in the terminal feedlot are separated from all other animals such that physical contact cannot occur including through a fence and from which animals are moved only to another terminal feedlot or directly to slaughter; or (3) A pasture when approved by and maintained under the supervision of the State and in which only nonpregnant animals are permitted based on the animal being male, an owner certification that any female animals have not been exposed to a male in the preceding 6 months, or a health certificate issued by an accredited veterinarian stating the animals are not pregnant; or the animals are under 6 months of age at time of receipt, where only castrated males are maintained with female animals, where there is no direct fence-to-fence contact with another flock or herd, and from which animals are moved only to another terminal feedlot or directly to slaughter; and (4) Records of all animals entering and leaving a terminal feedlot must be maintained for 5 years after the animal leaves the terminal feedlot and must meet the requirements of 9 CFR § 79.2, including either a copy of the required owner/hauler statements for animals entering and leaving the facility or the information required to be on the statements.

 ''Transfer''—Any sale, distribution, exchange, barter, consignment, give away or transfer of ownership or title.

 ''Unknown source of origin''—Animals are not properly identified in a manner compliant with federal and Commonwealth requirements.

 4. PDA-approved form of identification required.

 (a) General Requirements. All ovine or caprine animals born within the Commonwealth shall be identified by a PDA-approved form of official individual identification, meeting the requirements of Paragraph 7 of this Order, prior to being transported live from their premises of birth and prior to being commingled with ovine or caprine animals from other flocks or herds.

 (b) Responsibility. The owner and any person responsible for animals leaving a premise shall ensure that each animal is properly identified as required by this Order.

 (c) Exhibition. All ovine and caprine animals entered for exhibition purposes in the Commonwealth must also bear PDA-approved forms of official individual identification meeting the requirements of Paragraph 7 of this Order.

 (d) Exemptions. Exemptions to PDA-approved forms of official individual identification requirements include animals moved from the farm of origin for veterinary medical examination or treatment and returned to the same location without change of ownership.

 5. Individual Identification of Animals and Records.

 (a) Individual Identification. Each person who transfers, buys or sells, for his or her own account; acts as or transfers, buys or sells as a dealer or the agent of the buyer or seller; transports, receives for transportation, offers for sale or transportation, or otherwise handles ovine or caprine animals in intrastate commerce within Pennsylvania, shall ensure each animal is identified with a PDA-approved form of official individual identification, as set forth in Paragraph 6 of this Order, and as required in this General Quarantine Order.

 (b) Records. All records shall include name and address of seller and buyer, date of transfer, number of animals, species and type (meat/fiber/dairy). Each person who transfers, buys or sells for his or her own account; acts as or transfers, buys or sells as a dealer or the agent of the buyer or seller; transports, receives for transportation, offers for sale or transportation, or otherwise handles ovine or caprine animals shall keep all the following records for each individual ovine or caprine animal:

 (i) Records related to the transfer of ownership, such as bills of sale and tagging records.

 (ii) Records related to shipment, such as bills of lading or owner-shipper statement or owner/hauler statement.

 (iii) Records establishing the place and source of origin.

 (iv) A copy of the Interstate Health Certificate or Pennsylvania Health Certificate.

 (c) Duration and availability of records. Records shall be maintained for 5 years and made available to the Department or its agent within one business day upon request.

 6. Prohibitions.

 (a) Intrastate movement. The following prohibitions and restrictions shall apply:

 (i) Shipment within the Commonwealth. No ovine or caprine animal, of any age, shall be shipped within the Commonwealth without a PDA-approved form of official individual identification, as set forth in Paragraph 7 of this Order.

 (ii) Transfer of ownership. No ovine or caprine animal, of any age, shall be offered for sale, sold or transferred unless that animal bears a PDA-approved form of official individual identification, as set forth in Paragraph 7 of this Order, and is accompanied by valid documents necessary to fulfill the recordkeeping provisions of Paragraph 5 of this Order.

 (iii) Through-shipment. No ovine or caprine animal, of any age, that is being shipped through the Commonwealth to another destination outside of the Commonwealth shall be temporarily unloaded, in the Commonwealth, from the vehicle or conveyance in which it is being transported without a PDA-approved form of official individual identification, as required by Paragraph 7 of this Order.

 (iv) Livestock Auction Market Dock Slips. A dock slip shall not be considered a valid owner-shipper statement or owner/hauler statement unless it meets the definition of 9 CFR § 79.1.

 (b) Remedies for Pennsylvania Origin animals found in commerce without identification. The following shall apply to any ovine or caprine animals, of Pennsylvania origin, moving in commerce and not bearing a PDA-approved form of official individual identification as required by Paragraph 7 of this Order;

 (i) Animals for Sale or Transfer to a Licensed Livestock Dealer or Livestock Market.

 (A) Unknown source of origin. Upon transfer of any ovine or caprine animal with an unknown source of origin to a person licensed or required to be licensed as a dealer/hauler or livestock market, the animal shall be immediately tagged with an official USDA ''slaughter-only''/''meat'' scrapie tag, by the licensed entity and a record made of each animal which shall meet the standards established in Paragraph 5 of this Order. Such animals shall be designated slaughter only and must either be sold to a terminal feedlot or sent directly to slaughter.

 (B) Known Pennsylvania source of origin. Upon transfer of any ovine or caprine animal with a known Pennsylvania source of origin to a person licensed or required to be licensed as a dealer/hauler or livestock market, a Department approved Ownership Transfer Statement shall be completed and signed, a PDA-approved form of official individual identification placed in each animal and a record made of each animal which shall meet the standards established in Paragraph 5 of this Order. The Ownership Transfer Statement form may be used temporarily by a producer/owner until a premises identification number and official flock identification number is assigned by the United State Department of Agriculture Veterinary Services. Use of this form will result in follow up by the Pennsylvania Department of Agriculture or the United State Department of Agriculture Veterinary Services to ensure producer/owner establishes a premises identification number and an official flock identification number.

 Once source of origin is documented the licensed dealer/hauler or livestock market shall apply an official USDA scrapie tag and the animal may be sold for breeding or slaughter. The Ownership Transfer Statement shall not be used for out of state animals.

 (ii) Animals for Private Sale or Other Transfer. Any animal found in commerce without PDA-approved form of official individual identification not transferred to a dealer/hauler or livestock market shall either:

 (A) Return to the farm of origin for application of PDA-approved form of official individual identification;

 (B) Provide documentation of source of origin and proceed to the final-destination where, immediately upon arrival official USDA scrapie tags shall be applied, a PDA-approved form of official individual identification placed in each animal and a record made of each animal which shall meet the standards established in Paragraph 5 of this Order; or

 (C) If source of origin is not known or cannot be properly documented in accordance with the requirements of this Order, proceed to a licensed dealer/hauler or livestock market where, immediately upon arrival each animal shall be tagged with a an official USDA ''slaughter-only''/''meat'' scrapie tag by the licensed entity and a record made of each animal which shall meet the standards established in Paragraph 5 of this Order.

 7. Types of PDA-approved Individual Identification. PDA-approved forms of identification include the following:

 (a) USDA official National Scrapie Eradication Program tag or official Scrapie Free Flock Certification Program tag.

 (b) USDA official Animal Identification Number (AIN) Ear Tag approved for sheep and goats.

 (c) A registration tattoo, if:

 (i) The tattoo is legible; and

 (ii) A registration certificate or a Certificate of Veterinary Inspection, listing the tattoo and registry, accompanies the tattooed ovine animal or caprine animal at all times from transport from premises of birth.

 (d) A USDA-Approved Flock ID Tattoo.

 (e) Another form of identification approved by PDA in writing.

 8. Violations/Penalties. Any person violating the requirements of this Order shall be subject to enforcement and penalties as are allowed under the provisions of the Domestic Animal Law (3 Pa.C.S.A. § 2301 et seq.), which include, revocation of license, criminal prosecution and/or civil penalties of up to $10,000 per violation and injunctive relief.

 9. No Restriction on Further Action by PDA. This Order shall not be construed as limiting PDA's authority to establish additional quarantine or testing requirements or take any actions otherwise permitted under applicable statute or regulation.

 10. Contact information. Questions regarding this Interstate and International Quarantine Order is to the Commonwealth of Pennsylvania, Department of Agriculture, Bureau of Animal Health, 2301 North Cameron Street, Harrisburg, PA 17110 or by telephone at 717-772-2852, or email at RA-ahds@pa.gov.

RUSSELL C. REDDING, Secretary

[Pa.B. Doc. No. 20-152. Filed for public inspection January 31, 2020, 9:00 a.m.]

This material has been drawn directly from the official Pennsylvania Bulletin full text database. Due to the limitations of HTML or differences in display capabilities of different browsers, this version may differ slightly from the official printed version.



2023

TUESDAY, MAY 30, 2023 

Texas Chronic Wasting Disease Detected in a Free-Range Deer in Bexar County 506 Cases and Mounting 

A total of 505 cervids (including white-tailed deer, mule deer and elk) have tested positive for CWD in Texas. Free-ranging deer have accounted for 101 of those cases while 404 are associated with a breeding facility or breeder release site...



A third issue is the accuracy of mortality reporting. Department records indicate that for each of the last five years an average of 26 deer breeders have reported a shared total of 159 escapes. Department records for the same time period indicate an average of 31 breeding facilities reported a shared total of 825 missing deer (deer that department records indicate should be present in the facility, but cannot be located or verified).


TUESDAY, MAY 30, 2023 

Wisconsin Sauk County Deer Farm Confirmed with CWD


2022

Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD

Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha

aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bUniversité Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France; cDepartment of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada

Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.

Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.

Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650 brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.

Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.

Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.

Funded by: We are grateful for financial support from the Natural Sciences and Engineering Research Council of Canada, the National Institutes of Health, Genome Canada, and the Alberta Prion Research Institute. SG is supported by the Canada Research Chairs program.

Acknowledgement: We thank Dr. Trent Bollinger, WCVM, University of Saskatchewan, Saskatoon, Canada, for providing brain tissue from the WTD-116AG isolate, Dr. Stéphane Haïk, ICM, Paris, France, for providing brain tissue from vCJD and sCJD cases, and Dr. Umberto Agrimi, Istituto Superiore di Sanità, Italy, for the bank vole model. We thank animal facility staff for animal care, Dr. Stephanie Anderson for veterinary oversight, and Yo-Ching Cheng for preparing recombinant PrP substrates. Thank you to Dr. Stephanie Booth and Jennifer Myskiw, Public Health Agency of Canada, Canada.


P35

ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.


UPDATE CWD ZOONOSIS AND THE WISCONSIN STRAIN 

SUNDAY, APRIL 9, 2023

Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD

SEE A FEW HIGHLIGHTS;

''Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model.''

''Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission.'' ''These findings have strong implications for public health and CWD management.''

''We demonstrate that this transgenic line was susceptible to infection with CWD prions and displayed a distinct leading clinical sign, an atypical PrPSc signature and unusual fecal shedding of infectious prions.''

''Importantly, these prions generated by the human PrP transgenic mice were transmissible upon passage.''

Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for ''infection. ''

''Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.''

''Indeed, such heterogeneity and distinct seeding activities and infectivity of abnormal PrP fragments was observed in VPSPr cases [20, 43].''

''This implies a high risk of exposure to this strain, e.g., through consumption or handling of infected carcasses, in contrast to rarer CWD strains, and therefore, an actual risk for human health.''

''Fecal shedding of infectious prions, if it occurs in humans, is particularly concerning because of potential human-to-human transmission and adaptation of hCWD.''

Overall, our findings suggest that CWD surveillance in humans should encompass a wider spectrum of tissues/organs tested and include new criteria in the diagnosis of potential patients.

***> PLEASE NOTE;

''Our results indicate that if CWD crosses the species-barrier to humans, it is unlikely to resemble the most common forms of human prion diseases with respect to clinical signs, tissue tropism and PrPSc signature. For instance, PrPSc in variable protease-sensitive prionopathy (VPSPr), a sporadic form of human prion disease, and in the genetic form Gerstmann-Sträussler-Scheinker syndrome (GSS) is defned by an atypical PK-resistant PrPSc fragment that is non-glycosylated and truncated at both C- and N-termini, with a molecular weight between 6 and 8 kDa [24, 44–46]. These biochemical features are unique and distinctive from PrPSc (PrP27-30) found in most other human or animal prion disease. The atypical PrPSc signature detected in brain homogenate of tg650 mice #321 (1st passage) and #3063 (2nd passage), and the 7–8 kDa fragment (Figs. 2, 4) are very similar to that of GSS, both in terms of migration profle and the N-terminal cleavage site.''

snip...

''CWD in humans might remain subclinical but with PrPSc deposits in the brain with an unusual morphology that does not resemble the patterns usually seen in different prion diseases (e.g., mouse #328; Fig. 3), clinical with untraceable abnormal PrP (e.g., mouse #327) but still transmissible and uncovered upon subsequent passage (e.g., mouse #3063; Fig. 4), or prions have other reservoirs than the usual ones, hence the presence of infectivity in feces (e.g., mouse #327) suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable. Here, humanized mice inoculated with CWD deer isolates had an atypical onset of the disease with myoclonus (93.75%), before presenting typical clinical signs, generating prions that presented with either atypical biochemical signature (#321 and #3063), shed in feces (#327), or were undetectable by the classical detection methods. The fact that we could not establish a strong correlation between disease manifestation in tg650 mice inoculated with Wisc-1- or 116AG-CWD and the presence of abnormal PrP (Western blot, IHC or RTQuIC) might be explained by the presence of heterogeneous prions in the brains of infected mice with diferent seeding properties in vitro. Indeed, such heterogeneity and distinct seeding activities and infectivity of abnormal PrP fragments was observed in VPSPr cases [20, 43].''

VPSPr, GSS, and CWD zoonosis, concerns there from, where did i hear this concern before?

1. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.




Heterozygosity for cervid S138N polymorphism results in subclinical CWD in gene-targeted mice and progressive inhibition of prion conversion

HIGHLIGHT

However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding.

Infected animals accumulate prions in lymphoreticular and other peripheral tissues, e.g., skeletal muscle, and shed infectious prions in saliva, urine and feces, contributing to direct and environmental transmission and rapidly increasing geographic distribution of CWD (912). 

However, prion-seeding activity was detectable in the brain, spleen, and feces, indicating subclinical infection and potential for contagiousness.

Heterozygosity for cervid S138N polymorphism results in subclinical CWD in gene-targeted mice and progressive inhibition of prion conversion

Maria I. Arifin https://orcid.org/0000-0003-2042-3492, Lech Kaczmarczyk https://orcid.org/0000-0003-2747-3134, Doris Zeng https://orcid.org/0009-0002-2512-6227, +7, and Sabine Gilch https://orcid.org/0000-0001-5923-3464 sgilch@ucalgary.caAuthors Info & Affiliations Edited by Reed Wickner, NIH, Bethesda, MD; 

received December 12, 2022; accepted March 6, 2023

April 4, 2023

120 (15) e2221060120


Significance

Amino acid substitutions within the cervid prion protein (PrP) can decrease susceptibility to chronic wasting disease, generally with more prominent effects in homozygous animals. Using novel gene-targeted mouse models expressing S138N reindeer/caribou PrP, we demonstrate subclinical infection with prion seeding activity in spleen and fecal prion shedding in heterozygous 138SN and homozygous 138NN mice. A lower percentage of heterozygous 138SN-PrP than homozygous 138NN-PrP expressing mice harbored seeding-efficient prions in tissues. This is caused by dominant-negative interference of the PrP variants occurring only if they are coexpressed. Our findings are relevant to inform conservation efforts for caribou, an endangered species in North America. Furthermore, our study provides new mechanistic insights into genetic resistance and dominant-negative interference of conversion-competent PrP variants.

Abstract

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.

snip...

To conclude, our study demonstrates that CWD-infected animals harboring S138N PrP might be “silent spreaders” of CWD prions and highlights the importance of lymphatic tissues in the detection of CWD, particularly in caribou, even in the absence of clinical manifestation. It is important to keep in mind that even protective genotypes may be permissive to certain minor or newly emerging CWD strains. Our results provide new mechanistic insights into dominant-negative inhibition of prion conversion, the tissue specificity of this effect, and suggests that PrPC primary structure is a determinant for tissue-specific prion replication.


A CAPTIVE QUARANTEENED CWD HERD IS A TIME BOMB WAITING TO GO OFF!

CHRONIC WASTING DISEASE CASESCWD STATUS OF CAPTIVE HERDS


Heterozygosity for cervid S138N polymorphism results in subclinical CWD in gene-targeted mice and progressive inhibition of prion conversion

HIGHLIGHT

However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding.

Infected animals accumulate prions in lymphoreticular and other peripheral tissues, e.g., skeletal muscle, and shed infectious prions in saliva, urine and feces, contributing to direct and environmental transmission and rapidly increasing geographic distribution of CWD (912). 

However, prion-seeding activity was detectable in the brain, spleen, and feces, indicating subclinical infection and potential for contagiousness.

Heterozygosity for cervid S138N polymorphism results in subclinical CWD in gene-targeted mice and progressive inhibition of prion conversion

Maria I. Arifin https://orcid.org/0000-0003-2042-3492, Lech Kaczmarczyk https://orcid.org/0000-0003-2747-3134, Doris Zeng https://orcid.org/0009-0002-2512-6227, +7, and Sabine Gilch https://orcid.org/0000-0001-5923-3464 sgilch@ucalgary.caAuthors Info & Affiliations Edited by Reed Wickner, NIH, Bethesda, MD; 

received December 12, 2022; accepted March 6, 2023

April 4, 2023

120 (15) e2221060120


Significance

Amino acid substitutions within the cervid prion protein (PrP) can decrease susceptibility to chronic wasting disease, generally with more prominent effects in homozygous animals. Using novel gene-targeted mouse models expressing S138N reindeer/caribou PrP, we demonstrate subclinical infection with prion seeding activity in spleen and fecal prion shedding in heterozygous 138SN and homozygous 138NN mice. A lower percentage of heterozygous 138SN-PrP than homozygous 138NN-PrP expressing mice harbored seeding-efficient prions in tissues. This is caused by dominant-negative interference of the PrP variants occurring only if they are coexpressed. Our findings are relevant to inform conservation efforts for caribou, an endangered species in North America. Furthermore, our study provides new mechanistic insights into genetic resistance and dominant-negative interference of conversion-competent PrP variants.

Abstract

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.

snip...

To conclude, our study demonstrates that CWD-infected animals harboring S138N PrP might be “silent spreaders” of CWD prions and highlights the importance of lymphatic tissues in the detection of CWD, particularly in caribou, even in the absence of clinical manifestation. It is important to keep in mind that even protective genotypes may be permissive to certain minor or newly emerging CWD strains. Our results provide new mechanistic insights into dominant-negative inhibition of prion conversion, the tissue specificity of this effect, and suggests that PrPC primary structure is a determinant for tissue-specific prion replication.


Published: 22 August 2022

Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD

Samia Hannaoui, Irina Zemlyankina, Sheng Chun Chang, Maria Immaculata Arifin, Vincent Béringue, Debbie McKenzie, Hermann M. Schatzl & Sabine Gilch 

Acta Neuropathologica volume 144, pages767–784 (2022)

Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases.

In contrast, in cervids affected with CWD, infectivity has been found in the lymphatic system, salivary gland, intestinal tract, muscles, antler velvet, blood, urine, saliva, and feces [4], which have been demonstrated to be transmissible [57]. 

These data demonstrate that humanized tg650 mice inoculated with CWD prions shed prion infectivity in feces able to generate transmissible PrPSc in bank voles distinct from those generated by inoculation of the Wisc-1 deer isolate directly to bank voles.

Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.

The presence of infectious prions shed in feces is one argument in favor of the existence of de novo generated PrPSc in these mice.

CWD in humans might remain subclinical but with PrPSc deposits in the brain with an unusual morphology that does not resemble the patterns usually seen in different prion diseases (e.g., mouse #328; Fig. 3), clinical with untraceable abnormal PrP (e.g., mouse #327) but still transmissible and uncovered upon subsequent passage (e.g., mouse #3063; Fig. 4), or prions have other reservoirs than the usual ones, hence the presence of infectivity in feces (e.g., mouse #327) suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable. Here, humanized mice inoculated with CWD deer isolates had an atypical onset of the disease with myoclonus (93.75%), before presenting typical clinical signs, generating prions that presented with either atypical biochemical signature (#321 and #3063), shed in feces (#327), or were undetectable by the classical detection methods.

The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic. In contrast to bank voles inoculated with fecal homogenates from mouse #327, so far, we could not detect a PK-resistant PrPSc fragment in the brain homogenates of fecal homogenate-inoculated tg650 mice. The presence of PrPres in these mice will allow us to determine if the molecular signature of hCWD prions from the brain (mouse #321 and #3063) vs feces are the same. Previously, Beringue et al. found that extraneural prions, compared to neural prions, helped more to overcome the species barrier to foreign prions, in addition, different strain types emerged from such serial transmission [11]. Our data also suggest that prions found in the periphery may hold higher zoonotic potential than prions found in neural tissues. In fact, upon second passage, 50% of the tg650 mice inoculated with fecal homogenates from mouse #327 had succumbed with terminal disease compared to only 20% of brain/spinal cord homogenates inoculated-tg650 mice suggesting that hCWD prions found in feces transmit disease more efficiently. Our results also suggest that epidemiological studies [25] may have missed subclinical and atypical infections that are/might be transmissible, undetected by the gold standard tests, i.e., Western blot, ELISA, and IHC.

Overall, our findings suggest that CWD surveillance in humans should encompass a wider spectrum of tissues/organs tested and include new criteria in the diagnosis of potential patients.

Saturday, April 9, 2022 

EFSA EU Request for a scientific opinion on the monitoring of Chronic Wasting Disease (CWD) EFSA-Q-2022-00114 M-2022-00040 Singeltary Submission
 
Chronic wasting disease detection in environmental and biological samples from a taxidermy site
Paulina Sotoa,b, J. Hunter Reedc, Mitch Lockwoodc, and Rodrigo Moralesa,b
aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile; cTexas Parks and Wildlife Department, Texas, USA
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids (e.g., mule deer, white-tailed deer, elk, reindeer, and moose). Nowadays, CWD is widely distributed in North America. It is suggested that CWD spreads due to direct animal contact or through exposure to contaminated environments previously inhabited by infected animals. CWD may also be spread through the movement of infected animals and carcasses. Taxidermy practices involve processing deer tissues (or whole animal carcasses). In many cases, the CWD status of processed animals is unknown. This can generate risks of disease spread and transmission. Taxidermy practices include different steps involving physical, chemical, and biological procedures. Without proper tissue handling or disposal practices, taxidermist facilities may become a focus of prion infectivity.
Aims: In this study, we evaluated the presence of infectious prions in a taxidermy facility believed to be exposed to CWD. Detection was performed using the Protein Misfolding Cyclic Amplification (PMCA) technique in biological and inert environmental samples.
Methods: We collected biological and environmental samples (plants, soils, insects, excreta, and others) from a taxidermy facility, and we tested these samples using the PMCA technique. In addition, we swabbed different surfaces possibly exposed to CWD-infected animals. For the PMCA reaction, we directly used a swab piece or 10 µL of 20% w/v homogenized samples.
Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster.
Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in i) soils that were in contact with the heads of dead animals, ii) insects involved in the cleaning of skulls, and iii) an empty dumpster where animal carcasses were previously placed. This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD.
Funded by: USDA
Grant number: AP20VSSPRS00C143
PRION 2022 ABSTRACTS, AND A BIG THANK YOU TO On behalf of the Prion2020/2022 Congress Organizing Committee and the NeuroPrion Association, we heartily invite you to join us for the International Conference Prion2020/2022 from 13.-16. September 2022 in Göttingen.

Prion 2022 Conference abstracts: pushing the boundaries


Large-scale PMCA screening of retropharyngeal lymph nodes and in white-tailed deer and comparisons with ELISA and IHC: the Texas CWD study

Rebeca Benaventea, Paulina Sotoa, Mitch Lockwoodb, and Rodrigo Moralesa aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bTexas Park and Wildlife Department, Texas, USA

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that affects various species of cervids, and both free-ranging and captive animals. Until now, CWD has been detected in 3 continents: North America, Europe, and Asia. CWD prevalence in some states may reach 30% of total animals. In Texas, the first case of CWD was reported in a free-range mule deer in Hudspeth and now it has been detected in additional 14 counties. Currently, the gold standard techniques used for CWD screening and detection are ELISA and immunohistochemistry (IHC) of obex and retropharyngeal lymph nodes (RPLN). Unfortunately, these methods are known for having a low diagnostic sensitivity. Hence, many CWD-infected animals at pre-symptomatic stages may be misdiagnosed. Two promising in vitro prion amplification techniques, including the real-time quaking-induced conversion (RT-QuIC) and the protein misfolding cyclic amplification (PMCA) have been used to diagnose CWD and other prion diseases in several tissues and bodily fluids. Considering the low cost and speed of RT-QuIC, two recent studies have communicated the potential of this technique to diagnose CWD prions in RPLN samples. Unfortunately, the data presented in these articles suggest that identification of CWD positive samples is comparable to the currently used ELISA and IHC protocols. Similar studies using the PMCA technique have not been reported.

Aims: Compare the CWD diagnostic potential of PMCA with ELISA and IHC in RPLN samples from captive and free-range white-tailed deer. Material and Methods: In this study we analyzed 1,003 RPLN from both free-ranging and captive white-tailed deer collected in Texas. Samples were interrogated with the PMCA technique for their content of CWD prions. PMCA data was compared with the results obtained through currently approved techniques.

Results: Our results show a 15-fold increase in CWD detection in free-range deer compared with ELISA. Our results unveil the presence of prion infected animals in Texas counties with no previous history of CWD. In the case of captive deer, we detected a 16% more CWD positive animals when compared with IHC. Interestingly, some of these positive samples displayed differences in their electroforetic mobilities, suggesting the presence of different prion strains within the State of Texas.

Conclusions: PMCA sensitivity is significantly higher than the current gold standards techniques IHC and ELISA and would be a good tool for rapid CWD screening.

Funded by: USDA

Grant number: AP20VSSPRS00C143

PRION 2022 ABSTRACTS, AND A BIG THANK YOU TO On behalf of the Prion2020/2022 Congress Organizing Committee and the NeuroPrion Association, we heartily invite you to join us for the International Conference Prion2020/2022 from 13.-16. September 2022 in Göttingen.

Prion 2022 Conference abstracts: pushing the boundaries


Shedding of Chronic Wasting Disease Prions in Multiple Excreta Throughout Disease Course in White-tailed Deer

Nathaniel D. Denkersa, Erin E. McNultya, Caitlyn N. Krafta, Amy V. Nallsa, Joseph A. Westricha, Wilfred Goldmannb, Candace K. Mathiasona, and Edward A. Hoovera

aPrion Research Center, College of Veterinary Medicine and Biological Sciences, Department of Microbiology, Immunology, and Pathology; Colorado State University, Fort Collins, CO, USA; bDivision of Infection and Immunity, The Roslin Institute and the Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, UK

Aims: Chronic wasting disease (CWD) now infects cervids in South Korea, North America, and Scandinavia. CWD is unique in its efficient transmission and shedding of prions in body fluids throughout long course infections. Questions remain as to the magnitude of shedding and the route of prion acquisition. As CWD continues to expand, the need to better understand these facets of disease becomes more pertinent. The purpose of the studies described was to define the longitudinal shedding profile of CWD prions in urine, saliva, and feces throughout the course of infection in white-tailed deer.

Material and Methods: Twelve (12) white-tailed deer were inoculated with either 1 mg or 300ng of CWD. Urine, saliva, and feces were collected every 3-month post-inoculation (MPI) throughout the study duration. Cohorts were established based on PNRP genotype: codon 96 GG (n = 6) and alternate codons 96 GS (n = 5) & 103NT (n = 1). Urine and saliva were analyzed using iron-oxide magnetic extraction (IOME) and real-time quaking induced conversion (RT-QuIC)(IQ). Feces were subjected to IOME, followed by 4 rounds protein misfolding cyclic amplification (PMCA) with products analyzed by RT-QuIC (IPQ). To determine whether IPQ may be superior to IQ, a subset of urine and saliva were also tested by IPQ. Results were compared with clinical disease status.

Results: Within the 96 GG cohort, positive seeding activity was detected in feces from all deer (100%), in saliva from 5 of 6 (83%), and in urine from 4 of 6 (66%). Shedding in all excreta occurred at, or just after, the first positive tonsil biopsy result. In the 96 GS/103NT cohort, positive seeding activity could be detected in feces from 3 of 6 (50%) deer, saliva in 2 of 6 (33%), and urine in 1 of 6 (16%). Shedding in excreta was detected >5 months after the first tonsil positive result. Four of six 96 GG deer developed clinical signs of CWD, whereas only 2 of the 96 GS/103NT did. Shedding was more frequently detected in deer with clinical disease. The IPQ protocol did not significantly improve detection in saliva or urine samples, however, it significantly augmented detection in feces by eliminating non-specific background commonly experienced with IQ. Negative control samples remained negative in samples tested.

Conclusions: These studies demonstrate: (a) CWD prion excretion occurs throughout infection; (2) PRNP genotype (GG≫GS/NT) influences the excreta shedding; and (3) detection sensitivity in excreta can vary with different RT-QuIC protocols. These results provide a more complete perspective of prion shedding in deer during the course of CWD infection.

Funded by: National Institutes of Health (NIH)

Grant number: RO1-NS061902-09 R to EAH, PO1-AI077774 to EAH, and R01-AI112956-06 to CKM

Acknowledgement: We abundantly thank Sallie Dahmes at WASCO and David Osborn and Gino D’Angelo at the University of Georgia Warnell School of Forestry and Natural Resources for their long-standing support of this work through provision of the hand-raised, CWD-free, white-tailed deer used in these studies

Carrot plants as potential vectors for CWD transmission

Paulina Sotoa,b, Francisca Bravo-Risia,b, Claudio Sotoa, and Rodrigo Moralesa,b

aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile

Prion diseases are infectious neurodegenerative disorders afflicting humans and other mammals. These diseases are generated by the misfolding of the cellular prion protein into a disease-causing isoform. Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids (captive and free-range). CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environments. Many studies have shown that infectious prions can enter the environment through saliva, feces, or urine from infected animals and decaying carcasses. However, we do not fully understand the specific contribution of each component to disease transmission events. Plants are logical environmental components to be evaluated since they grow in environments contaminated with CWD prions and are relevant for animal and human nutrition.

Aims: The main objective of this study is to study whether prions are transported to the roots and leaves of carrots, an edible plant commonly used in the human diet and as deer bait.

Methods: We have grown carrot plants in CWD-infected soils. After 90 days, we harvested the carrots and separated them from the leaves. The experiment was controlled by growing plants in soil samples treated with brain extracts from healthy animals. These materials were interrogated for their prion seeding activity using the Protein Misfolding Cyclic Amplification (PMCA) technique. Infectivity was evaluated in mouse bioassays (intracerebral injections in Tg1536 mice). The animals were sacrificed when they showed established signs of prion disease. Animals not displaying clinical signs were sacrificed at 600 days post-inoculation.

Results: The PMCA analysis demonstrated CWD seeding activity in soils contaminated with CWD prions, as well as in carrot plants (leaves and roots) grown on them. Bioassays demonstrated that both leaves and roots contained CWD prions in sufficient quantities to induce disease (92% attack rate). As expected, animals treated with prion-infected soils developed prion disease at shorter incubation periods (and complete attack rates) compared to plant components. Animals treated with soil and plant components exposed with CWD-free brain extracts did not display prion-associated clinical signs or evidence of sub-clinical prion infection.

Conclusions: We show that edible plant components can absorb prions from CWD contaminated soils and transport them to their aerial parts. Our results indicate that plants could participate as vectors of CWD transmission. Importantly, plants designated for human consumption represent a risk of introducing CWD prions into the human food chain.

Funded by: NIH

Grant number: R01AI132695


October 6th-12th, 126th Meeting 2022 Resolutions 

RESOLUTION NUMBER: 30 Approved

SOURCE: COMMITTEE ON WILDLIFE

SUBJECT MATTER: Chronic Wasting Disease Carcass Disposal Dumpster Management and Biosecurity

BACKGROUND INFORMATION:

State and tribal wildlife agencies may identify collection points (dumpsters) within an identified chronic wasting disease (CWD) management zone for the disposal of hunter-harvested cervid carcasses to remove potentially infected carcasses off the landscape for disposal by an approved method (Gillin & Mawdsley, 2018, chap.14). However, depending on their placement and maintenance these dumpsters could potentially increase the risk of CWD transmission.

In several different states, photographic evidence has shown dumpsters in state identified CWD management zones overflowing with deer carcasses and limbs scattered on the land nearby. This could provide an opportunity for scavengers to potentially move infected carcass material to non-infected zones or increase contamination of the ground material around the dumpster’s location.

Federal guidance does not explicitly address uniform standards for collection locations for carcasses of free-ranging cervids; however, the United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services Program Standards on CWD outlines procedures for carcass disposal, equipment sanitation, and decontamination of premises for captive cervid facilities.

RESOLUTION:

The United States Animal Health Association urges the Association of Fish and Wildlife Agencies (AFWA), Wildlife Health Committee to further refine the AFWA Technical Report on Best Management Practices for Prevention, Surveillance, and Management of Chronic Wasting Disease; Chapter 14, Carcass Disposal to address the placement and management of chronic wasting disease carcass disposal dumpsters or other carcass collection containers.

Reference:

1. Gillin, Colin M., and Mawdsley, Jonathan R. (eds.). 2018. AFWA Technical Report on Best Management Practices for Surveillance, Management and Control of Chronic Wasting Disease. Association of Fish and Wildlife Agencies, Washington, D. C. 111 pp. 


ENVIRONMENT FACTORS FOR THE TRANSMISSION OF CWD TSE PRP

Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Environment International

Available online 13 June 2022, 107347

Environment International

Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Qi Yuana Gag e Rowdenb Tiffany M.Wolfc Marc D.Schwabenlanderb Peter A.LarsenbShannon L.Bartelt-Huntd Jason C.Bartza

a Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178, United States of America

b Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, United States of America

c Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, United States of America

d Department of Civil and Environmental Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, 68182, United States of America

Received 26 April 2022, Revised 8 June 2022, Accepted 9 June 2022, Available online 13 June 2022.


Get rights and content

Under a Creative Commons license Open access

Highlights • An innovative method for prion recovery from swabs was developed.

• Recovery of prions decreased as swab-drying time was increased.

• Recovery of CWD prions from stainless steel and glass was approximately 30%.

• RT-QuIC enhanced CWD prion detection by 4 orders of magnitude.

• Surface-recovered CWD prion was sufficient for efficient RT-QuIC detection. 

Abstract

Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.

snip...

5. Conclusions

Chronic wasting disease is spreading in North America and it is hypothesized that in CWD-endemic areas environmental persistence of CWD prions can exacerbate disease transmission. The development of a sensitive CWD prion detection method from environmentally relevant surfaces is significant for monitoring, risk assessment, and control of CWD. In this study, we developed a novel swab-extraction procedure for field deployable sampling of CWD prions from stainless steel, glass, and wood. We found that extended swab-drying was unfavorable for extraction, indicating that hydrated storage of swabs after sampling aided in prion recovery. Recoverable CWD prions from stainless steel and glass was approximately 30%, which was greater than from wood. RT-QuIC analysis of the swab extracts resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude compared to conventional immunodetection techniques. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this developed method was similar to the original CWD prion load without surface contact. This method of prion sampling and recovery, in combination with ultrasensitive detection methods, allows for prion detection from contaminated environmental surfaces.


Research Paper

Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer

Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzie ORCID Icon show less

Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022

Download citation


ABSTRACT

Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.

KEYWORDS: Prion chronic wasting diseasesex differences species differences disease prevalence cervid protein expression glands


Paper

Rapid recontamination of a farm building occurs after attempted prion removal

Kevin Christopher Gough BSc (Hons), PhD Claire Alison Baker BSc (Hons) Steve Hawkins MIBiol Hugh Simmons BVSc, MRCVS, MBA, MA Timm Konold DrMedVet, PhD, MRCVS … See all authors 

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

 The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.


***>This is very likely to have parallels with control efforts for CWD in cervids.


***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3


Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

snip...

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 


***> 172. Establishment of PrPCWD extraction and detection methods in the farm soil

Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn

Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea

Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


MONDAY, APRIL 19, 2021

Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat® process, AT) ???


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread


5 or 6 years quarantine is NOT LONG ENOUGH FOR CWD TSE PRION !!!

QUARANTINE NEEDS TO BE 21 YEARS FOR CWD TSE PRION !

FRIDAY, APRIL 30, 2021 

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss

and so it seems...

Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years

Published: May 9, 2007

snip...

Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.

snip...


Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document


Published: 06 September 2021

***> Chronic wasting disease: a cervid prion infection looming to spillover

Alicia Otero, Camilo Duque Velásquez, Judd Aiken & Debbie McKenzie 

Veterinary Research volume 52, Article number: 115 (2021) 


PRION CONFERENCE 2022 ABSTRACTS CWD TSE PrP ZOONOSIS 

Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.

Samia Hannaouia, Ginny Chenga, Wiebke Wemheuerb, Walter J. Schulz-Schaefferb, Sabine Gilcha, and Hermann M. Schätzla aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine & Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bInstitute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany

Aims: Chronic wasting disease (CWD) is a prion disease of cervids. Its rapid geographic expansion, shedding of infectivity and persistence in the environment for many years are of concern for humans. Here, we provide the first evidence by transmission experiments to different transgenic mouse models and bank voles that Cynomolgus macaques inoculated via different routes with CWD-positive cervid tissues harbor infectious prions that elicit clinical disease in rodents.

Material and Methods: We used tissue materials from macaques inoculated with CWD to inoculate transgenic mice overexpressing cervid PrPCfollowed by transmission into bank voles. We used RT-QuIC, immunoblot and PET blot analysis to assess brains, spinal cords, and tissues of the gastrointestinal tract (GIT) for the presence of prions.

Results: Our results show that of the macaque materials that induced clinical disease in transgenic mice,73% were from the CNS (46% spinal cord and 27% brain), and 27% were from the spleen, although attack rates were low around 20%. Clinical mice did not display PK-resistant PrPSc(PrPres) in immunoblot, but showed low-levels of prion seeding activity. Transmission into bank voles from clinical transgenic mice led to a 100% attack rate with typical PrPressignature in immunoblot, which was different from that of voles inoculated directly with CWD or scrapie prions. High-level prion seeding activity in brain and spinal cord and PrPresdeposition in the brain were present. Remarkably, we also found prion seeding activity in GIT tissues of inoculated voles. Second passage in bank voles led to a 100% attack rate in voles inoculated with brain, spinal cord and small intestine material from first round animals, with PrPresin immunoblot, prion seeding activity, and PrPresdeposition in the brain. Shortened survival times indicate adaptation in the new host. This also shows that prions detected in GIT tissues are infectious and transmissible. Transmission of brain material from sick voles back to cervidized mice revealed transmission in these mice with a 100% attack rate, and interestingly, with different biochemical signature and distribution in the brain.

Conclusions: Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including oral one. The disease manifested as atypical in macaques and transgenic mice, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.

Funded by: The National Institutes of Health, USA, and the Alberta Prion Research Institute/Alberta Innovates Canada. Grant number: 1R01NS121016-01; 201,600,023

Acknowledgement: We thank Umberto Agrimi, Istituto Superiore di Sanità, Rome, Italy, and Michael Beekes, Robert-Koch Institute Berlin, Germany, for providing the bank vole model. We thank the University of Calgary animal facility staff and Dr. Stephanie Anderson for animal care.

Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD

Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha

aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bUniversité Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France; cDepartment of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada

Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.

Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.

Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650 brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.

Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.

Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.

Funded by: We are grateful for financial support from the Natural Sciences and Engineering Research Council of Canada, the National Institutes of Health, Genome Canada, and the Alberta Prion Research Institute. SG is supported by the Canada Research Chairs program.

Acknowledgement: We thank Dr. Trent Bollinger, WCVM, University of Saskatchewan, Saskatoon, Canada, for providing brain tissue from the WTD-116AG isolate, Dr. Stéphane Haïk, ICM, Paris, France, for providing brain tissue from vCJD and sCJD cases, and Dr. Umberto Agrimi, Istituto Superiore di Sanità, Italy, for the bank vole model. We thank animal facility staff for animal care, Dr. Stephanie Anderson for veterinary oversight, and Yo-Ching Cheng for preparing recombinant PrP substrates. Thank you to Dr. Stephanie Booth and Jennifer Myskiw, Public Health Agency of Canada, Canada.

The chronic wasting disease agent from white-tailed deer is infectious to humanized mice after passage through raccoons

Eric Cassmanna, Xu Qib, Qingzhong Kongb, and Justin Greenleea

aNational Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA bDepartments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA

Aims: Evaluate the zoonotic potential of the raccoon passaged chronic wasting disease (CWD) agent in humanized transgenic mice in comparison with the North American CWD agent from the original white-tailed deer host.

Material and Methods: Pooled brain material (GG96) from a CWD positive herd was used to oronasally inoculate two white-tailed deer with wild-type prion protein genotype and intracranially inoculate a raccoon. Brain homogenates (10% w/v) from the raccoon and the two white-tailed deer were used to intracranially inoculate separate groups of transgenic mice that express human prion protein with methionine (M) at codon 129 (Tg40h). Brains and spleens were collected from mice at experimental endpoints of clinical disease or approximately 700 days post-inoculation. Tissues were divided and homogenized or fixed in 10% buffered neutral formalin. Immunohistochemistry, enzyme immunoassay, and western blot were used to detect misfolded prion protein (PrPSc) in tissue.

Results: Humanized transgenic mice inoculated with the raccoon passaged CWD agent from white-tailed deer exhibited a 100% (12/12) attack rate with an average incubation period of 605 days. PrPScwas detected in brain tissue by enzyme immunoassay with an average optical density of 3.6/4.0 for positive brains. PrPScalso was detected in brain tissue by western blot and immunohistochemistry. No PrPScwas detected in the spleens of mice inoculated with the raccoon passaged CWD agent. Humanized mice inoculated with the CWD agent from white-tailed deer did not have detectable PrPScusing conventional immunoassay techniques.

Conclusions: The host range of the CWD agent from white-tailed deer was expanded in our experimental model after one passage through raccoons.

Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgement: We thank Quazetta Brown, Lexi Frese, Rylie Frese, Kevin Hassall, Leisa Mandell, and Trudy Tatum for providing excellent technical support to this project.

Stable and highly zoonotic cervid prion strain is possible

Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, and Qingzhong Kong Department of Pathology, Case Western Reserve University, Cleveland, USA

Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in some areas. Multiple in vitro conversion experiments and in vivo animal studies suggest that the CWD-to-human transmission barrier is not unbreakable. A major public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible.

Material and Methods: We inoculated a few sCJD brain samples into cervidized transgenic mice, which were intended as negative controls for bioassays of brain tissues from sCJD cases who had hunted or consumed vension from CWD-endemic states. Some of these mice became infected and their brain tissues were further examined by serial passages in humanized or cervidized mice.

Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a ‘cervidized’ CJD strain that we termed CJDElkPrP. We observed 100% transmission of CJDElkPrPin transgenic mice expressing human PrP (Tg40h). We passaged CJDElkPrPtwo more times in the Tg12 mice. We found that such second and third passage CJDElkPrPprions also led to 100% infection in the Tg40h mice. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice, despite that natural elk CWD isolates and CJDElkPrPshare the same elk PrP sequence.

Conclusions: Our data demonstrate that highly zoonotic cervid prion strains are not only possible but also can be stably maintained in cervids and that CWD zoonosis is prion strain-dependent.

Funded by: NIH

Grant number: R01NS052319, R01NS088604, R01NS109532

Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O’Rourke for providing the sCJD samples and the CWD samples, respectively.

Adaptation of chronic wasting disease (CWD) prion strains in hosts with different PRNP genotypes

Camilo Duque Velasqueza,c, Elizabeth Triscotta,c, Chiye Kima,c, Diana Morenoa,c, Judd Aikenb,c, and Debbie McKenziea,c

aDepartment of Biological Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; bDepartment of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; cCentre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada

Aims: The contagious nature of CWD epizootics and the PrPCamino acid variation of cervids (and susceptible sympatric species) guarantee the expansion of prion conformational diversity and selective landscapes where new strains can arise. CWD strains can have novel transmission properties including altered host range that may increase zoonotic risk as circulating strains diversify and evolve. We are characterizing the host adaptability of characterized CWD strains as well as CWD isolates from different cervid species in various enzootic regions.

Material and Methods: Characterized CWD strains as well as a number of isolates from hunter-harvested deer were bioassayed in our rodent panel (transgenic mice expressing cervid alleles G96, S96 and H95-PrPC, elk PrPC, bovine PrPC, and both hamsters and non-transgenic laboratory mice). Strain characteristics were compared using computer based scoring of brain pathology (e.g. PrPCWDbrain distribution), western blot and protein misfolding cyclic amplification (PMCA).

Results: Transmission of various isolates resulted in the selection of strain mixtures in hosts expressing similar PrPC, particularly for polymorphic white-tailed deer and for Norwegian reindeer. As of the second passage, transmission of P153 moose prions from Norway has not resulted in emergence of strains with properties similar to any North American CWD strains in our taxonomic collection (Wisc-1, CWD2, H95+and 116AG).

Conclusions: Our data indicates polymorphic white-tailed deer can favor infection with more than one strain. Similar to transmission studies of Colorado CWD isolates from cervids expressing a single PrPCprimary structure, the isolate from Norway reindeer (V214) represents a strain mixture, suggesting intrinsic strain diversity in the Nordfjella epizootic. The diversity of CWD strains with distinct transmission characteristics represents a threat to wildlife, sympatric domestic animals and public health.

Funded by: Genome Canada and Genome Alberta (Alberta Prion Research Institute and Alberta Agriculture & Forestry); NSERC Grant number: #LSARP 10205; NSERC RGPIN-2017-05539

Acknowledgement: We would like to thank Margo Pybus (Alberta Environment and Parks) Trent Bollinger (University of Saskatchewan) for providing us with tissue samples from hunter-harvested deer and Sylvie Benestad for providing moose and reindeer samples.

Application of PMCA to understand CWD prion strains, species barrier and zoonotic potential

Sandra Pritzkowa, Damian Gorskia, Frank Ramireza, Fei Wanga, Glenn C. Tellingb, Justin J. Greenleec, Sylvie L. Benestadd, and Claudio Sotoa aDepartment of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA; bDepartment of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA; cVirus and Prion Research Unit, United States Department of Agriculture, Ames, Iowa, USA; dNorwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway

Aims: Chronic wasting disease (CWD) is a prion disease affecting various species of cervids that continues to spread uncontrollably across North America and has recently been detected in Scandinavia (Norway, Sweden and Finland). The mechanisms responsible for the natural transmission of CWD are largely unknown. Furthermore, the risk of CWD transmission to other species, including humans, is also unknown and remains a dangerous enigma. In this study, we investigated the potential of CWD prions to infect several other animal species (sheep, cattle, pig, hamster, and mouse) including humans, by examining their capacity to convert the normal prion protein of distinct species in a PMCA reaction. Moreover, we also investigated whether the in vivo passage of CWD through intermediate species alters their capacity for zoonotic transmission, which may represent a major hazard to human health.

Material and Methods: For these studies, we used brain material from CWD-infected white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis), and mule deer (Odocoileus hemionus) as species native to North America. We also used CWD-infected Moose (Alces alces), reindeer (Rangifer tarandus) and red deer (Cervus elaphus) as Norwegian cervids. We also used brains from cattle, sheep and pigs experimentally infected by CWD. To study interspecies-transmission and zoonotic potential, samples were tested via PMCA for the conversion of PrPCinto PrPScusing different combinations of inoculum and host species. Based on these analyses we estimated the spillover and zoonotic potential for different CWD isolates. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at the expense of normal prion proteins from various mammals and human, respectively.

Results: Our results show that prions from some cervid species, especially those found in Northern Europe, have a higher potential to transmit disease characteristics to other animals. Conversely, CWD-infected cervids originated in North America appear to have a greater potential to generate human PrPSc. We also found that in vivo transmission of CWD to cattle, but not to sheep or pigs substantially increases the ability of these prions to convert human PrPCby PMCA.

Conclusions: Our findings support the existence of different CWD prion strains with distinct spillover and zoonotic potentials. We also conclude that transmission of CWD to other animal species may increase the risk for CWD transmission to humans. Our studies may provide a tool to predict the array of animal species that a given CWD prion could affect and may contribute to understanding the risk of CWD for human health.

Funded by: National Institute of Health Grant number: P01 AI077774

Generation of human chronic wasting disease in transgenic mice

Zerui Wanga, Kefeng Qinb, Manuel V. Camachoa, Ignazio Cali a,c, Jue Yuana, Pingping Shena, Tricia Gillilanda, Syed Zahid Ali Shaha, Maria Gerasimenkoa, Michelle Tanga, Sarada Rajamanickama, Anika Yadatia, Lawrence B. Schonbergerd, Justin Greenleee, Qingzhong Konga,c, James A. Mastriannib, and Wen-Quan Zoua,c

aDepartment of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; bDepartment of Neurology and Center for Comprehensive Care and Research on Memory Disorders, the University of Chicago Pritzker School of Medicine, Chicago, USA; cNational Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; dDivision of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA; eVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA, USA

Aims: Chronic wasting disease (CWD) results from the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC) in the brains of deer and elk. It has been spreading rapidly throughout many regions of North America, exported inadvertently to South Korea, and more recently identified in Europe. Mad cow disease has caused variant Creutzfeldt-Jakob disease (vCJD) in humans and is currently the only known zoonotic prion disease. Whether CWD is transmissible to humans remains uncertain. The aims of our study were not only to confirm whether CWD prion isolates can convert human brain PrPCinto PrPScin vitro by serial protein misfolding cyclic amplification (sPMCA) but also to determine whether the sPMCA-induced CWD-derived human PrPScis infectious.

Material and Methods: Eight CWD prion isolates from 7 elks and 1 deer were used as the seeds while normal human brain homogenates containing either PrP-129 MM (n = 2) or PrP-129 VV (n = 1) were used as the substrates for sPMCA assay. A normal elk brain tissue sample was used as a negative control seed. Two lines of humanized transgenic (Tg) mice expressing either human PrP-129VV or −129 MM polymorphism were included for transmission studies to determine the infectivity of PMCA-amplified PrPSc. Wester blotting and immunohistochemistry and hematoxylin & eosin staining were used for determining PrPScand neuropathological changes of inoculated animals.

Results: We report here the generation of the first CWD-derived infectious human PrPScusing elk CWD PrPScto initiate conversion of human PrPCfrom normal human brain homogenates with PMCA in vitro. Western blotting with a human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPScwas derived from the human brain PrPCsubstrate. Two lines of humanized transgenic mice expressing human PrPCwith either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPScpatterns and neuropathological changes in the brain.

Conclusions: Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSchas the potential to overcome the species barrier and directly convert human PrPCinto infectious PrPScthat can produce bona fide prion disease when inoculated into humanized transgenic mice.

Funded by: CJD Foundation and NIH

Mortality surveillance of persons potentially exposed to chronic wasting disease

R.A. Maddoxa, R.F. Klosb, L.R. Willb, S.N. Gibbons-Burgenerb, A. Mvilongoa, J.Y. Abramsa, B.S. Applebyc, L.B. Schonbergera, and E.D. Belaya aNational Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA; bWisconsin Department of Health Services (WDHS), Division of Public Health, Madison, USA; cNational Prion Disease Pathology Surveillance Center (NPDPSC), Case Western Reserve University, Cleveland, USA

Aims: It is unknown whether chronic wasting disease (CWD), a prion disease of cervids, can infect people, but consumption of meat from infected animals would be the most likely route of transmission. Wisconsin Department of Health Services, Division of Public Health (WDHS) personnel maintain a database consisting of information collected from hunters who reported eating, or an intention to eat, venison from CWD-positive cervids. These data, collected since 2003, allow for the evaluation of causes of mortality in individuals potentially exposed to CWD.

Material and Methods: The WDHS database contains the name, date of birth, when available, year of CWD-positive deer harvest, and city and state of residence for each potentially exposed individual. The database also includes information on how the deer was processed (self-processed or by a commercial operator) and when applicable, names of others with whom the venison was shared. Duplicate entries (i.e., those who consumed venison from CWD-positive deer in multiple hunt years) are determined by first name, last name, and date of birth. All names in the database are cross-checked with reported cases of human prion disease in Wisconsin and cases in the National Prion Disease Pathology Surveillance Center (NPDPSC) diagnostic testing database. Persons with date of birth available are also cross-checked with prion disease decedents identified through restricted-use national multiple cause-of-death data via a data use agreement with the National Center for Health Statistics (NCHS).

Results: The database currently consists of 1561 records for hunt years 2003–2017 and 87 additional records for 2018–2019. Of these, 657 records have accompanying date of birth; 15 entries were removed as duplicates leaving 642 unique individuals. Of these individuals, 278 of 426 (66%) who ate venison from a CWD-positive deer and provided processing information reported self-processing. No matches were found among any persons in the database cross-checked with WDHS human prion disease surveillance data, NPDPSC data (February 2022 update), and NCHS data through 2020.

Conclusions: Because of the linkage of person and CWD-positive animal in the WDHS database, reviewing the cause of mortality in potentially exposed persons is possible. The number of individuals cross-checked so far is likely only a small percentage of those potentially exposed to CWD in Wisconsin, and many more years of vital status tracking are needed given an expected long incubation period should transmission to humans occur. Nevertheless, the findings of this ongoing review are thus far reassuring.

Prion disease incidence, United States, 2003–2020

R.A. Maddoxa, M.K. Persona, K. Kotobellib, A. Mvilongoa, B.S. Applebyb, L.B. Schonbergera, T.A. Hammetta, J.Y. Abramsa, and E.D. Belaya aNational Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA; bNational Prion Disease Pathology Surveillance Center (NPDPSC), Case Western Reserve University, Cleveland, USA

Aims: Mortality data, in conjunction with neuropathological and genetic testing results, are used to estimate prion disease incidence in the United States.

Material and Methods: Prion disease decedents for 2003–2020 were identified from restricted-use U.S. national multiple cause-of-death data, via a data use agreement with the National Center for Health Statistics, and from the National Prion Disease Pathology Surveillance Center (NPDPSC) database. NPDPSC decedents with neuropathological or genetic test results positive for prion disease for whom no likely match was found in the NCHS multiple cause-of-death data were added as cases for incidence calculations, while those with negative neuropathology results but with cause-of-death data indicating prion disease were removed. Unmatched cases in the NPDPSC database lacking neuropathological testing but with a positive real-time quaking-induced conversion (RT-QuIC) test result were additionally assessed. Age-specific and age-adjusted average annual incidence rates were calculated from the combined data; the year 2000 as the standard population and the direct method were used for age-adjustment.

Results: A total of 7,921 decedents were identified as having prion disease during 2003–2020 for an age-adjusted average annual incidence of 1.2 per million population. The age-adjusted incidence between males and females (1.3 and 1.1 per million, respectively) differed significantly (p < 0.0001). The age-specific average annual incidence among those <55 and ≥55 years of age was 0.2 and 4.8 per million, respectively; incidence among those ≥65 was 6.1 per million. Eighteen cases were <30 years of age for an age-specific incidence of 8.0 per billion; only 6 of these very young cases were sporadic (3 sporadic CJD, 3 sporadic fatal insomnia), with the rest being familial (9), variant (2), or iatrogenic (1). The age-adjusted annual incidence for the most recent year of data, 2020, was 1.3 per million. However, assessment of RT-QuIC positive cases lacking neuropathology in the NPDPSC database suggested that approximately 20% more cases may have occurred in that year; the addition of a subset of these cases that had date of death information available (n = 44) increased the 2020 rate to 1.4 per million.

Conclusions: Mortality data supplemented with the results of neuropathological, CSF RT-QuIC, and genetic testing can be used to estimate prion disease incidence. However, the identification in the NPDPSC database of RT-QuIC-positive cases lacking date of death information suggests that this strategy may exclude a number of probable prion disease cases. Prion disease cases <30 years of age, especially those lacking a pathogenic mutation, continue to be very rare.

Shedding of Chronic Wasting Disease Prions in Multiple Excreta Throughout Disease Course in White-tailed Deer

Nathaniel D. Denkersa, Erin E. McNultya, Caitlyn N. Krafta, Amy V. Nallsa, Joseph A. Westricha, Wilfred Goldmannb, Candace K. Mathiasona, and Edward A. Hoovera

aPrion Research Center, College of Veterinary Medicine and Biological Sciences, Department of Microbiology, Immunology, and Pathology; Colorado State University, Fort Collins, CO, USA; bDivision of Infection and Immunity, The Roslin Institute and the Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, UK

Aims: Chronic wasting disease (CWD) now infects cervids in South Korea, North America, and Scandinavia. CWD is unique in its efficient transmission and shedding of prions in body fluids throughout long course infections. Questions remain as to the magnitude of shedding and the route of prion acquisition. As CWD continues to expand, the need to better understand these facets of disease becomes more pertinent. The purpose of the studies described was to define the longitudinal shedding profile of CWD prions in urine, saliva, and feces throughout the course of infection in white-tailed deer.

Material and Methods: Twelve (12) white-tailed deer were inoculated with either 1 mg or 300ng of CWD. Urine, saliva, and feces were collected every 3-month post-inoculation (MPI) throughout the study duration. Cohorts were established based on PNRP genotype: codon 96 GG (n = 6) and alternate codons 96 GS (n = 5) & 103NT (n = 1). Urine and saliva were analyzed using iron-oxide magnetic extraction (IOME) and real-time quaking induced conversion (RT-QuIC)(IQ). Feces were subjected to IOME, followed by 4 rounds protein misfolding cyclic amplification (PMCA) with products analyzed by RT-QuIC (IPQ). To determine whether IPQ may be superior to IQ, a subset of urine and saliva were also tested by IPQ. Results were compared with clinical disease status.

Results: Within the 96 GG cohort, positive seeding activity was detected in feces from all deer (100%), in saliva from 5 of 6 (83%), and in urine from 4 of 6 (66%). Shedding in all excreta occurred at, or just after, the first positive tonsil biopsy result. In the 96 GS/103NT cohort, positive seeding activity could be detected in feces from 3 of 6 (50%) deer, saliva in 2 of 6 (33%), and urine in 1 of 6 (16%). Shedding in excreta was detected >5 months after the first tonsil positive result. Four of six 96 GG deer developed clinical signs of CWD, whereas only 2 of the 96 GS/103NT did. Shedding was more frequently detected in deer with clinical disease. The IPQ protocol did not significantly improve detection in saliva or urine samples, however, it significantly augmented detection in feces by eliminating non-specific background commonly experienced with IQ. Negative control samples remained negative in samples tested.

Conclusions: These studies demonstrate: (a) CWD prion excretion occurs throughout infection; (2) PRNP genotype (GG≫GS/NT) influences the excreta shedding; and (3) detection sensitivity in excreta can vary with different RT-QuIC protocols. These results provide a more complete perspective of prion shedding in deer during the course of CWD infection.

Funded by: National Institutes of Health (NIH)

Grant number: RO1-NS061902-09 R to EAH, PO1-AI077774 to EAH, and R01-AI112956-06 to CKM

Acknowledgement: We abundantly thank Sallie Dahmes at WASCO and David Osborn and Gino D’Angelo at the University of Georgia Warnell School of Forestry and Natural Resources for their long-standing support of this work through provision of the hand-raised, CWD-free, white-tailed deer used in these studies

Large-scale PMCA screening of retropharyngeal lymph nodes and in white-tailed deer and comparisons with ELISA and IHC: the Texas CWD study

Rebeca Benaventea, Paulina Sotoa, Mitch Lockwoodb, and Rodrigo Moralesa

aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bTexas Park and Wildlife Department, Texas, USA

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that affects various species of cervids, and both free-ranging and captive animals. Until now, CWD has been detected in 3 continents: North America, Europe, and Asia. CWD prevalence in some states may reach 30% of total animals. In Texas, the first case of CWD was reported in a free-range mule deer in Hudspeth and now it has been detected in additional 14 counties. Currently, the gold standard techniques used for CWD screening and detection are ELISA and immunohistochemistry (IHC) of obex and retropharyngeal lymph nodes (RPLN). Unfortunately, these methods are known for having a low diagnostic sensitivity. Hence, many CWD-infected animals at pre-symptomatic stages may be misdiagnosed. Two promising in vitro prion amplification techniques, including the real-time quaking-induced conversion (RT-QuIC) and the protein misfolding cyclic amplification (PMCA) have been used to diagnose CWD and other prion diseases in several tissues and bodily fluids. Considering the low cost and speed of RT-QuIC, two recent studies have communicated the potential of this technique to diagnose CWD prions in RPLN samples. Unfortunately, the data presented in these articles suggest that identification of CWD positive samples is comparable to the currently used ELISA and IHC protocols. Similar studies using the PMCA technique have not been reported.

Aims: Compare the CWD diagnostic potential of PMCA with ELISA and IHC in RPLN samples from captive and free-range white-tailed deer. Material and Methods: In this study we analyzed 1,003 RPLN from both free-ranging and captive white-tailed deer collected in Texas. Samples were interrogated with the PMCA technique for their content of CWD prions. PMCA data was compared with the results obtained through currently approved techniques.

Results: Our results show a 15-fold increase in CWD detection in free-range deer compared with ELISA. Our results unveil the presence of prion infected animals in Texas counties with no previous history of CWD. In the case of captive deer, we detected a 16% more CWD positive animals when compared with IHC. Interestingly, some of these positive samples displayed differences in their electroforetic mobilities, suggesting the presence of different prion strains within the State of Texas.

Conclusions: PMCA sensitivity is significantly higher than the current gold standards techniques IHC and ELISA and would be a good tool for rapid CWD screening.

Funded by: USDA

Grant number: AP20VSSPRS00C143

ATYPRION project: assessing the zoonotic potential of interspecies transmission of CWD isolates to livestock (preliminary results).

Enric Vidala,b, Juan Carlos Espinosac, Samanta Gilera,b, Montserrat Ordóñeza,b, Guillermo Canteroa,b, Vincent Béringued, Justin J. Greenleee, and Juan Maria Torresc

aUnitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia; bIRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia; cCentro de Investigación en Sanidad Animal, CISA-INIA-CSIC, Valdeolmos, Madrid, Spain; dMolecular Virology and Immunology, French National Research Institute for Agriculture, Food and Environment (INRAE), Université Paris-Saclay, Jouy-en-Josas, France; eVirus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, USA

Aims: Since variant Creutzfeldt-Jackob disease was linked to the consumption of bovine spongiform encephalopathy prions, the study of the pathobiological features of animal prions, particularly their zoonotic potential, is of great concern to the scientific community and public health authorities. Furthermore, interspecies transmission of prions has been demonstrated as a putative evolutionary mechanism for prions, that can lead to the emergence of new features including the ability to infect humans. For instance, small ruminants’ atypical scrapie prions, when propagated in a bovine or porcine host, can shift to a classical BSE phenotype thus posing a potential risk in case of human exposure. So far, no hard evidence of zoonotic transmission of cervids’ chronic wasting disease (CWD) to humans has been published, however experimental transmission to bovine, ovine and caprine hosts has been achieved. Our goal is to investigate if, once passaged through these domestic species, CWD prions might become infectious to humans.

Material and Methods: Different CWD isolates experimentally adapted to cattle, sheep and goat (Hamir et al, 2005, 2006, 2007, Greenlee et al 2012) have been intracerebrally inoculated to transgenic mouse models expressing the human cellular prion protein either homozygous for methionine or valine at codon 129 (Tg340-Met129 and Tg362-Val129). Additionally, inocula obtained from experimental transmission of elk CWD to ovinized (Tg501) and bovinized (BoTg110) transgenic mice, as well as white-tailed deer CWD to BoTg110 mice, are currently being bioassayed in both human PrPCtransgenic models.

Results and conclusions: No evidence of transmission has been found on first passage for bovine adapted elk and mule deer CWD to none of the humanized models. The remaining bioassays are ongoing without showing clinical signs yet, as well as second passages for the negative 1stpassages.

Funded by: La Marató de TV3 foundation. Grant number: ATYPRION (201,821–30-31-32)


Prion Conference 2018 Abstracts

P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Chronic wasting disease (CWD) is a prion disease of deer and elk that has been identified in freeranging cervids in 23 US states. While there is currently no epidemiological evidence for zoonotic transmission through the consumption of contaminated venison, studies suggest the CWD agent can cross the species barrier in experimental models designed to closely mimic humans. We compared rates of human prion disease in states with and without CWD to examine the possibility of undetermined zoonotic transmission.

Methods

Death records from the National Center for Health Statistics, case records from the National Prion Disease Pathology Surveillance Center, and additional state case reports were combined to create a database of human prion disease cases from 2003-2015. Identification of CWD in each state was determined through reports of positive CWD tests by state wildlife agencies. Age- and race-adjusted mortality rates for human prion disease, excluding cases with known etiology, were determined for four categories of states based on CWD occurrence: highly endemic (>16 counties with CWD identified in free-ranging cervids); moderately endemic (3-10 counties with CWD); low endemic (1-2 counties with CWD); and no CWD states. States were counted as having no CWD until the year CWD was first identified. Analyses stratified by age, sex, and time period were also conducted to focus on subgroups for which zoonotic transmission would be more likely to be detected: cases <55 years old, male sex, and the latter half of the study (2010-2015).

Results

Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states (rate ratio [RR]: 1.12, 95% confidence interval [CI] = 1.01 - 1.23), as did low endemic states (RR: 1.15, 95% CI = 1.04 - 1.27). Moderately endemic states did not have an elevated mortality rate (RR: 1.05, 95% CI = 0.93 - 1.17). In age-stratified analyses, prion disease mortality rates among the <55 year old population were elevated for moderately endemic states (RR: 1.57, 95% CI = 1.10 – 2.24) while mortality rates were elevated among those ≥55 for highly endemic states (RR: 1.13, 95% CI = 1.02 - 1.26) and low endemic states (RR: 1.16, 95% CI = 1.04 - 1.29). In other stratified analyses, prion disease mortality rates for males were only elevated for low endemic states (RR: 1.27, 95% CI = 1.10 - 1.48), and none of the categories of CWD-endemic states had elevated mortality rates for the latter time period (2010-2015).

Conclusions

While higher prion disease mortality rates in certain categories of states with CWD in free-ranging cervids were noted, additional stratified analyses did not reveal markedly elevated rates for potentially sensitive subgroups that would be suggestive of zoonotic transmission. Unknown confounding factors or other biases may explain state-by-state differences in prion disease mortality.

=====

P172 Peripheral Neuropathy in Patients with Prion Disease

Wang H(1), Cohen M(1), Appleby BS(1,2)

(1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.

Prion disease is a fatal progressive neurodegenerative disease due to deposition of an abnormal protease-resistant isoform of prion protein. Typical symptoms include rapidly progressive dementia, myoclonus, visual disturbance and hallucinations. Interestingly, in patients with prion disease, the abnormal protein canould also be found in the peripheral nervous system. Case reports of prion deposition in peripheral nerves have been reported. Peripheral nerve involvement is thought to be uncommon; however, little is known about the exact prevalence and features of peripheral neuropathy in patients with prion disease.

We reviewed autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017. We collected information regarding prion protein diagnosis, demographics, comorbidities, clinical symptoms, physical exam, neuropathology, molecular subtype, genetics lab, brain MRI, image and EMG reports. Our study included 104 patients. Thirteen (12.5%) patients had either subjective symptoms or objective signs of peripheral neuropathy. Among these 13 patients, 3 had other known potential etiologies of peripheral neuropathy such as vitamin B12 deficiency or prior chemotherapy. Among 10 patients that had no other clear etiology, 3 (30%) had familial CJD. The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%). The Majority of cases wasere male (60%). Half of them had exposure to wild game. The most common subjective symptoms were tingling and/or numbness of distal extremities. The most common objective finding was diminished vibratory sensation in the feet. Half of them had an EMG with the findings ranging from fasciculations to axonal polyneuropathy or demyelinating polyneuropathy.

Our study provides an overview of the pattern of peripheral neuropathy in patients with prion disease. Among patients with peripheral neuropathy symptoms or signs, majority has polyneuropathy. It is important to document the baseline frequency of peripheral neuropathy in prion diseases as these symptoms may become important when conducting surveillance for potential novel zoonotic prion diseases.

=====

P177 PrP plaques in methionine homozygous Creutzfeldt-Jakob disease patients as a potential marker of iatrogenic transmission

Abrams JY (1), Schonberger LB (1), Cali I (2), Cohen Y (2), Blevins JE (2), Maddox RA (1), Belay ED (1), Appleby BS (2), Cohen ML (2)

(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.

Background

Sporadic Creutzfeldt-Jakob disease (CJD) is widely believed to originate from de novo spontaneous conversion of normal prion protein (PrP) to its pathogenic form, but concern remains that some reported sporadic CJD cases may actually be caused by disease transmission via iatrogenic processes. For cases with methionine homozygosity (CJD-MM) at codon 129 of the PRNP gene, recent research has pointed to plaque-like PrP deposition as a potential marker of iatrogenic transmission for a subset of cases. This phenotype is theorized to originate from specific iatrogenic source CJD types that comprise roughly a quarter of known CJD cases.

Methods

We reviewed scientific literature for studies which described PrP plaques among CJD patients with known epidemiological links to iatrogenic transmission (receipt of cadaveric human grown hormone or dura mater), as well as in cases of reported sporadic CJD. The presence and description of plaques, along with CJD classification type and other contextual factors, were used to summarize the current evidence regarding plaques as a potential marker of iatrogenic transmission. In addition, 523 cases of reported sporadic CJD cases in the US from January 2013 through September 2017 were assessed for presence of PrP plaques.

Results

We identified four studies describing 52 total cases of CJD-MM among either dura mater recipients or growth hormone recipients, of which 30 were identified as having PrP plaques. While sporadic cases were not generally described as having plaques, we did identify case reports which described plaques among sporadic MM2 cases as well as case reports of plaques exclusively in white matter among sporadic MM1 cases. Among the 523 reported sporadic CJD cases, 0 of 366 MM1 cases had plaques, 2 of 48 MM2 cases had kuru plaques, and 4 of 109 MM1+2 cases had either kuru plaques or both kuru and florid plaques. Medical chart review of the six reported sporadic CJD cases with plaques did not reveal clinical histories suggestive of potential iatrogenic transmission.

Conclusions

PrP plaques occur much more frequently for iatrogenic CJD-MM cases compared to sporadic CJDMM cases. Plaques may indicate iatrogenic transmission for CJD-MM cases without a type 2 Western blot fragment. The study results suggest the absence of significant misclassifications of iatrogenic CJD as sporadic. To our knowledge, this study is the first to describe grey matter kuru plaques in apparently sporadic CJD-MM patients with a type 2 Western blot fragment.

=====

P180 Clinico-pathological analysis of human prion diseases in a brain bank series

Ximelis T (1), Aldecoa I (1,2), Molina-Porcel L (1,3), Grau-Rivera O (4), Ferrer I (5), Nos C (6), Gelpi E (1,7), Sánchez-Valle R (1,4)

(1) Neurological Tissue Bank of the Biobanc-Hospital ClÃnic-IDIBAPS, Barcelona, Spain (2) Pathological Service of Hospital ClÃnic de Barcelona, Barcelona, Spain (3) EAIA Trastorns Cognitius, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain (4) Department of Neurology of Hospital ClÃnic de Barcelona, Barcelona, Spain (5) Institute of Neuropathology, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona (6) General subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain (7) Institute of Neurology, Medical University of Vienna, Vienna, Austria.

Background and objective:

The Neurological Tissue Bank (NTB) of the Hospital Clínic-Institut d‘Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain is the reference center in Catalonia for the neuropathological study of prion diseases in the region since 2001. The aim of this study is to analyse the characteristics of the confirmed prion diseases registered at the NTB during the last 15 years.

Methods:

We reviewed retrospectively all neuropathologically confirmed cases registered during the period January 2001 to December 2016.

Results:

176 cases (54,3% female, mean age: 67,5 years and age range: 25-86 years) of neuropathological confirmed prion diseases have been studied at the NTB. 152 cases corresponded to sporadic Creutzfeldt-Jakob disease (sCJD), 10 to genetic CJD, 10 to Fatal Familial Insomnia, 2 to GerstmannSträussler-Scheinker disease, and 2 cases to variably protease-sensitive prionopathy (VPSPr). Within sCJD subtypes the MM1 subtype was the most frequent, followed by the VV2 histotype.

Clinical and neuropathological diagnoses agreed in 166 cases (94%). The clinical diagnosis was not accurate in 10 patients with definite prion disease: 1 had a clinical diagnosis of Fronto-temporal dementia (FTD), 1 Niemann-Pick‘s disease, 1 Lewy Body‘s Disease, 2 Alzheimer‘s disease, 1 Cortico-basal syndrome and 2 undetermined dementia. Among patients with VPSPr, 1 had a clinical diagnosis of Amyotrophic lateral sclerosis (ALS) and the other one with FTD.

Concomitant pathologies are frequent in older age groups, mainly AD neuropathological changes were observed in these subjects.

Discussion:

A wide spectrum of human prion diseases have been identified in the NTB being the relative frequencies and main characteristics like other published series. There is a high rate of agreement between clinical and neuropathological diagnoses with prion diseases. These findings show the importance that public health has given to prion diseases during the past 15 years. Continuous surveillance of human prion disease allows identification of new emerging phenotypes. Brain tissue samples from these donors are available to the scientific community. For more information please visit:


=====

P192 Prion amplification techniques for the rapid evaluation of surface decontamination procedures

Bruyere-Ostells L (1), Mayran C (1), Belondrade M (1), Boublik Y (2), Haïk S (3), Fournier-Wirth C (1), Nicot S (1), Bougard D (1)

(1) Pathogenesis and control of chronic infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France. (2) Centre de Recherche en Biologie cellulaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France. (3) Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.

Aims:

Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a group of incurable and always fatal neurodegenerative disorders including Creutzfeldt-Jakob diseases (CJD) in humans. These pathologies include sporadic (sCJD), genetic and acquired (variant CJD) forms. By the past, sCJD and vCJD were transmitted by different prion contaminated biological materials to patients resulting in more than 400 iatrogenic cases (iCJD). The atypical nature and the biochemical properties of the infectious agent, formed by abnormal prion protein or PrPTSE, make it particularly resistant to conventional decontamination procedures. In addition, PrPTSE is widely distributed throughout the organism before clinical onset in vCJD and can also be detected in some peripheral tissues in sporadic CJD. Risk of iatrogenic transmission of CJD by contaminated medical device remains thus a concern for healthcare facilities. Bioassay is the gold standard method to evaluate the efficacy of prion decontamination procedures but is time-consuming and expensive. Here, we propose to compare in vitro prion amplification techniques: Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking Induced Conversion (RT-QuIC) for the detection of residual prions on surface after decontamination.

Methods:

Stainless steel wires, by mimicking the surface of surgical instruments, were proposed as a carrier model of prions for inactivation studies. To determine the sensitivity of the two amplification techniques on wires (Surf-PMCA and Surf-QuIC), steel wires were therefore contaminated with serial dilutions of brain homogenates (BH) from a 263k infected hamster and from a patient with sCJD (MM1 subtype). We then compared the different standard decontamination procedures including partially and fully efficient treatments by detecting the residual seeding activity on 263K and sCJD contaminated wires. We completed our study by the evaluation of marketed reagents endorsed for prion decontamination.

Results:

The two amplification techniques can detect minute quantities of PrPTSE adsorbed onto a single wire. 8/8 wires contaminated with a 10-6 dilution of 263k BH and 1/6 with the 10-8 dilution are positive with Surf-PMCA. Similar performances were obtained with Surf-QuIC on 263K: 10/16 wires contaminated with 10-6 dilution and 1/8 wires contaminated with 10-8 dilution are positive. Regarding the human sCJD-MM1 prion, Surf-QuIC allows us to detect 16/16 wires contaminated with 10-6 dilutions and 14/16 with 10-7 . Results obtained after decontamination treatments are very similar between 263K and sCJD prions. Efficiency of marketed treatments to remove prions is lower than expected.

Conclusions:

Surf-PMCA and Surf-QuIC are very sensitive methods for the detection of prions on wires and could be applied to prion decontamination studies for rapid evaluation of new treatments. Sodium hypochlorite is the only product to efficiently remove seeding activity of both 263K and sCJD prions.

=====

WA2 Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice

Schatzl HM (1, 2), Hannaoui S (1, 2), Cheng Y-C (1, 2), Gilch S (1, 2), Beekes M (3), SchulzSchaeffer W (4), Stahl-Hennig C (5) and Czub S (2, 6)

(1) University of Calgary, Calgary Prion Research Unit, Calgary, Canada (2) University of Calgary, Faculty of Veterinary Medicine, Calgary, Canada, (3) Robert Koch Institute, Berlin, Germany, (4) University of Homburg/Saar, Homburg, Germany, (5) German Primate Center, Goettingen, Germany, (6) Canadian Food Inspection Agency (CFIA), Lethbridge, Canada.

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were found in spinal cord and brain of euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and preclinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

See also poster P103

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.

=====

WA16 Monitoring Potential CWD Transmission to Humans

Belay ED

Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA.

The spread of chronic wasting disease (CWD) in animals has raised concerns about increasing human exposure to the CWD agent via hunting and venison consumption, potentially facilitating CWD transmission to humans. Several studies have explored this possibility, including limited epidemiologic studies, in vitro experiments, and laboratory studies using various types of animal models. Most human exposures to the CWD agent in the United States would be expected to occur in association with deer and elk hunting in CWD-endemic areas. The Centers for Disease Control and Prevention (CDC) collaborated with state health departments in Colorado, Wisconsin, and Wyoming to identify persons at risk of CWD exposure and to monitor their vital status over time. Databases were established of persons who hunted in Colorado and Wyoming and those who reported consumption of venison from deer that later tested positive in Wisconsin. Information from the databases is periodically cross-checked with mortality data to determine the vital status and causes of death for deceased persons. Long-term follow-up of these hunters is needed to assess their risk of development of a prion disease linked to CWD exposure.

=====

P166 Characterization of CJD strain profiles in venison consumers and non-consumers from Alberta and Saskatchewan

Stephanie Booth (1,2), Lise Lamoureux (1), Debra Sorensen (1), Jennifer L. Myskiw (1,2), Megan Klassen (1,2), Michael Coulthart (3), Valerie Sim (4)

(1) Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg (2) Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg (3) Canadian CJD Surveillance System, Public Health Agency of Canada, Ottawa (4) Division of Neurology, Department of Medicine Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton.

Chronic wasting disease (CWD) is spreading rapidly through wild cervid populations in the Canadian provinces of Alberta and Saskatchewan. While this has implications for tourism and hunting, there is also concern over possible zoonotic transmission to humans who eat venison from infected deer. Whilst there is no evidence of any human cases of CWD to date, the Canadian CJD Surveillance System (CJDSS) in Canada is staying vigilant. When variant CJD occurred following exposure to BSE, the unique biochemical fingerprint of the pathologic PrP enabled a causal link to be confirmed. However, we cannot be sure what phenotype human CWD prions would present with, or indeed, whether this would be distinct from that see in sporadic CJD. Therefore we are undertaking a systematic analysis of the molecular diversity of CJD cases of individuals who resided in Alberta and Saskatchewan at their time of death comparing venison consumers and non-consumers, using a variety of clinical, imaging, pathological and biochemical markers. Our initial objective is to develop novel biochemical methodologies that will extend the baseline glycoform and genetic polymorphism typing that is already completed by the CJDSS. Firstly, we are reviewing MRI, EEG and pathology information from over 40 cases of CJD to select clinically affected areas for further investigation. Biochemical analysis will include assessment of the levels of protease sensitive and resistant prion protein, glycoform typing using 2D gel electrophoresis, testing seeding capabilities and kinetics of aggregation by quaking-induced conversion, and determining prion oligomer size distributions with asymmetric flow field fractionation with in-line light scattering. Progress and preliminary data will be presented. Ultimately, we intend to further define the relationship between PrP structure and disease phenotype and establish a baseline for the identification of future atypical CJD cases that may arise as a result of exposure to CWD.

=====

Source Prion Conference 2018 Abstracts





Volume 24, Number 8—August 2018 Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions

Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)

Abstract Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.

snip...

Discussion Characterization of the transmission properties of CWD and evaluation of their zoonotic potential are important for public health purposes. Given that CWD affects several members of the family Cervidae, it seems reasonable to consider whether the zoonotic potential of CWD prions could be affected by factors such as CWD strain, cervid species, geographic location, and Prnp–PRNP polymorphic variation. We have previously used an in vitro conversion assay (PMCA) to investigate the susceptibility of the human PrP to conversion to its disease-associated form by several animal prion diseases, including CWD (15,16,22). The sensitivity of our molecular model for the detection of zoonotic conversion depends on the combination of 1) the action of proteinase K to degrade the abundant human PrPC that constitutes the substrate while only N terminally truncating any human PrPres produced and 2) the presence of the 3F4 epitope on human but not cervid PrP. In effect, this degree of sensitivity means that any human PrPres formed during the PMCA reaction can be detected down to the limit of Western blot sensitivity. In contrast, if other antibodies that detect both cervid and human PrP are used, such as 6H4, then newly formed human PrPres must be detected as a measurable increase in PrPres over the amount remaining in the reaction product from the cervid seed. Although best known for the efficient amplification of prions in research and diagnostic contexts, the variation of the PMCA method employed in our study is optimized for the definitive detection of zoonotic reaction products of inherently inefficient conversion reactions conducted across species barriers. By using this system, we previously made and reported the novel observation that elk CWD prions could convert human PrPC from human brain and could also convert recombinant human PrPC expressed in transgenic mice and eukaryotic cell cultures (15).

A previous publication suggested that mule deer PrPSc was unable to convert humanized transgenic substrate in PMCA assays (23) and required a further step of in vitro conditioning in deer substrate PMCA before it was able to cross the deer–human molecular barrier (24). However, prions from other species, such as elk (15) and reindeer affected by CWD, appear to be compatible with the human protein in a single round of amplification (as shown in our study). These observations suggest that different deer species affected by CWD could present differing degrees of the olecular compatibility with the normal form of human PrP.

The contribution of the polymorphism at codon 129 of the human PrP gene has been extensively studied and is recognized as a risk factor for Creutzfeldt-Jakob disease (4). In cervids, the equivalent codon corresponds to the position 132 encoding methionine or leucine. This polymorphism in the elk gene has been shown to play an important role in CWD susceptibility (25,26). We have investigated the effect of this cervid Prnp polymorphism on the conversion of the humanized transgenic substrate according to the variation in the equivalent PRNP codon 129 polymorphism. Interestingly, only the homologs methionine homozygous seed–substrate reactions could readily convert the human PrP, whereas the heterozygous elk PrPSc was unable to do so, even though comparable amounts of PrPres were used to seed the reaction. In addition, we observed only low levels of human PrPres formation in the reactions seeded with the homozygous methionine (132 MM) and the heterozygous (132 ML) seeds incubated with the other 2 human polymorphic substrates (129 MV and 129 VV). The presence of the amino acid leucine at position 132 of the elk Prnp gene has been attributed to a lower degree of prion conversion compared with methionine on the basis of experiments in mice made transgenic for these polymorphic variants (26). Considering the differences observed for the amplification of the homozygous human methionine substrate by the 2 polymorphic elk seeds (MM and ML), reappraisal of the susceptibility of human PrPC by the full range of cervid polymorphic variants affected by CWD would be warranted.

In light of the recent identification of the first cases of CWD in Europe in a free-ranging reindeer (R. tarandus) in Norway (2), we also decided to evaluate the in vitro conversion potential of CWD in 2 experimentally infected reindeer (18). Formation of human PrPres was readily detectable after a single round of PMCA, and in all 3 humanized polymorphic substrates (MM, MV, and VV). This finding suggests that CWD prions from reindeer could be more compatible with human PrPC generally and might therefore present a greater risk for zoonosis than, for example, CWD prions from white-tailed deer. A more comprehensive comparison of CWD in the affected species, coupled with the polymorphic variations in the human and deer PRNP–Prnp genes, in vivo and in vitro, will be required before firm conclusions can be drawn. Analysis of the Prnp sequence of the CWD reindeer in Norway was reported to be identical to the specimens used in our study (2). This finding raises the possibility of a direct comparison of zoonotic potential between CWD acquired in the wild and that produced in a controlled laboratory setting. (Table).

The prion hypothesis proposes that direct molecular interaction between PrPSc and PrPC is necessary for conversion and prion replication. Accordingly, polymorphic variants of the PrP of host and agent might play a role in determining compatibility and potential zoonotic risk. In this study, we have examined the capacity of the human PrPC to support in vitro conversion by elk, white-tailed deer, and reindeer CWD PrPSc. Our data confirm that elk CWD prions can convert the human PrPC, at least in vitro, and show that the homologous PRNP polymorphisms at codon 129 and 132 in humans and cervids affect conversion efficiency. Other species affected by CWD, particularly caribou or reindeer, also seem able to convert the human PrP. It will be important to determine whether other polymorphic variants found in other CWD-affected Cervidae or perhaps other factors (17) exert similar effects on the ability to convert human PrP and thus affect their zoonotic potential.

Dr. Barria is a research scientist working at the National CJD Research and Surveillance Unit, University of Edinburgh. His research has focused on understanding the molecular basis of a group of fatal neurologic disorders called prion diseases.

Acknowledgments We thank Aru Balachandran for originally providing cervid brain tissues, Abigail Diack and Jean Manson for providing mouse brain tissue, and James Ironside for his critical reading of the manuscript at an early stage.

This report is independent research commissioned and funded by the United Kingdom’s Department of Health Policy Research Programme and the Government of Scotland. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or the Government of Scotland.

Author contributions: The study was conceived and designed by M.A.B. and M.W.H. The experiments were conducted by M.A.B. and A.L. Chronic wasting disease brain specimens were provided by G.M. The manuscript was written by M.A.B. and M.W.H. All authors contributed to the editing and revision of the manuscript.


Prion 2017 Conference Abstracts
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 
21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS ABSTRACTS REFERENCE
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 


SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019 

https://chronic-wasting-disease.blogspot.com/2019/02/chronic-wasting-disease-cwd-tse-prion.html 

TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011 Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. " 


Transmission Studies Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret. 

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 

 
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


 *** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans” 

From: TSS Subject: CWD aka MAD DEER/ELK TO HUMANS ??? 

Date: September 30, 2002 at 7:06 am PST 

From: "Belay, Ermias" 

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias" 

Sent: Monday, September 30, 2002 9:22 AM Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 

Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). 

Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated. 

Ermias Belay, M.D. Centers for Disease Control and Prevention 

-----Original Message----- From: 

Sent: Sunday, September 29, 2002 10:15 AM To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV 

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS 

Thursday, April 03, 2008 

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ. 

snip... *** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***, 

snip... full text ; 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven. if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way; 

sporadic = 54,983 hits 


spontaneous = 325,650 hits 


key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. 

SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: 

Dear Terry,

An excellent piece of review as this literature is desperately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994

Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...

Table 9 presents the results of an analysis of these data.

There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).

Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.

There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;




Stephen Dealler is a consultant medical microbiologist deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019

https://bseinquiry.blogspot.com/2019/02/mad-dogs-and-englishmen-bse-scrapie-cwd.html

***> ''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

PRION 2015 CONFERENCE


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 



WEDNESDAY, MARCH 16, 2022 

SHEEP BY-PRODUCTS AND WHAT ABOUT Scrapie TSE PrP and Potential Zoonosis? 


SO, WHO'S UP FOR SOME MORE TSE PRION POKER, WHO'S ALL IN $$$ 

SO, ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.


Title: Transmission of the agent of sheep scrapie to deer results in PrPSc with two distinct molecular profiles 

***> In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer. 




COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or about that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


FRIDAY, DECEMBER 23, 2022 

House and Senate Send Important Chronic Wasting Disease Legislation to President’s Desk 


Characterization of Classical Sheep Scrapie in White-tailed Deer after Experimental Oronasal Exposure 

Justin J Greenlee, S Jo Moore, Eric D Cassmann, Zoe J Lambert, Robyn D Kokemuller, Jodi D Smith, Robert A Kunkle, Qingzhong Kong, M Heather West Greenlee Author Notes

The Journal of Infectious Diseases, jiac443, https://doi.org/10.1093/infdis/jiac443

Published: 08 November 2022 Article history

Abstract

Background

Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent.

Methods

We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6).

Results

All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats.

Conclusions

WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult.

cervid, chronic wasting disease, prion disease, scrapie, transmissible spongiform encephalopathy, white-tailed deer Issue Section: Major Article 

snip...

DISCUSSION

When WTD were inoculated with the agent of scrapie from sheep, 100% were infected, with widespread evidence of PrPSc in lymphoid and nervous tissues (see summary Figure 5). The predominant molecular profile of abnormal prion protein present in the brainstem and lymph nodes of scrapie-affected deer was similar to that in CWD-affected deer and distinct from the no. 13-7 sheep classic scrapie inoculum. Conversely, when the no. 13-7 inoculum is used to inoculate elk, the molecular profile is similar to the original scrapie inoculum regardless of brain region sampled. There was no evidence of infection in deer that were exposed to scrapie prions from goats. Although the exposure was to less total inoculum, the amount and route were consistent with other successful experiments in sheep [26] and deer [22].

Figure 5.

Study summary. White-tailed deer (WTD) are oronasally susceptible to the agent of scrapie from sheep but not from goats. Unlike elk inoculated with the sheep scrapie agent, the Western blot (WB) profile of samples from deer with scrapie depends on the tissue assessed. The retina and cerebrum have a WB profile consistent with the original scrapie inoculum, while samples from lymph nodes and brainstem at the level of the obex have a molecular profile similar to that of the chronic wasting disease (CWD) agent. When passaged to cervidized mice, the agent of scrapie from WTD has an intermediate incubation time compared with the CWD agent from deer (shorter) or the scrapie agent from sheep (longer). Abbreviation: dpi, days post inoculation. Open in new tab Download slide

Study summary. White-tailed deer (WTD) are oronasally susceptible to the agent of scrapie from sheep but not from goats. Unlike elk inoculated with the sheep scrapie agent, the Western blot (WB) profile of samples from deer with scrapie depends on the tissue assessed. The retina and cerebrum have a WB profile consistent with the original scrapie inoculum, while samples from lymph nodes and brainstem at the level of the obex have a molecular profile similar to that of the chronic wasting disease (CWD) agent. When passaged to cervidized mice, the agent of scrapie from WTD has an intermediate incubation time compared with the CWD agent from deer (shorter) or the scrapie agent from sheep (longer). Abbreviation: dpi, days post inoculation.

Two WB patterns resulted from inoculating WTD with the no. 13-7 scrapie inoculum, and these patterns seem to depend on the anatomic location of the source of the sample used for WB: samples derived from the cerebral cortex or retina resulted in a lower WB profile, whereas those from the brainstem or lymph node resulted in a higher, CWD-like WB profile. When the agent of scrapie from WTD with either the high or low WB profile is passaged to Tg12 mice, the 2 inocula have distinct incubation times. However, this result could be due to different titers of infectivity in these 2 brain regions.

It was unexpected that WTD material from brainstem or cerebrum with distinct WB profiles resulted in similar CWD-like profiles after passage through Tg12 mice. The most likely explanation for this is that even though cerebrum from scrapie-affected deer has the lowest apparent molecular weight WB profile, it is probable that both PrPSc species (low molecular weight and CWD-like) are present in each brain region and that the CWD-like profile becomes predominant on second passage in cervid PRNP because it amplifies preferentially. It also is possible that the no. 13-7 inoculum contains >1 strain of scrapie despite serial passage in the sheep.

Strain mutation is unlikely to occur in all deer, but selection is possible if multiple strains were present in the inoculum. Alternatively, the 2 WB profiles observed may represent varying selective conditions in different neuroanatomic locations, which could possibly be further tested using in vitro methods [32]. Determining whether further passage of scrapie through deer results in adaptation to a more CWD-like phenotype will be the subject of future studies. Identification of a new strain would be significant, as it may mean that there are new transmission characteristics to third-party hosts, such as humans or cattle [33]. In the case of CWD, interspecies transmission alone is sufficient to increase the potential host range of field isolates [34].

WB analysis of archived samples of brain from elk infected with the same isolate of scrapie as the deer in the present study demonstrated that only a single (lower; scrapie-like) WB profile resulted from scrapie-affected elk. This suggests that the PrPSc with the higher WB profile (CWD-like) generated in this experiment may be a result specific to WTD. The retention of a scrapie-like WB profile on transmission of the agent of scrapie to elk supports the theory that the identification of CWD in Norway is not likely due to exposure to scrapie-infected sheep since the CWD case from Norway has a profile similar to that of North American elk CWD rather than the lower pattern of sheep scrapie [4].

While other groups have shown that scrapie prions from sheep are transmissible to WTD by the intravenous route [18], their results differed from ours concerning the WB patterns. Only a single WB pattern was noted in those deer, which was not directly compared with the original scrapie inoculum from sheep or samples derived from WTD with CWD [18]. The difference in results may be due to our use of a US scrapie isolate derived from ARQ/ARQ sheep [35] while the SSBP/1 strain used in Angers et al [18] has the fastest incubation in VRQ/VRQ sheep and does not seem to affect ARQ/ARQ sheep [36]. Results from the current study corroborate previous results obtained with the same scrapie isolate after intracranial inoculation [17] suggesting that the scrapie isolate rather than the route of inoculation is the major factor in the difference in results between studies.

There is precedent for 2 molecular profiles from different brain regions in the same individual. In Creutzfeldt-Jakob disease (CJD), 2 isoforms of PrPSc are recognized, based on the electrophoretic mobility of the fragments resistant to proteinase K digestion. In PrPSc type 1, the nonglycosylated isoform migrates to the 21-kDa region of the gel, while the type 2 isoform migrates to 19 kDa [37].

There are a number of reports describing the presence of different PrPSc isoforms in different brains regions from single individuals affected by sporadic CJD [38–44], iatrogenic CJD [40], or familial CJD [45]. Furthermore, it appears that the regional deposition of type 1 or type 2 PrPSc (or co-occurrence of both types) is not random, indicating that different brain regions may be more or less permissive to the formation of a particular PrPSc isoform [38, 39]. Preferential formation of different PrPSc isoforms also seems to be influenced by genotype; for example, type 1 is found in the majority of patients with CJD who are MM homozygous at codon 129, while type 2 is more common in those who are MV heterozygous or VV homozygous [46, 47]. The relevance of these observations in sporadic CJD compared with scrapie in WTD requires further investigation.

When using WB analysis to compare samples of brainstem or lymph node from WTD infected with either CWD or scrapie prions, field samples may not allow for differentiation between CWD and scrapie. In the present study, samples from cerebrum or retina of deer infected with scrapie had a WB pattern distinct from any sample from a deer infected with CWD. Using the N-terminal antibody 12B2 allowed further differentiation of the retinal samples from deer with scrapie from CWD-infected counterparts as well as from sheep infected with either scrapie or CWD. The retinas from deer infected with scrapie maintained electrophoretic properties of scrapie while differing in biochemical properties (absence of 12B2 binding), suggesting that scrapie prions from the retinas of WTD have a unique conformation.

There was a high prevalence of S96 PRNP in the deer procured for this study: all were SS96. It is notable that recent genome-wide association analysis demonstrates that G96S has the largest effects on differential susceptibility to CWD of all PRNP polymorphisms [48], but all deer in this study were susceptible to the scrapie agent from sheep. This highlights the potential concern that using a PRNP-based approach to controlling CWD in deer may result in enhanced susceptibilities to other prion isolates. It would be necessary to repeat this study with wild-type deer to understand whether the genotype of the deer we used played any role in the results.

The high attack rate and widespread distribution of PrPSc in nervous and lymphoid tissues of the deer in this study suggest that potential transmission of scrapie to deer presents an ongoing risk to wild and captive WTD. Future studies will focus on whether WTD could serve as a reservoir of infectivity to scrapie-susceptible sheep.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author. 


Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie

Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.


We compared two US classical scrapie strains to CWD in sheep and found that one of these strains is indistinguishable from sheep CWD. These results demonstrate that current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred in a natural setting. This research reinforces the need to continue ongoing cross-species transmission studies focusing on oral susceptibility of sheep to CWD and develop techniques to discriminate sheep CWD from sheep scrapie.


''We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation.'' Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease Authors

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


Passage of scrapie to deer results in a new phenotype upon return passage to sheep) Author 

We previously demonstrated that scrapie has a 100% attack rate in white-tailed deer after either intracranial or oral inoculation. 

snip...

This work raises the potential concern that scrapie infected deer could serve as a confounding factor to scrapie eradication programs as scrapie from deer seems to be transmissible to sheep by the oronasal route.


In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer. 


White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection 

This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. I


PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA 


This research reinforces the need to continue ongoing cross-species transmission studies focusing on oral susceptibility of sheep to CWD and develop techniques to discriminate sheep CWD from sheep scrapie.


Food Saf (Tokyo). 2016 Dec; 4(4): 110–114.

Published online 2016 Dec 7. doi: 10.14252/foodsafetyfscj.2016019

PMCID: PMC6989210

PMID: 32231914

Scrapie in Swine: a Diagnostic Challenge

Justin J. Greenlee,corresponding author 1 Robert A. Kunkle, 1 Jodi D. Smith, 1 and M. Heather West Greenlee 2


Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations


FRIDAY, MARCH 24, 2023 

Mountain lions, Wolves, Coyotes, could help stop the spread of CWD TSE Prion in deer, WHERE STUPID MEETS THE ROAD! 


SUNDAY, MARCH 19, 2023 
Abandoned factory ‘undoubtedly’ contains dormant Mad Cow Disease that could threaten humans, Thruxted Mill, Queniborough CJD


DEFRA 

Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***

Sunday, March 20, 2016

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission


PLoS One. 2020; 15(8): e0237410. Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410 PMCID: PMC7446902 PMID: 32817706 

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease 

Nathaniel D. Denkers, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing – review & editing,#1 Clare E. Hoover, Conceptualization, Data curation, Investigation, Writing – original draft, Writing – review & editing,#2 Kristen A. Davenport, Conceptualization, Data curation, Investigation, Writing – review & editing,3 Davin M. Henderson, Conceptualization, Data curation, Investigation, Methodology,1 Erin E. McNulty, Data curation, Investigation, Methodology, Writing – review & editing,1 Amy V. Nalls, Conceptualization, Investigation, Methodology, Writing – review & editing,1 Candace K. Mathiason, Conceptualization, Funding acquisition, Investigation, Supervision, Writing – review & editing,1 and Edward A. Hoover, Conceptualization, Data curation, Funding acquisition, Supervision, Writing – review & editing1,* Byron Caughey, Editor Author information Article notes Copyright and License information Disclaimer This article has been corrected. 

See PLoS One. 2021 June 10; 16(6): e0253356. Associated Data Data Availability Statement 

Abstract 

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

snip...

In conclusion, we have attempted to model and better understand CWD infection relative to natural exposure. The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic. 


Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle

G. A. H. Wells,1 T. Konold,1 M. E. Arnold,1 A. R. Austin,1 3 S. A. C. Hawkins,1 M. Stack,1 M. M. Simmons,1 Y. H. Lee,2 D. Gavier-Wide´n,3 M. Dawson1 4 and J. W. Wilesmith1 1 Correspondence G. A. H. Wells

g.a.h.wells@vla.defra.gsi.gov.uk

1 Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK

2 National Veterinary Research and Quarantine Service, Anyang, Republic of Korea

3 National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden

Received 27 July 2006

Accepted 18 November 2006

The dose–response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04–1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).

snip...

DISCUSSION

The study has demonstrated that disease in cattle can be produced by oral exposure to as little as 1 mg brain homogenate (¡100.4 RIII mouse i.c./i.p. ID50 units) from clinically affected field cases of BSE and that the limiting dose for infection of calves is lower than this exposure...

snip...end



P04.27

Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route

Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmzas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Lwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat Energie Atomique, France; 3Instituto Superiore di Sanit, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany

Background:

In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.

Aims:

The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.

Methods:

Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).

Results:

In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.

Conclusions:

Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.

The work referenced was performed in partial fulfilment of the study 'BSE in primates' supported by the EU (QLK1-2002-01096).






1.3. Determination of the Minimal Infectious BSE Dose in Non-human Primates

In a concerted European effort involving 5 laboratories including ours, the BSE-macaque model was then used to evaluate the minimal amount of BSE-infected material necessary to induce vCJD in primates. Results so far show that 5g of infectious BSE cattle brain is sufficient to induce the disease in all recipient animals by the oral route, with 500 mg yielding an incomplete attack rate10,11). The ID50 of BSE cattle brain is 200 mg for cattle12). These results suggest a low species barrier between cattle and non-human primates.


look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;

Risk of oral infection with bovine spongiform encephalopathy agent in primates

Corinne Ida Lasmzas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frdric Auvr, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Sals, Gerald Wells, Paul Brown, Jean-Philippe Deslys 

Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.

snip...

BSE bovine brain inoculum

100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 01 mg 001 mg

Primate (oral route)* 1/2 (50%)

Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)

RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)

PrPres biochemical detection

The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was

inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of

bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and int****ritoneal.

Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula

Published online January 27, 2005


It is clear that the designing scientists must

also have shared Mr Bradley's surprise at the results because all the dose

levels right down to 1 gram triggered infection.


6. It also appears to me that Mr Bradley's answer (that it would take less than say 100 grams) was probably given with the benefit of hindsight; particularly if one considers that later in the same answer Mr Bradley expresses his surprise that it could take as little of 1 gram of brain to cause BSE by the oral route within the same species. This information did not become available until the "attack rate" experiment had been completed in 1995/96. This was a titration experiment designed to ascertain the infective dose. A range of dosages was used to ensure that the actual result was within both a lower and an upper limit within the study and the designing scientists would not have expected all the dose levels to trigger infection. 

The dose ranges chosen by the most informed scientists at that time ranged from 1 gram to three times one hundred grams. 

It is clear that the designing scientists must have also shared Mr Bradley's surprise at the results because all the dose levels right down to 1 gram triggered infection.


Notice of Request To Renew an Approved Information Collection: Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission

Greetings FSIS, USDA, et al,

Thank you kindly for allowing the public to comment on ;

(a) whether the proposed collection of information is necessary for the proper performance of FSIS’ functions, including whether the information will have practical utility;

(b) the accuracy of FSIS’ estimate of the burden of the proposed collection of information, including the validity of the method and assumptions used;

(c) ways to enhance the quality, utility, and clarity of the information to be collected; and

(d) ways to minimize the burden of the collection of information, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques, or other forms of information technology.

I will be commenting mostly on a, b, and c, because d, is wanting to minimize the burden of collection, and i do not think that is possible if ''These statutes mandate that FSIS protect the public by verifying that meat, poultry, and egg products are safe, wholesome, and properly labeled and packaged.'', is truly the intent of these statutes, and i would kindly like to explain why, and why it is so critical that these Specified Risk Materials SRM TSE Prion Statues are so important for public health, and WHY there is an urgent need to enhance them, considering the risk factors of Chronic Wasting Disease CWD TSE Prion in Cervid.

THIS collection of SRM materials information should be done all the time, year after year, and ending it EVER would be foolish, imo, not scientific, and will lead to future risk to public health, if you consider just how bad USDA/FSIS/APHIS/FDA failed so badly with the FDA PART 589 TSE PRION FEED BAN, the SRM REMOVAL, THE BSE SURVEILLANCE AND TESTING PROGRAMS, THEY FAILED ALL OF THEM TERRIBLY IMO, AND BY CONTINUING TO INSIST ON TESTING 25K CATTLE FOR BSE IS A DISASTER WATING TO HAPPEND IMO!

SPECIFIED RISK MATERS

Specified Risk Materials SRMs, are the most high risk infectious materials, organs, of a cow that is infected with Bovine Spongiform Encephalopathy, Transmissible Spongiform Encephalopathy, BSE TSE Prion. the atypical BSE strains are, like atypical L-type BSE are more infectious that the typical C-type BSE. Also, Science of the BSE TSE has evolved to show that there are more infectious tissues and organs than previously thought. I wish to kindly post all this evidence, as to show you why this information collection of SRMs are so vital to public safety, and why they should be enhanced for cattle, cervid, sheep, and goats, oh, and not to forget the new livestock prion disease in camel, the Camel Prion Disease CPD.

ONE other thing, you must remember, SCIENCE AND TRANSMISSION STUDIES have now shown that CWD and Scrapie can transmit to PIGS by Oral route. This should be included in any enhancement of the SRM or FDA PART 589 TSE PRION FEED ban.

NOT to forget Zoonosis of all of the above, i will post the latest science to date at the bottom of the attached files.

Thank You, terry


Singeltary further comments in attachment;

Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission Attachment https://downloads.regulations.gov/FSIS-2022-0027-0002/attachment_1.pdf Monday, December 5, 2022 Notice of Request To Renew an Approved Information Collection: Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission


SEE MAD COW FEED VIOLATIONS AFER MAD COW FEED VIOLATIONS ;


Docket No. APHIS–2023–0027 Notice of Request for Revision to and Extension of Approval of an Information Collection; National Veterinary Services Laboratories; Bovine Spongiform Encephalopathy Surveillance Program Singeltary Submission Document APHIS-2023-0027-0001 BSE Singeltary Comment Submission 


see full submission; 


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission



Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification



''The risk of CJD increases with age; the 2016–2020 average annual rate in the United States was about 5 cases per million in persons 55 years of age or older.''

Creutzfeldt-Jakob disease deaths and age-adjusted death rate, United States, 1979–2020*

Occurrence and Transmission

Classic CJD has been recognized since the early 1920s. The majority of cases of CJD (about 85%) are believed to occur sporadically, caused by the spontaneous transformation of normal prion proteins into abnormal prions. This sporadic disease occurs worldwide, including the United States, at a rate of roughly 1 to 2 cases per 1 million population per year. The risk of CJD increases with age; the 2016–2020 average annual rate in the United States was about 5 cases per million in persons 55 years of age or older.

A smaller proportion of patients (5–15%) develop CJD because of inherited mutations of the prion protein gene. These inherited forms include Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. Death records are a good index of the incidence of CJD because the disease is always fatal, and the median duration of illness is about 4–5 months.


MONDAY, APRIL 24, 2023 

2023 CDC REPORTS CJD TSE Prion 5 cases per million in persons 55 years of age or older 



Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home