Friday, May 14, 2010

Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure

Published Online May 13, 2010 Science DOI: 10.1126/science.1187107 Science Express Index

Reports

Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure


Rachel C. Angers,1,* Hae-Eun Kang,2 Dana Napier,2 Shawn Browning,1, Tanya Seward,2 Candace Mathiason,4 Aru Balachandran,5 Debbie McKenzie,6 Joaquín Castilla,7 Claudio Soto,8 Jean Jewell,9 Catherine Graham,10 Edward A. Hoover,4 Glenn C. Telling1,2,3,

Prions are infectious proteins composed of PrPSc, which induces conformational conversion of host-encoded PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties, but comprised of PrPSc with indistinguishable biochemical characteristics. While CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk PrP differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.


SNIP...


The identification and characterization here of distinct CWD strains with similar conformations, and the influence of PrP primary structure on their stabilities, is of importance when considering the potential for transmission to species outside the family cervidae. While CWD prions have reassuringly failed to induce disease in transgenic mice expressing human PrP (10, 30), because of the risk of prion exposure from contaminated venison (13) and other infected materials (14), systematically addressing the tissue distributions of CWD1 and CWD2 and their zoonotic potentials would appear to be high priorities.



(10) Transmission of Elk and Deer Prions to Transgenic Mice


http://jvi.asm.org/cgi/content/abstract/80/18/9104



(30) Neurobiology of Disease Chronic Wasting Disease of Elk: Transmissibility to Humans Examined by Transgenic Mouse Models


http://www.jneurosci.org/cgi/content/short/25/35/7944



(13) Prions in Skeletal Muscles of Deer with Chronic Wasting Disease


http://www.sciencemag.org/cgi/content/abstract/sci;311/5764/1117



(14) Volume 15, Number 5–May 2009 Research Chronic Wasting Disease Prions in Elk Antler Velvet


http://www.cdc.gov/eid/content/15/5/696.htm






1 Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY 40536, USA. 3 Department of Neurology, University of Kentucky Medical Center, Lexington, KY 40536, USA. 4 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA. 5 Canadian Food Inspection Agency, Ottawa, Ontario, K2H 8P9, Canada. 6 Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada. 7 CIC bioGUNE & IKERBASQUE, Basque Foundation for Science, 48992 Derio & 48011 Bilbao, Bizkaia, Spain. 8 University of Texas Medical School at Houston, Houston, TX 77030, USA. 9 Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA. 10 Canadian Food Inspection Agency, Lethbridge, Alberta, T1J 3Z4, Canada. * Present address: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

Present address: Department of Infectology, Scripps Research Institute, Jupiter, FL, USA.

To whom correspondence should be addressed. E-mail: gtell2@uky.edu


--------------------------------------------------------------------------------


Received for publication 14 January 2010. Accepted for publication 1 April 2010.



http://www.sciencemag.org/cgi/content/abstract/science.1187107




Supporting Online Material for

Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure

Rachel C. Angers, Hae-Eun Kang, Dana Napier, Shawn Browning, Tanya Seward, Candace Mathiason, Aru Balachandran, Debbie McKenzie, Joaquín Castilla, Claudio Soto, Jean Jewell, Catherine Graham, Edward A. Hoover, Glenn C. Telling*

*To whom correspondence should be addressed. E-mail: gtell2@uky.edu

Published 13 May 2010 on Science Express DOI: 10.1126/science.1187107

This PDF file includes: Materials and Methods Table S1 References

1

Supporting Online Material

Materials and Methods

Transgenic mice and inocula Transgenic mice expressing deer or elk PrP coding sequences, referred to as Tg(CerPrP)1536+/- and Tg(CerPrP-E226)5037+/- respectively, have been described previously (S1, S2). All transmitted isolates in this study originated from deer and elk expressing wild type PRNP coding sequences. The 03W1755 elk used in PMCA studies was heterozygous (M/L) at codon 132. Ten % (w/v) homogenates, in phosphate buffered saline (PBS) lacking calcium and magnesium ions, of cervid and mouse brains were prepared by repeated extrusion through an 18 gauge followed by a 21 gauge syringe needle.

Determination of Incubation Periods Groups of anesthetized mice were inoculated intracerebrally with 30 µl of 1 % (w/v) brain extracts prepared and diluted in PBS, or 1 % v/v of the final PMCA product diluted in PBS. Groups of mice were monitored thrice weekly for the development of prion disease. Following a relatively non-specific prodromal phase, early definitive and progressive clinical signs included stimulation-induced hyperexcitability, and flattened posture, culminating in profound ataxia toward the endpoint of disease. CWD-affected mice were rarely kyphotic and maintained a deep pain reflex at end stage. Inoculated mice were diagnosed with prion disease following the progressive development of at least three clinical signs, the time from inoculation to the onset of definitive and subsequently progressive clinical signs being referred to as the incubation time.

2

Analysis of PrP Animals whose death was obviously imminent were euthanized and their brains taken for biochemical and histopathological studies. For PrP analysis in brain extracts, total protein content from 10 % brain homogenates prepared in PBS was determined by bicinchoninic acid assay (Pierce Biotechnology Inc., Rockford, IL). Brain extracts were either untreated or treated with 40 µg/ml PK for one hour at 37oC in the presence of 2 % sarkosyl and the reaction was terminated with 4 mM phenyl methyl sulfonyl fluoride. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, electrophoretically transferred to PVDF-FL membranes (Millipore, Billerica, MA), which were probed with anti-PrP mAbs followed by horse radish peroxidaseconjugated sheep anti-mouse IgG, developed using ECL-plus detection (Amersham), and analyzed using an FLA-5000 scanner (Fuji). To determine the relative values of CerPrPSc glycoforms, band intensities were analyzed by densitometry of Western blots using the FLA-5000 scanner.

For histoblot analysis, mice exhibiting neurological dysfunction were humanely killed and their brains immediately frozen on dry ice. Ten µm thick cryostat sections were transferred to nitrocellulose as previously described (S3). Histoblots were immunostained with mAb 6H4 followed by alkaline phosphataseconjugated sheep anti-mouse secondary antibody. Images were captured with a Nikon SMZ1000 microscope with Photometrics Coolsnap CF digital imager and processed with MetaMorph software.

PrPSc in brain homogenates of terminally sick mice was also analyzed by conformational stability assay (S4-S7). The relative amounts of bands

3

representing PK resistant CerPrPSc were analyzed by densitometry of Western blots using the FLA-5000 scanner. The sigmoidal dose-response was plotted using a four-parameter algorithm and non-linear least square fit. The Gdn.HCl concentration required to denature 50% of CerPrPSc is denoted as the (Gdn.HCl)1/2 value. For histopathological stu dies, brains were dissected rapidly after sacrifice of the animal and immersion fixed in 10% buffered formalin. Tissues were embedded in paraffin and 8 µm thick coronal microtome sections were mounted onto positively charged glass slides. Analysis of PrP in the brains of mice by IHC was performed as previously described (S8) using anti-PrP mAb 6H4 as primary antibody, and IgG1 biotinylated goat anti-mouse secondary antibody (Southern Biotech). Following inactivation of endogenous peroxidases by incubation in 3% H2O2 in methanol, peroxidase immunohistochemistry was used to evaluate the extent of reactive astrocytic gliosis using antibodies to glial fibrillary acidic protein. Detection was with Vectastain ABC reagents and slides were developed with diaminobenzidine. Digitized images for figures were obtained by light microscopy using a Nikon Eclipse E600 microscope equipped with a Nikon DMX 1200F digital camera.

Neuropathological Lesion Profiling Paraffin-embedded mouse brains were sectioned coronally to areas corresponding to the five levels of the brain that contained the mouse brain regions of interest. Brain sections were stained with hematoxylin and eosin. Images of the each of the brain regions were captured using a Photometrics Cool Snap digital camera and a Nikon Eclipse E600

4

microscope. The extent of vacuolar degeneration in the cerebral grey matter was assessed using a semi-quantitative method for discriminating prion strains (S9). The numbers of vacuoles per field were manually counted. Text In addition to intrinsic strain characteristics, time to onset of disease is dependent on prion titers (S10). Both effects were evident in these studies. Preparations containing low CWD prions titers produce longer incubation times in Tg(CerPrP)1536+/- mice than higher titer isolates (S2). Prolonged incubation times resulting from primary transmission of low titer CWD isolates generally shorten on second passage in syngeneic hosts, while strain-related incubation time properties are expected to persist during serial transmission. To begin to distinguish the effects of strain and titer on the variable incubation times observed during primary transmissions, we performed serial transmissions in Tg(CerPrP)1536+/- mice (Table S1). Titer-related reduction in mean incubation time was a feature of many of serially passaged isolates (Table S1). Generally, on second passage, there was less variance of incubation times for both strains, an effect that was also likely to be related to more consistent prion titers. Factors affecting CWD prion titers include the stage of disease in affected deer and elk, the neuroanotomical locations from which prions were isolated, and possible effects of post-mortem interval.

The most extreme effects of titer were observed during transmission of the 012-22012 elk isolate. Despite a 387 d incubation time, CWD1 neuropathology

5

was registered in the only mouse available for analysis following transmission of elk isolate 012-22012 (Fig. 1A); 3 of 8 inoculated mice in this cohort did not develop disease (Table S1 and Fig. 1A). The protracted time to onset of disease and the less than 100 % attack rate on primary passage suggests that the titer of CWD1 prions in this elk isolate was close to the endpoint of sensitivity of the bioassay. Consistent with this notion, serial passage of 012-22012 prions from the brain of a second diseased mouse with a 380 d incubation time, produced a rapid mean incubation time of 208 ± 4 d in 8 inoculated mice and CWD1 neuropathology in all analyzed mice (n = 5) (Fig. 2A and Table S1).

6

Table S1: Transmission of CWD prions to Tg(CerPrP)1536+/- mice Incubation time, mean days ± SD (n/n0)

Inoculum Origin First Second

Elk

012-22012 Colorado 384 ± 3.3 (5/8) 208 ± 3.5 (8/8) 012-09442 Colorado 208 ± 16.9 (8/8) 307 ± 25.3 (6/6) 02-0306 Saskatchewan 225 ± 8.3 (7/7) 238 ± 38.1 (7/7) 12389 Wyoming 230 ± 24.4 (8/8) 001-44720 Colorado 231 ± 13.7 (7/7) 248 ± 37.5 (8/8) 7378-47 Wyoming 235 ± 5.5 (8/8) 230 ± 28.6 (7/7) 001-403022 Colorado 271 ± 35.9 (8/8) 235 ± 38.1 (8/8) 04-0306 Saskatchewan 281 ± 14.9 (7/7) 211 ± 7.5 (7/7) CWD pool Alberta 293 ± 30.9 (6/6) 01-0306 Saskatchewan 322 ± 25.3 (8/8) 274 ± 29.3 (8/8) 03-0306 Saskatchewan 335 ± 12.6 (7/7) 226 ± 45.9 (9/9)

Mule deer

8481 Wyoming 173 ± 3.8 (7/7) 217 ± 28.8 (7/7) 978-24384 Colorado 211 ± 22.5 (7/7) 229 ± 26.8 (5/5) D10 Colorado 228 ± 28.9 (15/15) 217 ± 28.3 (8/8) D92 Colorado 232 ± 48.8 (15/15) 244 ± 46.6 (7/7) 9179 Wyoming 239 ± 64.6 (7/7) 216 ± 32.0 (7/7) 989-09147 Colorado 250 ± 6.5 (8/8) 325 ± 36.0 (5/5) W97 Colorado 254 ± 27.1 (5/5) 226 ± 43.9 (7/7) 8905 Wyoming 259 ± 63.3 (8/8) 238 ± 28.6 (8/8) Db99 Colorado 259 ± 11.2 (7/7) 246 ± 15.8 (4/4) 7138 Wyoming 260 ± 46.6 (7/7) 216 ± 22.9 (7/7) CWD Pool Colorado 264 ± 9.3 (7/7) 207 ± 6.0 (6/6) 33968 Colorado 278 ± 27.0 (6/6) 239 ± 19.5 (8/8) H92 Colorado 283 ± 20.4 (6/6) 259 ± 44.6 (8/8) 04-22412 Wyoming 284 ± 54.4 (6/6) 001-39647 Colorado 289 ± 7.9 (5/5) 217 ± 47.1 (8/8) V92 Colorado 310 ± 30.5 (7/7) 288 ± 16.0 (8/8)

Whitetail deer

Wisconsin 200 ± 19.2 (6/6)2 206 ± 3.7 (8/8)

PMCA

Elk 03W1755 Wyoming/Texas3 446 ± 22.6 (5/5)

Deer 04-22412 Wyoming/Texas3 264 ± 73.1 (6/6)

Total CWD14 212 ± 34.1 (n = 64) 206 ± 11.9 (n = 68)

Total CWD24 306 ± 48.5 (n = 78) 286 ± 22.1 (n = 46)

Saline 410 – 597 (0/7)

None 421 – 490 (0/7)

1 The number of mice developing prion disease (n), divided by the number inoculated (n0) is shown in parentheses. Mice dying of causes unrelated to prion disease were excluded.

2 PrPSc in this sample was precipitated with sodium phosphotungstate prior to inoculation.

7

3 Samples originated from Wyoming elk and deer; PMCA was accomplished in Texas.


4 Mean incubation times for primary transmission of naturally-occurring and PMCAgenerated CWD prions were determined in 64 neuropathologically confirmed mice with the CWD1 pattern, and 78 neuropathologically confirmed mice with the CWD2 pattern. Mean incubation times for secondary transmissions of CWD prions were determined in 68 neuropathologically confirmed mice with the CWD1 pattern, and 46 neuropathologically confirmed mice with the CWD2 pattern. For both primary and secondary passages, incubation times of CWD1 and CWD were different (p



http://www.sciencemag.org/cgi/data/science.1187107/DC1/1



P35


ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD


Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5


The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.


http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf




Sunday, April 12, 2009

CWD UPDATE Infection Studies in Two Species of Non-Human Primates and one Environmental reservoir infectivity study and evidence of two strains



http://chronic-wasting-disease.blogspot.com/2009/04/cwd-update-infection-studies-in-two.html






Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease

2008 1: Vet Res. 2008 Apr 3;39(4):41

A prion disease of cervids: Chronic wasting disease

Sigurdson CJ.


snip...


*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,


snip...


full text ;


http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html



From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To:

Cc: "Race, Richard (NIH)" ; ; "Belay,

Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS


Dear Sir/Madam,


In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.

That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091).

Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.


Ermias Belay, M.D.

Centers for Disease Control and Prevention



-----Original Message-----

From:

Sent: Sunday, September 29, 2002 10:15 AM

To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG

HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS



SEE also ;



A. Aguzzi - Chronic Wasting Disease (CWD) also needs to be addressed. Most serious because of rapid horizontal spread and higher prevalence than BSE in UK, up to 15% in some populations. Also may be a risk to humans - evidence that it is not dangerous to humans is thin.



http://www.tseandfoodsafety.org/activities/bse_conference_basel_april_02/2summar




SNIP...END...TSS



Chronic Wasting Disease and Potential Transmission to Humans

Ermias D. Belay,* Ryan A. Maddox,* Elizabeth S. Williams,? Michael W. Miller,? Pierluigi Gambetti,§ and Lawrence B. Schonberger*

*Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ?University of Wyoming, Laramie, Wyoming, USA; ?Colorado Division of Wildlife, Fort Collins, Colorado, USA; and §Case Western Reserve University, Cleveland, Ohio, USA

Suggested citation for this article: Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic wasting disease and potential transmission to humans. Emerg Infect Dis [serial on the Internet]. 2004 Jun [date cited]. Available from:

http://www.cdc.gov/ncidod/EID/vol10no6/03-1082.htm



----------------------------------------------------------


Chronic wasting disease (CWD) of deer and elk is endemic in a tri-corner area of Colorado, Wyoming, and Nebraska, and new foci of CWD have been detected in other parts of the United States. Although detection in some areas may be related to increased surveillance, introduction of CWD due to translocation or natural migration of animals may account for some new foci of infection. Increasing spread of CWD has raised concerns about the potential for increasing human exposure to the CWD agent. The foodborne transmission of bovine spongiform encephalopathy to humans indicates that the species barrier may not completely protect humans from animal prion diseases. Conversion of human prion protein by CWD-associated prions has been demonstrated in an in vitro cell-free experiment, but limited investigations have not identified strong evidence for CWD transmission to humans. More epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions.

snip...full text ;

http://www.cdc.gov/ncidod/EID/vol10no6/03-1082.htm



Volume 12, Number 10-October 2006

Research

Human Prion Disease and Relative Risk Associated with Chronic Wasting Disease

Samantha MaWhinney,* W. John Pape,? Jeri E. Forster,* C. Alan Anderson,?§ Patrick Bosque,?¶ and Michael W. Miller#

*University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA; ?Colorado Department of Public Health and Environment, Denver, Colorado, USA; ?University of Colorado School of Medicine, Denver, Colorado, USA; §Denver Veteran's Affairs Medical Center, Denver, Colorado, USA; ¶Denver Health Medical Center, Denver, Colorado, USA; and #Colorado Division of Wildlife, Fort Collins, Colorado, USA

Suggested citation for this article

The transmission of the prion disease bovine spongiform encephalopathy (BSE) to humans raises concern about chronic wasting disease (CWD), a prion disease of deer and elk. In 7 Colorado counties with high CWD prevalence, 75% of state hunting licenses are issued locally, which suggests that residents consume most regionally harvested game. We used Colorado death certificate data from 1979 through 2001 to evaluate rates of death from the human prion disease Creutzfeldt-Jakob disease (CJD). The relative risk (RR) of CJD for CWD-endemic county residents was not significantly increased (RR 0.81, 95% confidence interval [CI] 0.40-1.63), and the rate of CJD did not increase over time (5-year RR 0.92, 95% CI 0.73-1.16). In Colorado, human prion disease resulting from CWD exposure is rare or nonexistent. However, given uncertainties about the incubation period, exposure, and clinical presentation, the possibility that the CWD agent might cause human disease cannot be eliminated.

snip... full text ;


http://0-www.cdc.gov.mill1.sjlibrary.org/ncidod/EID/vol12no10/06-0019.htm


full text ;


http://chronic-wasting-disease.blogspot.com/2006_12_01_archive.html



CHRONIC WASTING DISEASE BLOG

http://chronic-wasting-disease.blogspot.com/

Labels: , , , ,

Thursday, March 18, 2010

CWD Found in Southwestern North Dakota Deer

CWD Found in Southwestern North Dakota Deer

News Release Archives - March 2010 Return to March 2010 Archive

March 17, 2010 CWD Found in Southwestern North Dakota Deer North Dakota Game and Fish Department officials were notified this morning by the U.S. Department of Agriculture’s Veterinary Services that a sick-looking mule deer taken last fall in western Sioux County has tested positive for chronic wasting disease. This is the first time CWD has been detected in a North Dakota animal.

Dr. Dan Grove, Game and Fish Department wildlife veterinarian, said a hunter in unit 3F2 shot an adult buck that did not appear to be healthy. “As we do with our targeted surveillance efforts, we collected the sample to test for CWD and bovine tuberculosis,” Grove said.

The Game and Fish Department’s targeted surveillance program is an ongoing, year-round effort that tests animals found dead or sick.

“We have been constantly monitoring and enhancing our surveillance efforts for CWD because of its presence in bordering states and provinces,” said Greg Link, Game and Fish Department assistant wildlife division chief.

In addition to targeted surveillance, the department annually collects samples taken from hunter-harvested deer in specific regions of the state. In January, more than 3,000 targeted and hunter-harvested samples were sent to a lab in Minnesota. As of today, about two-thirds of the samples have been tested, with the one positive result. The remaining one-third will be tested over the next month.

Link said monitoring efforts have intensified in recent years and all units have been completed twice throughout the entire state.

“The deer population in unit 3F2 is above management goals, and hunter pressure will continue to be put on the population in that unit again this fall,” Link said. “We are going to be aggressive with licenses and disease surveillance in that unit.”

Since the department’s sampling efforts began in 2002, more than 14,000 deer, elk and moose have tested negative for CWD.

CWD affects the nervous system of members of the deer family and is always fatal. Scientists have found no evidence that CWD can be transmitted naturally to humans or livestock.

http://gf.nd.gov/multimedia/news/2010/03/100315.html


AS far as human transmission for CWD, you will just have to make your own minds up on that. In my opinion, there is as much evidence for transmission of cwd to humans, as there is for scrapie and BSE to humans. it's the friendly fire there from i.e. cwd exposure that concerns me the most, but the did not recall all this cwd positive elk meat FOR THE WELL BEING OF THE DEAD ELK ;

Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

please see ;

RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

___________________________________

PRODUCT a) Elk Meat, Elk Tenderloin, Frozen in plastic vacuum packaging. Each package is approximately 2 lbs., and each case is approximately 16 lbs.; Item number 755125, Recall # F-129-9;

b) Elk Meat, Elk Trim, Frozen; Item number 755155, Recall # F-130-9;

c) Elk Meat, French Rack, Chilled. Item number 755132, Recall # F-131-9;

d) Elk Meat, Nude Denver Leg. Item number 755122, Recall # F-132-9;

e) Elk Meat, New York Strip Steak, Chilled. Item number 755128, Recall # F-133-9;

f) Elk Meat, Flank Steak Frozen. Item number 755131, Recall # F-134-9; CODE Elk Meats with production dates of December 29, 30, and 31 RECALLING FIRM/MANUFACTURER Recalling Firm: Sierra Meats, Reno, NV, by telephone on January 29, 2009 and press release on February 9, 2009. Manufacturer: Noah’s Ark Holding, LLC, Dawson, MN. Firm initiated recall is ongoing. REASON Elk products contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). VOLUME OF PRODUCT IN COMMERCE Unknown DISTRIBUTION NV, CA, TX, CO, NY, UT, FL, OK

___________________________________

END OF ENFORCEMENT REPORT FOR March 18, 2009

###

http://www.fda.gov/Safety/Recalls/EnforcementReports/ucm154840.htm


http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html


http://chronic-wasting-disease.blogspot.com/2009/02/exotic-meats-usa-announces-urgent.html


Potential Venison Exposure Among FoodNet Population Survey Respondents, 2006-2007

Ryan A. Maddox1*, Joseph Y. Abrams1, Robert C. Holman1, Lawrence B. Schonberger1, Ermias D. Belay1 Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA *Corresponding author e-mail: rmaddox@cdc.gov

The foodborne transmission of bovine spongiform encephalopathy to humans, resulting in variant Creutzfeldt-Jakob disease, indicates that humans can be susceptible to animal prion diseases. However, it is not known whether foodborne exposure to the agent causing chronic wasting disease (CWD) in cervids can cause human disease. The United States Foodborne Diseases Active Surveillance Network (FoodNet) conducts surveillance for foodborne diseases through an extensive survey administered to respondents in selected states. To describe the frequency of deer and elk hunting and venison consumption, five questions were included in the 2006-2007 FoodNet survey. This survey included 17,372 respondents in ten states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Of these respondents, 3,220 (18.5%) reported ever hunting deer or elk, with 217 (1.3%) reporting hunting in a CWD-endemic area (northeastern Colorado, southeastern Wyoming, and southwestern Nebraska). Of the 217 CWD-endemic area hunters, 74 (34.1%) were residents of Colorado. Respondents reporting hunting were significantly more likely to be male than female (prevalence ratio: 3.3, 95% confidence interval: 3.1-3.6) and, in general, older respondents were significantly more likely to report hunting than younger respondents. Venison consumption was reported by more than half (67.4%) of the study population, and most venison consumers (94.1%) reported that at least half of their venison came from the wild. However, more than half (59.1%) of the consumers reported eating venison only one to five times in their life or only once or twice a year. These findings indicate that a high percentage of the United States population engages in hunting and/or venison consumption. If CWD continues to spread to more areas across the country, a substantial number of people could potentially be exposed to the infectious agent.

http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf


Tuesday, August 04, 2009

Susceptibilities of Nonhuman Primates to Chronic Wasting Disease

SNIP...

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease

2008 1: Vet Res. 2008 Apr 3;39(4):41

A prion disease of cervids: Chronic wasting disease

Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip...

full text ;

http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html


From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To:

Cc: "Race, Richard (NIH)" ; ; "Belay,

Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was

attached to your email), we did not say CWD in humans will present like

variant CJD.

That assumption would be wrong. I encourage you to read the whole

article and call me if you have questions or need more clarification

(phone: 404-639-3091). Also, we do not claim that "no-one has ever been

infected with prion disease from eating venison." Our conclusion stating

that we found no strong evidence of CWD transmission to humans in the

article you quoted or in any other forum is limited to the patients we

investigated.

Ermias Belay, M.D.

Centers for Disease Control and Prevention

-----Original Message-----

From:

Sent: Sunday, September 29, 2002 10:15 AM

To: rr26k@nih.gov; rrace@niaid.nih.gov; ebb8@CDC.GOV

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG

HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

also,

A. Aguzzi - Chronic Wasting Disease (CWD) also needs to be addressed. Most

serious because of rapid horizontal spread and higher prevalence than BSE in

UK, up to 15% in some populations. Also may be a risk to humans - evidence

that it is not dangerous to humans is thin.

http://www.tseandfoodsafety.org/activities/bse_conference_basel_april_02/2summar


SNIP...END...TSS

Chronic Wasting Disease and Potential Transmission to Humans

Ermias D. Belay,* Ryan A. Maddox,* Elizabeth S. Williams,? Michael W. Miller,? Pierluigi Gambetti,§ and Lawrence B. Schonberger*

*Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ?University of Wyoming, Laramie, Wyoming, USA; ?Colorado Division of Wildlife, Fort Collins, Colorado, USA; and §Case Western Reserve University, Cleveland, Ohio, USA

Suggested citation for this article: Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic wasting disease and potential transmission to humans. Emerg Infect Dis [serial on the Internet]. 2004 Jun [date cited]. Available from:

http://www.cdc.gov/ncidod/EID/vol10no6/03-1082.htm


Chronic wasting disease (CWD) of deer and elk is endemic in a tri-corner area of Colorado, Wyoming, and Nebraska, and new foci of CWD have been detected in other parts of the United States. Although detection in some areas may be related to increased surveillance, introduction of CWD due to translocation or natural migration of animals may account for some new foci of infection. Increasing spread of CWD has raised concerns about the potential for increasing human exposure to the CWD agent. The foodborne transmission of bovine spongiform encephalopathy to humans indicates that the species barrier may not completely protect humans from animal prion diseases. Conversion of human prion protein by CWD-associated prions has been demonstrated in an in vitro cell-free experiment, but limited investigations have not identified strong evidence for CWD transmission to humans. More epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions.

snip...full text ;

http://www.cdc.gov/ncidod/EID/vol10no6/03-1082.htm


Volume 12, Number 10-October 2006

Research

Human Prion Disease and Relative Risk Associated with Chronic Wasting Disease

Samantha MaWhinney,* W. John Pape,? Jeri E. Forster,* C. Alan Anderson,?§ Patrick Bosque,?¶ and Michael W. Miller#

*University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA; ?Colorado Department of Public Health and Environment, Denver, Colorado, USA; ?University of Colorado School of Medicine, Denver, Colorado, USA; §Denver Veteran's Affairs Medical Center, Denver, Colorado, USA; ¶Denver Health Medical Center, Denver, Colorado, USA; and #Colorado Division of Wildlife, Fort Collins, Colorado, USA

Suggested citation for this article

The transmission of the prion disease bovine spongiform encephalopathy (BSE) to humans raises concern about chronic wasting disease (CWD), a prion disease of deer and elk. In 7 Colorado counties with high CWD prevalence, 75% of state hunting licenses are issued locally, which suggests that residents consume most regionally harvested game. We used Colorado death certificate data from 1979 through 2001 to evaluate rates of death from the human prion disease Creutzfeldt-Jakob disease (CJD). The relative risk (RR) of CJD for CWD-endemic county residents was not significantly increased (RR 0.81, 95% confidence interval [CI] 0.40-1.63), and the rate of CJD did not increase over time (5-year RR 0.92, 95% CI 0.73-1.16). In Colorado, human prion disease resulting from CWD exposure is rare or nonexistent. However, given uncertainties about the incubation period, exposure, and clinical presentation, the possibility that the CWD agent might cause human disease cannot be eliminated.

snip... full text ;

http://0-www.cdc.gov.mill1.sjlibrary.org/ncidod/EID/vol12no10/06-0019.htm


full text ;

http://chronic-wasting-disease.blogspot.com/2006_12_01_archive.html


SEE FULL TEXT ;

Tuesday, August 04, 2009 Susceptibilities of Nonhuman Primates to Chronic Wasting Disease

http://chronic-wasting-disease.blogspot.com/2009/08/susceptibilities-of-nonhuman-primates.html


Sunday, April 12, 2009

CWD UPDATE Infection Studies in Two Species of Non-Human Primates and one Environmental reservoir infectivity study and evidence of two strains

http://chronic-wasting-disease.blogspot.com/2009/04/cwd-update-infection-studies-in-two.html




Tuesday, February 09, 2010

Chronic Wasting Disease: Surveillance Update North America: February 2010

http://chronic-wasting-disease.blogspot.com/2010/02/chronic-wasting-disease-surveillance.html


Friday, February 26, 2010

Chronic wasting disease found in Missouri deer February 25, 2010

http://chronic-wasting-disease.blogspot.com/2010/02/chronic-wasting-disease-found-in.html


Thursday, January 21, 2010

Chronic Wasting Disease Found in White-tailed Deer in Virginia

http://chronic-wasting-disease.blogspot.com/2010/01/chronic-wasting-disease-found-in-white.html



Thursday, March 04, 2010

TEN KANSAS DEER CONFIRMED POSITIVE IN CWD TESTS

http://chronic-wasting-disease.blogspot.com/2010/03/ten-kansas-deer-confirmed-positive-in_04.html



In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

3. Prof. A Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. BSE was not reported in the USA.

snip...

CWD occurred principally in two locations, this one at Sybille and in a similar faccility at Fort Collins, Colorado, some 120 miles southwest. It was estimated that in total probably 60-70 cases of CWD have occurred.

It was difficult to gain a clear account of incidence and temporal sequence of events (-this presumably is data awaiting publication - see below) but during the period 1981-1984, 10-15 cases occurred at the Sybille facility.

The moribidity amongst mule deer in the facilities ie. those of the natural potentially exposed group has been about 90% with 100% mortality.

snip...

Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.

see full text 33 pages ;

http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf



http://chronic-wasting-disease.blogspot.com/



TSS

Labels: , , , ,

Sunday, December 06, 2009

Detection of Sub-Clinical CWD Infection in Conventional Test-Negative Deer Long after Oral Exposure to Urine and Feces from CWD+ Deer

Detection of Sub-Clinical CWD Infection in Conventional Test-Negative Deer Long after Oral Exposure to Urine and Feces from CWD+ Deer



Nicholas J. Haley1, Candace K. Mathiason1, Mark D. Zabel1, Glenn C. Telling2, Edward A. Hoover1*

1 Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America, 2 Department of Molecular Biology and Genetics, University of Kentucky, Lexington, Kentucky, United States of America

Abstract Top Background Chronic wasting disease (CWD) of cervids is a prion disease distinguished by high levels of transmissibility, wherein bodily fluids and excretions are thought to play an important role. Using cervid bioassay and established CWD detection methods, we have previously identified infectious prions in saliva and blood but not urine or feces of CWD+ donors. More recently, we identified very low concentrations of CWD prions in urine of deer by cervid PrP transgenic (Tg[CerPrP]) mouse bioassay and serial protein misfolding cyclic amplification (sPMCA). This finding led us to examine further our initial cervid bioassay experiments using sPMCA.

Objectives We sought to investigate whether conventional test-negative deer, previously exposed orally to urine and feces from CWD+ sources, may be harboring low level CWD infection not evident in the 19 month observation period. We further attempted to determine the peripheral PrPCWD distribution in these animals.

Methods Various neural and lymphoid tissues from conventional test-negative deer were reanalyzed for CWD prions by sPMCA and cervid transgenic mouse bioassay in parallel with appropriate tissue-matched positive and negative controls.

Results PrPCWD was detected in the tissues of orally exposed deer by both sPMCA and Tg[CerPrP] mouse bioassay; each assay revealed very low levels of CWD prions previously undetectable by western blot, ELISA, or IHC. Serial PMCA analysis of individual tissues identified that obex alone was positive in 4 of 5 urine/feces exposed deer. PrPCWD was amplified from both lymphoid and neural tissues of positive control deer but not from identical tissues of negative control deer.

Discussion Detection of subclinical infection in deer orally exposed to urine and feces (1) suggests that a prolonged subclinical state can exist, necessitating observation periods in excess of two years to detect CWD infection, and (2) illustrates the sensitive and specific application of sPMCA in the diagnosis of low-level prion infection. Based on these results, it is possible that low doses of prions, e.g. following oral exposure to urine and saliva of CWD-infected deer, bypass significant amplification in the LRS, perhaps utilizing a neural conduit between the alimentary tract and CNS, as has been demonstrated in some other prion diseases.

Citation: Haley NJ, Mathiason CK, Zabel MD, Telling GC, Hoover EA (2009) Detection of Sub-Clinical CWD Infection in Conventional Test-Negative Deer Long after Oral Exposure to Urine and Feces from CWD+ Deer. PLoS ONE 4(11): e7990. doi:10.1371/journal.pone.0007990

Editor: Jiyan Ma, Ohio State University, United States of America

Received: September 29, 2009; Accepted: October 29, 2009; Published: November 24, 2009

Copyright: © 2009 Haley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH/NCRR Ruth L. Kirschstein Institutional T32 R07072-03 and NIH/NIAID NO1-AI-25491-02 (EAH, GCT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: Edward.Hoover@colostate.edu



SNIP...


In summary, we provide evidence for the presence of infectious prions in the brains of conventional prion-assay-negative deer orally exposed 19 months earlier to urine and feces from CWD-infected donor deer. This apparent low level of prion infection was amplified by sPMCA, confirmed by Tg[CerPrP] mouse bioassay, and detected only in the obex region of the brain. These results demonstrate the potential for CWD prion transmission via urine and/or feces, and highlight the application of more sensitive assays such as sPMCA in identification of CWD infection, pathogenesis, and prevalence.




http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0007990




Tuesday, June 16, 2009

Infectious Prions in Pre-Clinical Deer and Transmission of Chronic Wasting Disease Solely by Environmental Exposure


http://chronic-wasting-disease.blogspot.com/2009/06/infectious-prions-in-pre-clinical-deer.html



Molecular Model of Prion Transmission to Humans

Michael Jones, Darren Wight, Rona Barron, Martin Jeffrey, Jean Manson, Christopher Prowse, James W. Ironside, and Mark W. Head

To assess interspecies barriers to transmission of transmissible spongiform encephalopathies (TSEs), we investigated the ability of disease-associated prion proteins (PrPd) to initiate conversion of the human normal cellular form of prion protein of the 3 major PRNP polymorphic variants in vitro. Protein misfolding cyclic amplification showed that conformation of PrPd partly determines host susceptibility.

snip...

Conclusions

Our results are best appreciated in terms of the molecular interaction between seed PrPd and substrate PrPC, specifi cally the species-specific amino acid sequence and PRNP polymorphic status of PrPC and PrPd and the PrPd conformers involved (Table). Regardless of the seed PrP amino acid sequence, the PrPd conformers associated with bovine BSE, ovine BSE, and human vCJD were amplified in the humanized mouse substrate and displayed similar PRNP-129 genotype preferences (PRNP-129MM >PRNP- 129MV >PRNP-129VV). In contrast, the PrPd conformer associated with the ovine scrapie strain, although sharing the same PrP amino acid sequence as the PrPd in ovine BSE, could not be amplified in any of the PRNP humanized mouse substrates but could be amplifi ed in a sheep brain substrate. These observations are consistent with conformation of a TSE agent's PrPd (rather than solely its amino acid sequence) having a role in determining the susceptibility of a host's PrPC to conversion. They similarly suggest that these molecular factors could in turn have a powerful influence on disease susceptibility and incubation time.

To date, all clinical cases of vCJD have occurred in persons with the PRNP-129MM genotype, as might be predicted from the effi ciency of amplification of BSE-related PrPd shown here. Extrapolating from these results, one would predict that the next genotypic group most likely to show susceptibility to the BSE agent would be heterozygous (MV) at codon 129 of the PRNP gene, as previously suggested from the corresponding in vivo transmission studies (14).

In the wake of BSE epidemics in the United Kingdom and elsewhere, enhanced surveillance has identified apparently new TSEs (15), raising concerns regarding animal and human health. PMCA with suitable substrate sources could provide a rapid way to estimate the molecular component of transmission barriers for particular TSE agents between species, including humans. These estimates could thus indicate whether, like classical scrapie, the agents rep- resent little risk for human health or whether, like classical BSE, they represent cause for concern.

http://www.cdc.gov/eid/content/15/12/pdfs/2013.pdf




see more here ;



Saturday, December 05, 2009

Molecular Model of Prion Transmission to Humans


http://creutzfeldt-jakob-disease.blogspot.com/2009/12/molecular-model-of-prion-transmission.html




TSS

Labels: , , , , ,