Tuesday, January 28, 2025

Ohio Chronic Wasting Disease CWD 2024 2025 Update

Ohio CWD Update 2025

2024-2025 Confirmed CWD-Positive Wild Deer 23

The DNR has tested 5,088 wild deer for CWD for the 2024 - 2025 season.

https://experience.arcgis.com/experience/2cac469d50d4475b9dfa9722f2235324/page/2024-2025-Season-Surveillance/#data_s=id%3Awidget_73_ouput%3A1%2B2%2B3%2B4

Total Confirmed CWD-Positive Wild Deer in Ohio 72 The DNR has tested 32,911 wild deer for CWD since 2017. From 2014 to 2020, a total of 25 deer from 4 captive facilities have tested positive in Holmes and Wayne counties. The first positive detection in wild deer was in 2020 in Wyandot County.

https://experience.arcgis.com/experience/2cac469d50d4475b9dfa9722f2235324#data_s=id%3Awidget_73_ouput%3A1%2B2%2B3%2B4

https://ohiodnr.gov/discover-and-learn/safety-conservation/wildlife-management/wildlife-disease/chronic-wasting-disease

https://agri.ohio.gov/search/?search_query=Chronic+wasting+disease+positive+detected

The effectiveness of harvest for limiting wildlife disease: Insights from 20 years of chronic wasting disease in Wyoming

Wynne E. Moss, Justin Binfet, L. Embere Hall, Samantha E. Allen, William H. Edwards, Jessica E. Jennings-Gaines, Paul C. Cross

First published: 21 January 2025

https://doi.org/10.1002/eap.3089

https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.3089

https://www.usgs.gov/news/national-news-release/new-study-finds-deer-hunting-can-help-keep-chronic-wasting-disease-check

CDC CWD TSE Prion Update 2025

KEY POINTS

Chronic wasting disease affects deer, elk and similar animals in the United States and a few other countries.

The disease hasn't been shown to infect people.

However, it might be a risk to people if they have contact with or eat meat from animals infected with CWD.

https://www.cdc.gov/chronic-wasting/about/index.html

Prions in Muscles of Cervids with Chronic Wasting Disease, Norway

Volume 31, Number 2—February 2025

Research

Prions in Muscles of Cervids with Chronic Wasting Disease, Norway

Snip…

In summary, the results of our study indicate that prions are widely distributed in peripheral and edible tissues of cervids in Norway, including muscles. This finding highlights the risk of human exposure to small amounts of prions through handling and consuming infected cervids.

Appendix

https://wwwnc.cdc.gov/eid/article/31/2/24-0903-app1.pdf

https://wwwnc.cdc.gov/eid/article/31/2/24-0903_article

Volume 31, Number 2—February 2025

Dispatch

Detection of Chronic Wasting Disease Prions in Raw, Processed, and Cooked Elk Meat, Texas, USA

Snip…

CWD prions have been detected in the muscle of both farmed and wild deer (10), and at concentrations relevant to sustain disease transmission (11). CWD prions have also been identified across several cervid species and in multiple tissues, including lymph nodes, spleen, tongue, intestines, adrenal gland, eyes, reproductive tissues, ears, lungs, and liver, among others (12–14). Those findings raise concerns about the safety of ingesting processed meats that contain tissues other than skeletal muscle (15) (Appendix). https://wwwnc.cdc.gov/eid/article/31/2/24-0906-app1.pdf .

In addition, those findings highlight the need for continued vigilance and research on the transmission risks of prion diseases and for development of new preventative and detection measures to ensure the safety of the human food supply.

Snip…

Overall, our study results confirm previous reports describing the presence of CWD prions in elk muscles (13). The data also demonstrated CWD prion persistence in food products even after processing through different procedures, including the addition of salts, spices, and other edible elements. Of note, our data show that exposure to high temperatures used to cook the meat increased the availability of prions for in vitro amplification. Considering the potential implications in food safety and public health, we believe that the findings described in this study warrant further research. Our results suggest that although the elk meat used in this study resisted different manipulations involved in subsequent consumption by humans, their zoonotic potential was limited. Nevertheless, even though no cases of CWD transmission to human have been reported, the potential for human infection is still unclear and continued monitoring for zoonotic potential is warranted.

https://wwwnc.cdc.gov/eid/article/31/2/24-0906_article

Volume 31, Number 1—January 2025

Dispatch

Detection of Prions in Wild Pigs (Sus scrofa) from Areas with Reported Chronic Wasting Disease Cases, United States

Abstract

Using a prion amplification assay, we identified prions in tissues from wild pigs (Sus scrofa) living in areas of the United States with variable chronic wasting disease (CWD) epidemiology. Our findings indicate that scavenging swine could play a role in disseminating CWD and could therefore influence its epidemiology, geographic distribution, and interspecies spread.

https://wwwnc.cdc.gov/eid/article/%2031/1/24-0401_article

Detection of chronic wasting disease prions in processed meats

Results: Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities. This data suggests that CWD-prions are available to people even after meats are processed and cooked.

Conclusions: These results suggest CWD prions are accessible to humans through meats, even after processing and cooking. Considering the fact that these samples were collected from already processed specimens, the availability of CWD prions to humans is probably underestimated.

"Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities."

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

The detection and decontamination of chronic wasting disease prions during venison processing

Results: CWD prions were detected on all cutting boards (n= 3; replicates= 8/8, 8/8, 8/8 and knives (n= 3; replicates= 8/8, 8/8, 8/8) used in processing CWD-positive venison, but not on those used for CWD-negative venison. After processing CWD-positive venison, allowing the surfaces to dry, and washing the cutting board with Dawn dish soap, we detected CWD prions on the cutting board surface (n= 3; replicates= 8/8, 8/8, 8/8) but not on the knife (n= 3, replicates = 0/8, 0/8, 0/8). Similar patterns were observed with Briotech (cutting board: n= 3; replicates= 7/8, 1/8, 0/8; knife: n= 3; replicates = 0/8, 0/8, 0/8). We did not detect CWD prions on the knives or cutting boards after disinfecting with Virkon-S, 10% bleach, and 40% bleach.

Conclusions: These preliminary results suggest that Dawn dish soap and Briotech do not reliably decontaminate CWD prions from these surfaces. Our data suggest that Virkon-S and various bleach concentrations are more effective in reducing prion contamination of meat processing surfaces; however, surface type may also influence the ability of prions to adsorb to surfaces, preventing complete decontamination. Our results will directly inform best practices to prevent the introduction of CWD prions into the human food chain during venison processing.

Prion 2023 Abstracts

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.

In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. Our results show positive prion detection in all products. To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats.

***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates.

***> Our results show positive prion detection in all products.

***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.

***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.

https://intcwdsympo.files.wordpress.com/2023/06/final-agenda-with-abstracts.pdf?force_download=true

Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.

Snip…

***> Further passage to cervidized mice revealed transmission with a 100% attack rate.

***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.

****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.

***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease

=====

https://intcwdsympo.files.wordpress.com/2023/06/final-agenda-with-abstracts.pdf?force_download=true

Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD

Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.

Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.

https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286

The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.

Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD

Acta Neuropathol 144, 767–784 (2022). https://doi.org/10.1007/s00401-022-02482-9

Published

22 August 2022

https://link.springer.com/article/10.1007/s00401-022-02482-9

Fortuitous generation of a zoonotic cervid prion strain

Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a “cervidized” CJD strain that we termed CJDElkPrP. We observed 100% transmission of the original CJDElkPrP in transgenic mice expressing human PrP. We passaged CJDElkPrP two more times in the Tg12 mice. We found that such second and third passage CJDElkPrP prions retained 100% transmission rate in the humanized mice, despite that the natural elk CWD isolates and CJDElkPrP share the same elk PrP sequence. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice.

Conclusions: Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time.

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.

Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.

Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.

“suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.”

=================================

Supplementary Information The online version contains supplementary material available at

https://doi.org/10.1007/s00401-022-02482-9

snip...see full text;

https://link.springer.com/article/10.1007/s00401-022-02482-9

https://link.springer.com/content/pdf/10.1007/s00401-022-02482-9.pdf

Long term environmental factors for Cwd tse prion

So, this is what we leave our children and grandchildren?..

"Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation."

Detection of prions in soils contaminated by multiple routes

Aims: Free-ranging animals afflicted with transmissible spongiform encephalopathies frequently shed infectious prions into the broader environment. The quintessential example is chronic wasting disease, the TSE of cervids. Over the course of the disease, an infected animal will shed infectious prions in blood, urine, saliva, and feces. Upon death, the total prion load interred in the animal’s tissues will be deposited wherever the animal falls. This contamination creates substantial risk to naïve animals, and likely contributes to disease spread. Identification and quantification of prions at contamination hotspots is essential for any attempt at mitigation of environmental transmission.

Materials and Methods: Surfactant extraction of soils followed by precipitation yields a sample that is amenable to analysis by real-time quaking induced conversion. However, differences in extraction yield are apparent depending on the properties of the matrix from which the prions are being extracted, principally soil clay content.

Results: We are able to detect prion seeding activity at multiple types of environmental hotspots, including carcass sites, contaminated captive facilities, and scrapes (i.e. urine and saliva). Differences in relative prion concentration vary depending on the nature and source of the contamination. Additionally, we have determined that prion seeding activity is retained for at least fifteen years at a contaminated site following attempted remediation.

Conclusions: Detection of prions in the environment is of the utmost importance for controlling chronic wasting disease spread. Here, we have demonstrated a viable method for detection of prions in complex environmental matrices. However, it is quite likely that this method underestimates the total infectious prion load in a contaminated sample, due to incomplete recovery of infectious prions. Further refinements are necessary for accurate quantification of prions in such samples, and to account for the intrinsic heterogeneities found in the broader environment.

Funded by: Wisconsin Department of Natural Resources

=====end

Prion 2023 Abstracts

https://prion2023.org/wp-content/uploads/2023/10/Meeting-book-final-version2.pdf

Artificial mineral sites that pre-date endemic chronic wasting disease become prion hotspots

The detection of PrPCWD in soils at attractant sites within an endemic CWD zone significantly advances our understanding of environmental PrPCWD accumulation dynamics, providing valuable information for advancing adaptive CWD management approaches.

https://int-cwd-sympo.org/wp-content/uploads/2023/06/final-agenda-with-abstracts.pdf

Chronic wasting disease detection in environmental and biological samples from a taxidermy site


Aims: In this study, we evaluated the presence of infectious prions in a taxidermy facility believed to be exposed to CWD. Detection was performed using the Protein Misfolding Cyclic Amplification (PMCA) technique in biological and inert environmental samples.


Methods: We collected biological and environmental samples (plants, soils, insects, excreta, and others) from a taxidermy facility, and we tested these samples using the PMCA technique. In addition, we swabbed different surfaces possibly exposed to CWD-infected animals. For the PMCA reaction, we directly used a swab piece or 10 µL of 20% w/v homogenized samples.


Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster.


Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in i) soils that were in contact with the heads of dead animals, ii) insects involved in the cleaning of skulls, and iii) an empty dumpster where animal carcasses were previously placed. This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD.


Prion 2022 Conference abstracts: pushing the boundaries


https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286


https://intcwdsympo.files.wordpress.com/2023/06/final-agenda-with-abstracts.pdf?force_download=true

***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.82011-0

Rapid recontamination of a farm building occurs after attempted prion removal

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease. snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapie positive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

https://bvajournals.onlinelibrary.wiley.com/doi/abs/10.1136/vr.105054

***>This is very likely to have parallels with control efforts for CWD in cervids.

https://pubmed.ncbi.nlm.nih.gov/30602491/

For what it's worth, Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth on CJD and Nutritional Supplements and BSE here in the USA, and some officials from here inside USDA aphis FSIS et al, in fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” as i called them, I never knew who they were, but I never forgot what i was told decades ago, amongst them was ;

Some unofficial information from a source on the inside looking out -

Confidential!!!!

As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss

What about property values?

terry 

Friday, January 24, 2025

Georgia First Positive Case of Chronic Wasting Disease Confirmed

Georgia First Positive Case of Chronic Wasting Disease Confirmed

First Positive Case of Chronic Wasting Disease Confirmed In Georgia

Social Circle, GA Thursday, January 23, 2025, 14:30 pm The Georgia Department of Natural Resources’ (DNR) Wildlife Resources Division (WRD) has confirmed through the United States Department of Agriculture’s National Veterinary Services Laboratories that a hunter-harvested deer sampled for routine surveillance in Lanier County has tested positive for Chronic Wasting Disease (CWD). This is the first case of CWD detected in Georgia. The sample was taken from a two-and-a-half-year-old male white-tailed deer harvested on private property. Immediately following the positive confirmation, WRD staff implemented the CWD Response Plan and are taking additional samples from the area.

“I want to assure our hunters that deer hunting will continue to thrive in Georgia, despite this current discovery," said Walter Rabon, Commissioner of the Georgia Department of Natural Resources. “Working together with our hunters and all Georgians, we will manage CWD and maintain healthy deer herds.” 

What is Being Done? The DNR CWD Response Plan is in effect and a CWD Management Area is established. The CWD Management Area includes the county where the positive sample was found and any county that touches a 5-mile radius around the location of the positive sample. The current CWD Management Area includes Lanier and Berrien counties. 

The critical next step is to determine the geographic extent and prevalence rate in that Management Area (i.e., how far it has spread and what percent of deer have CWD). The Department will do that with landowner cooperation through “cluster sampling” in the immediate area. 

What is CWD? CWD was first discovered in 1967 in Fort Collins, Colorado. CWD is a fatal neurological disease of deer, elk, and moose caused by infectious, misfolded proteins called prions. There are no current treatments or preventative vaccines.

CWD in deer, elk ,and/or moose has been reported in 36 states and 3 Canadian provinces: Alabama, Arkansas, California, Colorado, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Tennessee, Texas, Utah, Virginia, Washington, West Virginia, Wisconsin, Wyoming as well as Canadian provinces Alberta, Quebec, and Saskatchewan.

There is no known transmission of CWD to humans. However, the Centers for Disease Control and Prevention (CDC) recommends that hunters harvesting a deer, elk, or moose from an area where CWD is known to be present have their animal tested for CWD prior to consuming the meat and do not consume the meat if the animal tests positive. How You Can Help Prevent Spread

Don’t move live deer. Moving live deer is the greatest risk for introducing CWD to new areas. Dispose of carcasses properly and don’t bring whole carcasses into Georgia from out of state or move whole carcasses outside the CWD Management Area. Any carcass parts you don’t intend to consume should be left on the property the deer was killed, sent to a landfill, or buried. Report sick or abnormal deer to your nearest WRD Game Management Office. The Georgia DNR with its partners – Georgia Department of Agriculture and the Southeastern Cooperative Wildlife Disease Study – will continue to update the public as more information becomes available.

For more information on Chronic Wasting Disease, visit https://georgiawildlife.com/CWD

###

Media Contact: Kaitlin Goode, kaitlin.goode@dnr.ga.gov912-346-8280

https://gadnr.org/first-positive-case-chronic-wasting-disease-confirmed-georgia

First Positive Case of Chronic Wasting Disease Confirmed In Georgia 

Thursday, January 23, 2025, 14:30 pm 

The sample was taken from a two-and-a-half-year-old male white-tailed deer harvested on private property.

https://gadnr.org/first-positive-case-chronic-wasting-disease-confirmed-georgia


Chronic Wasting Disease Response Plan - Georgia Department of Natural Resources

• Chronic Wasting Disease (CWD) affects members of the deer family.

• Moving live deer and infected carcass parts are the biggest risk factors for introducing CWD into Georgia.

• CWD is caused by a defective protein, called a prion, that spreads among deer through bodily fluids.

• CWD is always fatal and there is currently no vaccine or treatment.

• The incubation period is very long, 18 to 24 months from exposure to death. One deer can infect many others and contaminate the environment with prions.

• Once it is well established in an area (spread beyond a 1-mile radius), eradication is essentially impossible.

Only if discovered early, when still localized with a low prevalence rate is there any hope of eradication.

ONGOING SURVEILLANCE EFFORTS

• Since 2002, DNR has tested ~20,000 deer. DNR currently collects about 1,800 samples per year.

• DNR uses a risk-based surveillance system designed for early detection.

Sampling intensity per county depends on risk factors (e.g. distance to captive deer facilities, taxidermists, processors; past sampling effort, and distance to known CWD areas.

INITIAL RESPONSE

Goal: Detect CWD early, determine the prevalence and geographic extent, eradicate if possible or minimize spread, and keep prevalence in the population low.

If CWD is discovered in Georgia (or within 5 miles of the state line)

• Implement communications plan and designate members of the multi-agency response team operating under common Incident Command System structure.

• Establish a CWD Management Area (CMA) that includes each county within a 5-mile radius around the positive sample and increase sampling.

• Sample intensively within a 1-mile radius to determine prevalence and geographic extent.

• Collect samples from road-killed deer and hunter-harvested deer voluntarily dropped at self-serve freezers placed around the CMA. Sampling efforts may also include cluster sampling, issuance of special permits, and crop damage permits.

• Cooperate with GA Dept of Agriculture to identify and sample high-fence enclosures in the CMA.

• Restrictions on carcass disposal will be reviewed. Hunters, taxidermists, and processors will be advised how to best dispose of carcasses.

LONG-TERM CWD MANAGEMENT

• Once initial prevalence and geographic extent are assessed, CMAs will be adjusted accordingly.

• DNR will use a cluster sampling strategy to keep CWD prevalence low within the area. The disease appears to form clusters of positives within family groups. DNR will work with landowners to identify family groups for sampling around each positive deer. This focused approach identifies individual deer most likely to be positive for harvest without negatively affecting the population.

• Maintain healthy deer populations. Maintaining good relationships with landowners and a sustainably huntable population of deer is crucial to disease management. Significant deer population reductions are not part of DNR’s management actions.

• Age structure management. Older deer are more likely to have contracted CWD and can spread it to other deer. Managing for younger deer also helps keep prevalence of CWD low. Antler restrictions that promote older age classes may be rescinded from counties within a CMA.

• Feeding/baiting guidelines. The following actions may reduce risk:

o Broadcast the feed over large areas (500+ square feet), avoid piling it

o Avoid trough and gravity feeders

o Move feeding locations periodically to avoid buildup of excrement in soil

o Limit feeding to when you are actively hunting, avoid feeding out of season

o Baiting may be used as a tool for cluster sampling in CWD management areas, WRD will provide more specific guidance directly to hunters in those areas.

Update January 25


SATURDAY, SEPTEMBER 07, 2013

Georgia House Bill 1043 and Chronic Wasting Disease CWD 

From: Terry S. Singeltary Sr. 

Sent: Saturday, September 07, 2013 12:33 PM 

To: jon.burns@house.ga.gov Cc: stephen.allison@house.ga.gov ; jimmy.pruett@house.ga.gov ; sharon.beasley-teague@house.ga.gov ; rbruce5347@aol.com ; pam.dickerson@house.ga.gov ; emory.dunahoo@house.ga.gov ; earl@ehrhart.4emm.com ; david.knight@house.ga.gov ; tommccall@bellsouth.net ; john.meadows@house.ga.gov ; jay.roberts@house.ga.gov ; jason.shaw@house.ga.gov ; jason.spencer@house.ga.gov ; al.williams@house.ga.gov 

Subject: Georgia House Bill 1043 and Chronic Wasting Disease CWD 

Greetings Honorable Representatives of the House, Game, Fish, & Parks, 

I wish to submit some recent science about chronic wasting disease cwd from the Prion2013 congressional abstracts. I lost my mother to hvCJD ‘confirmed’, and have been following the mad cow follies for almost 16 years daily. sadly, cwd is just another part of those follies. I have studied and kept up with these follies daily for almost 16 years, as a layperson. I believe that when officials are making decisions, they need all the scientific information available to make sound decisions. many times this does not happen due to the industries involved and politics and greed there from. So, I send this science on the cwd tse prion disease in good faith. 

TO date, with the limited CWD testing in Georgia, CWD has not been detected. does not mean it is not already there. BUT, if you approve Bill 1043, the chances of CWD being introduced into your state goes up greatly. Inactivation of the TSE Prion disease Chronic Wasting Disease CWD, and other TSE prion disease, these TSE prions know no borders. these TSE prions know no age restrictions. The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. you cannot cook the TSE prion disease out of meat. you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. the TSE prion agent also survives Simulated Wastewater Treatment Processes. IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. you can bury it and it will not go away. The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. it’s not your ordinary pathogen you can just cook it out and be done with. that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent. Snip…

Sunday, January 19, 2025

Scrapie Field Trial was developed at Mission, Texas, what if?

Epidemiology of Scrapie in the United States

Snip…

Scrapie Field Trial was developed at Mission, Texas, what if?

Scrapie Field Trial was developed at Mission, Texas, on 450 acres of pastureland, part of the former Moore Air Force

EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES

Academic Preg

James Hourriganl, Albert Klingsporn2, Edited by » Peast

W. W. Clark3, and M, de Camp4

United States Department of Agriculture,
Animal and Plant Health Inspection Service,
Veterinary Services

snip...

METHODS

A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission,

Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods

to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.

The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas:

snip...

RESULTS

Table 1 indicated that previously exposed sheep brought to the Station at various times and ages (1 to 89 months old) included 333 Suffolks at risk. Of these, 98 (29%) developed scrapie. This demonstrated the necessity to slaughter such sheep to prevent further Spread of the disease, These pre- viously exposed Suffolks were bred at the Station and produced 446 progeny at risk. Of these 153 (34%) developed scrapie.

Although the minimum and average ages when scnapied were similar for both groups, some of the previously exposed Suffolks brought to the Station developed scrapie when much older--ewes 60 to 142 months old and rams 67 to 102 months old. O£ the 153 Suffolks born at the Station, only 3 were more than 60 months of age (65, 66, and 69 months old).

This difference in age scrapied was attributed to the fact that the Suffolks born at the Station may have been sub- ject to a greater exposure from birth.

It was also observed that when both dam and progeny were scrapied, the progeny nearly always developed clinical disease at a younger age than their respective dam. Thirty- two dams were scrapied at an average of 60 months of age. Forty-six of their progeny developed the disease at an average of 38 months (range 25 to 53 months). Thirty-seven of the 46 progeny were younger than the dam (average 20 months younger, range 2 to 99 months younger). Two were scrapied at the same age as their dams, and 8 were older (average 5 months, range 1 to 13 months older).

++. Although the incidence of scrapie was considerably Greater in the progeny of scrapied compared to free dams, the progeny of either scrapied or free dams manifested scrapie at the typical age and irrespective of the age their respective dams were scrapied. The differences in ages that dams and progeny were scrapied was believed due to difference of exposure, particularly whether they were exposed at an early age,

Table 2 summarized the data on exposed Suffolks and was Prepared so as to show scrapie incidence in the progeny of dams and sires of known Scrapie status. The scrapie incidence in the progeny of Free X Free parents was 25%, progeny of scrapied Sires 39%, and scrapied dams 42%. When both sire and dam were scrapied, the scrapie incidence in 18 Progeny at risk was 78%.

When the scrapie status of the sire was ignored, scrapie incidence in th- progeny of free dams was 34% and in pre y of scrapied da as 62%. When the scrapie status of the dam was ignored, scrapie incidence in the progeny of free sires was 26% and in the progeny of scrapied sires was 452.

Although the scrapie incidence was nearly double in the progeny of scrapied compared to free dams, the latter con- tributed a greater number of scrapied progeny, 116, compared to only 51 cases which had scrapied dams. This was because free dams made a considerably heavier contribution to the progeny at risk4-342 compared to 82. It was felt that in farm flocks a similar situation could exist.

It was possible that free dams could have been mis- classified; however, this was unlikely to have been significant, unless "nonclinical or carrier" dams exist. In this Suffolk group, the ages of 100 free dams of scrapied progeny ranged from 25 to 160 (average 97) months. These free dams did not show clinical signs of scrapie,”and there were no histopathological lesions suggesting scrapie in those which died, If one cannot classify as free, ewes which have reached 97 months (average) and did not develop the disease, from a practical standpoint, it is not possible to classify sheep as free, at least on the basis of clinical signs and histology. The free dams of 50% of the scrapied progeny were more than 100 months of age, averaging 126 months.

Upon arrival at the Mission Station at 3 to 9 months of age, the 140 previously unexposed sheep and goats were placed in infected pastures and corrals and were subjected to con- tact with a succession of natural cases of scrapie in sheep, and eventually also in goats. These animals were bred only within their respective groups and were not crossbred to other breeds of sheep or those brought to the Station from infected flocks or their progeny. The male or female animals mixed freely with animals of their respective sex of the infected Flock and were similarly identified and subjected to similar flock management and diagnostic procedures.

Table 3 indicated that natural scrapie had occurred in 5 of the 140 previously unexposed sheep. One case each occurred in Rambouillet, Targhee, and Hampshire ewes at 88, 89, and 89 months of age and in % Suffolk ewes at 73 and 102 months of age, and 85, 82, 80, 64, and 93 months following initial natural exposure. This represented a natural situation involving lateral spread, under the circumstances involved, when sheep were not exposed when very young. Scrapie was not detected clinicaliy or histologically in any of the dairy or Angora goats brought to the Station. The disease occurred in an average of 27% of the progeny of previously unexposed sheep or goats born at the Station and included cases in progeny of all breeds of sheep or goats taken there, The incidence in the progeny ranged from 14% in Rambouillet sheep to 61% in dairy goats. ~

These data showed that scrapie spread laterally, by contact exposure, from scrapied te previously free animals, but at an apparently lower rate when exposure was first received at the age of 3 to 9 months. These animals were presumed to be susceptible to the disease, as their progeny developed scrapie at rates and ages similar (on the average) to the progeny, pf previously exposed Suffolk sheep born and reared in the same environment.

It was suggested that the progeny of previously unexposed animals developed scrapie at a much higher rate than their parents, and at a younger age, because they were subjected to exposure from birth. The data did not rule out the possibility that the animals born at the Station could have also received the virus from their dams "vertically" prior te, at, or following birth.

Table 4 summarized the scrapie incidence in #he progeny, born at the Station, of previously unexposed dairy goats.

The data were prepared so as to show scrapie incidence in the progeny of dams and sires of known scrapie status.

The 58% incidence in the progeny (24 at risk) of Free X Free parents was more than twice the 25% seen in the Suffolk group (Table 2). Scrapied sires did not increase the incidence in goat progeny (it was 44%); scrapied dams increased the incidence to 71%. When both sire and dam were scrapied the incidence was 89%, with only 9 goat progeny at risk.

When the scrapie status of the sire was ignored, the scrapie incidence in the progeny of free dams was 56% and in the progeny of scrapied dams it was 74%.

Free dams contributed 34 progeny at risk and scrapied dams 31 progeny.

When the scrapie status of the dam was ignored, scrapie incidence was 64% in the progeny of free sires and a similar 66% in the progeny of scrapied sires.

A total of 244 sheep (127 Suffolk, 59 Rambouillet, and 58 Targhee) were removed from scrapie exposure within a few hours of birth or at 4, 9, or 20 months of age and placed in isolation pens. Removal of sheep from exposure at these ages was selected as being representative of usual flock operations when sheep might be sold from an infected flock at weaning, the first fall or the second fall after their birth.

Table 5 reflected the fate of such animals. Four of the 6 scrapied sheep which had been isolated at birth were Suffolks and the 2 older animals were Targhees. The first case in the group isolated at birth was a Targhee, progeny of a ewe that did not develop clinical scrapie. The scrapie incidence in 36 at risk Suffolks removed from exposure at birth was 11%, con- siderably less -“en that expected had these animals remz d in an infected en ment.

Table 6 reflected the status of 51 goats isolated from scrapie exposure at birth, and at 6, 8 to 10, 20, 32 to 59 and 60 to 82 months of age.

None of the goats removed at birth developed scrapie, although all 5 of those alive at 5 years of age had scrapied dams and 1 also had a scrapied sire. The sire of the remaining 4 had sired 7 scrapied progeny. Under such circumstances, had they remained in an infected environment nearly all of these goats would have been expected to develop scrapie. With the exception of the 20 month group, scrapie occurred at an incidence of 25 to 100% in ali other groups and at the expected age. A further observation was that 4 of the progeny of these dairy goats, born and kept apart from any sheep, developed scrapie which suggested that goats were not "dead- end hosts" insofar as scrapie was concerned.

Table 7 recorded the fate of progeny of certain selected scrapied or free Suffolk sheep or dairy goat dams.’

Suffolk ewe G298 was scrapied at 46 months of age. She had twin lambs in 1969 and 1 lamb in 1970. All 3 lambs developed scrapie. Suffolk ewe G27a was scrapied at 39 months. Her lamb born in 1966 was scrapied at 53 months; however, her lambs born in 1967 and 1968 remained free--lived to 102 months of age.

Suffolk ewe G25a died at 131] months of age and was nega- tive clinically and histologically. Mice remained negative following intracerebral inoculation of brain, spleen, and lymph nodes from this ewe. This ewe had 9 progeny at risk, of which 4 developed scrapie and 5 did not. There was no dis- cernible pattern to the cases. In two instances, 1 twin was scrapied and 1 remained free.

Goat B259 was scrapied when 43 months old. All of her 6 progeny at risk developed scrapie.

Goat B14a remained free and died at 101 months of age. Of her 11 progeny at risk, 7 were scrapied and 4 were not.

It was observed at the Station that when scrapied dams had several progeny at risk, 1 or more progeny usually developed the disease. However, many such scrapied dams also had progeny which lived, or are living, considerably beyond the age of their dams and beyond the age animals born at the Station manifested the disease.

It was also observed that individual free dams had free progeny in earlier years followed by scrapied progeny when they were older, or had scrapied progeny when young followed by free progeny when older, or scrapie and free progeny dis- persed throughout the dam's breeding life. The same situation occurred in progeny of scrapied dams; however, the pattern was less irregular due to the smaller number of progeny from each scrapied dam and the higher incidence of scrapie in such progeny. Circumstances prevented breeding all ewes ary year and, thus, many had only 1 progeny at risk. Scrapie developed in 100% of the single progeny at risk of 11 scrapied and 15 free dams. The 26 scrapied progeny were equally divided between ewes and rams.

Table 8 reflected the difference in age scrapied of - sheep brought to the Station compared to the age scrapied of those born there. Although the average age of previously exposed sheep (Suffolks) brought to the Station did not differ greatly from the overall average, several animals brought to the Station developed the disease at quite advanced ages. The previously unexposed scrapied animals brought to the Station were also considerably older than animals born there. Progeny of scrapied dams developed the disease at a slightly younger age than did progeny of free dams. The average age was nearly the same for males and females.

DISCUSSION

snip...see full text;

http://web.archive.org/web/20030513212324/http://www.bseinquiry.gov.uk/files/mb/m08b/tab64.pdf

Scrapie Field Trial was developed at Mission, Texas, on 450 acres of pastureland, part of the former Moore Air Force Base

EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES

http://web.archive.org/web/20030513212324/http://www.bseinquiry.gov.uk/files/mb/m08b/tab64.pdf

COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.

http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province!” page 26.

https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

https://www.ars.usda.gov/research/publications/publication/?seqNo115=317901

''Given the results of this study, current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally.''

2021 May 28

Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie

https://journals.sagepub.com/doi/full/10.1177/10406387211017615

Title: Second passage of chronic wasting disease of mule deer in sheep compared to classical scrapie after intracranial inoculation

https://www.ars.usda.gov/research/publications/publication/?seqNo115=376956

''We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation.''

Title: Passage of scrapie to deer results in a new phenotype upon return passage to sheep

https://www.ars.usda.gov/research/publications/publication/?seqNo115=337278

Title: Transmission of the agent of sheep scrapie to deer results in PrPSc with two distinct molecular profiles 

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=314097

Volume 30, Number 8—August 2024

Research

Scrapie Versus Chronic Wasting Disease in White-Tailed Deer

Zoe J. Lambert1, Jifeng Bian, Eric D. Cassmann, M. Heather West Greenlee, and Justin J. Greenlee

Author affiliations: Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (Z.J. Lambert); US Department of Agriculture, Ames, Iowa, USA (Z.J. Lambert, J. Bian, E.D. Cassmann, J.J. Greenlee); Iowa State University, Ames (Z.J. Lambert, M.H. West Greenlee) Suggested citation for this article

Abstract

White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.

snip…

The potential for zoonoses of cervid-derived PrPSc is still not well understood (6,18,45–47); however, interspecies transmission can increase host range and zoonotic potential (48–50). Therefore, to protect herds and the food supply, suspected cases of WTD scrapie should be handled the same as cases of CWD.

https://wwwnc.cdc.gov/eid/article/30/8/24-0007_article

cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18(44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 

https://www.ars.usda.gov/research/publications/publication/?seqNo115=353091

https://www.ars.usda.gov/research/project/?accnNo=432011&fy=2017

https://www.ars.usda.gov/research/publications/publication/?seqNo115=337105

The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identification of CWD strains in deer and the eradication of scrapie from sheep.

https://www.tandfonline.com/doi/full/10.1080/19336896.2019.1615197

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.

https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2020.EN-1946

WEDNESDAY, JUNE 10, 2020 

Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice

Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.

our results clearly indicate that atypical BSE adaptation to an ovine-PrP sequence could modify the prion agent to potentially infect humans, showing strain features indistinguishable from those of classic sCJD prions, even though they might or might not be different agents.

However, the expanding range of TSE agents displaying the capacity to transmit in human-PrP–expressing hosts warrants the continuation of the ban on meat and bone meal recycling and underscores the ongoing need for active surveillance

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258450/

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract

Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6

http://web.archive.org/web/20010305223125/www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf

Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).

http://www.nature.com/nature/journal/v236/n5341/abs/236073a0.html

Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years

Published: May 9, 2007

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000435

WEDNESDAY, DECEMBER 04, 2013 

Chronic Wasting Disease CWD and Land Value concerns? 

***> This is very likely to have parallels with control efforts for CWD in cervids. <***

Paper

Rapid recontamination of a farm building occurs after attempted prion removal

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.

https://bvajournals.onlinelibrary.wiley.com/doi/abs/10.1136/vr.105054

***>This is very likely to have parallels with control efforts for CWD in cervids.

***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3

http://www.microbiologyresearch.org/docserver/fulltext/jgv/87/12/3737.pdf?expires=1540908280&id=id&accname=guest&checksum=ED0572E1E5B272C100A32212A3E3761A

5 or 6 years quarantine is NOT LONG ENOUGH FOR CWD TSE PRION !!!

QUARANTINE NEEDS TO BE 21 YEARS FOR CWD TSE PRION !

FRIDAY, APRIL 30, 2021 

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss


Terry S. Singeltary Sr.