Monday, September 12, 2022
TAHC Commissioners Adopt Rule Amendments Chronic Wasting Disease and Cattle Entry Requirements
For Immediate Release September 12, 2022
TAHC Commissioners Adopt Rule Amendments Chronic Wasting Disease and Cattle Entry Requirements
AUSTIN, TX – The Texas Animal Health Commission (TAHC) held a regularly scheduled Commission meeting July 26, 2022, at its headquarters in Austin. The following rules were adopted and went into effect September 4, 2022.
Chapter 40, Chronic Wasting Disease The TAHC adopted amendments to clarify, correct and update information regarding chronic wasting disease (CWD) management and the CWD Herd Certification Program (HCP). The amendment to §40.1, Definitions, added "CWD-Exposed Herd" and “CWD-Positive Animal” to the list, and amended the definition for “complete herd inventory.” CWD-Exposed Herd is defined as a herd in which a CWD-positive animal has resided within five years prior to that animal's diagnosis as CWD-positive, as determined by a TAHC or United States Department of Agriculture (USDA) representative. CWD-Positive Animal is defined as an animal that has had a diagnosis of CWD established through official confirmatory testing conducted by the National Veterinary Services Laboratories. To provide clarity and reduce confusion, the term “complete herd inventory” was replaced with “complete physical herd inventory" which is now defined as a visual verification of all animals and identifications to reconcile records maintained by the owner. The definitions were adjusted to align with the federal standards. The amendments to §40.3, Herd Certification Program for Cervidae, are adopted to coincide with the federal standards. The amendment to §40.3(a)(3)(A) changed the timeframe from 72 hours to immediate notification for a herd owner to make a report to the TAHC of farmed or captive cervids that escape or disappear, and for all free-ranging cervids that enter the facility. The amendment to §40.3(c)(7)(C) removed the exception for lowering a herd to First Year status if the animal(s) test results are “not detected” postmortem within the first year after entry into the herd. The amendment to §40.3(d)(1) clarifies that one of the animal identifications must be an “official” form of animal identification approved by USDA. The amendment to §40.3(f)(1)(A) and (C) requires all identification to be visually verified on the animals during an initial inspection and a physical herd inspection. To remove redundancies, the rule in §40.3(a)(4)(C) was repealed and the provision that follows was renumbered accordingly. The adoption updates the term “complete physical herd inventory” and clarifies requirements for all enrollees during the initial inspection and subsequent physical herd inspections or when there is a discrepancy during annual inspections; see §40.3(f)(1)(A-C) for requirements. Non-substantive changes or grammatical corrections were also made in §40.3. Chapter 51, Entry Requirements The adopted amendment is located in §51.3(b)(2) and allows an exception to federal and state interstate cattle movement requirements. Cattle moved interstate must be accompanied by a certificate of veterinary inspection (CVI) in accordance with Texas Agriculture Code §161.054, Title 9 Code of Federal Regulations §86.5, and 4 TAC §51.2(b)(1). Federal regulations allow the movement of cattle without a CVI if the cattle are moved with documentation as agreed upon by animal health officials in the shipping and receiving states. TAHC Commissioners adopted a CVI exception for dairy calves if all parties involved execute and comply with the terms and conditions of the modified movement restriction agreement for 1 to 10-day old dairy calves from a single premises of origin.
Additionally, the existing CVI exception related to equine in §51.3(b) is amended to correct the term equidae to equine and no substantive changes were made.
All rules are available in the Texas Administrative Code under Title 4, Part 2 and the respective chapters. The Texas Administrative Code can be accessed through the TAHC website. ### The Texas Animal Health Commission (TAHC) was established in 1893 as the Livestock Sanitary Commission and charged with protecting the state’s domestic animals “from all contagious or infectious diseases of a malignant character.” TAHC remains true to this charge while evolving with the times to protect the health and marketability of all Texas livestock and poultry. Learn more about the TAHC visit www.tahc.texas.gov.
TUESDAY, JUNE 28, 2022
TAHC PROPOSES CHANGES TO VOLUNTARY CWD PROGRAM CHAPTER 40, CHRONIC WASTING DISEASE SINGELTARY SUBMISSION JUNE 28, 2022
2021 TAHC Chapter 40, Chronic Wasting Disease Terry Singeltary Comment Submission
Texas Chronic Wasting Disease Discovered at a Deer Breeding Facility in Gillespie County
Media Contacts: TAHC Communications public_info@tahc.texas.gov, 512.719.0750 TPWD Press Office news@tpwd.texas.gov, 512.389.8030
For Immediate Release
September 2, 2022
Chronic Wasting Disease Discovered at a Deer Breeding Facility in Gillespie County
AUSTIN, TX – Chronic Wasting Disease (CWD) has been discovered in a deer breeding facility in Gillespie County. The Texas Parks and Wildlife Department (TPWD) and Texas Animal Health Commission (TAHC) are collaboratively working to determine the source and extent of the first positive detection of the disease in this county.
After the mortality of a white-tailed deer on the premises was identified, tissue samples from the one-year-old buck were submitted by the deer breeding facility as part of a required CWD surveillance program. The samples were tested at the Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) in College Station on August 17 and indicated the presence of CWD. The National Veterinary Services Laboratory in Ames, Iowa confirmed CWD in those tissue samples on August 30.
Immediate action has been taken to secure all deer located at the facility and plans to conduct additional CWD investigations are underway. Additionally, other breeding facilities that received deer or shipped deer to this facility, during the last five years, have been identified and placed under movement restrictions.
“Response staff are diligently working to conduct epidemiological investigations, but the nature of the disease makes definitive findings difficult to determine,” said Dr. Andy Schwartz, TAHC State Veterinarian. “The incubation period of CWD can span years creating disease detection and management challenges.”
Animal health and wildlife officials will investigate to determine the extent of the disease within the facility and mitigate risks to Texas’ CWD susceptible species. Quick detection of CWD can help mitigate the disease’s spread.
“The discovery of CWD in this breeding facility is an unfortunate situation that TPWD and TAHC take very seriously,” said John Silovsky, Wildlife Division Director for TPWD. “Both agencies will respond appropriately to this matter to protect the state’s susceptible species from further disease exposure.”
First recognized in 1967 in captive mule deer in Colorado, CWD has since been documented in captive and/or free-ranging deer in 30 states and three Canadian provinces. To date, 376 captive or free-ranging cervids — including white-tailed deer, mule deer, red deer and elk — in 15 Texas counties have tested positive for CWD. For more information on previous detections visit the CWD page on the TPWD website.
Testing for CWD allows wildlife biologists and animal health officials to get a clearer picture of the prevalence and distribution of the disease across Texas. Proactive monitoring improves the state’s response time to a CWD detection and can greatly reduce the risk of the disease further spreading to neighboring captive and free-ranging populations. With each discovery of a new CWD positive area in the state, CWD zones are established as a strategy to manage and contain the disease. TPWD officials will be working towards delineating and establishing a new zone in Gillespie County to be implemented later this fall.
Hunters in surveillance and containment zones must meet submission requirements of harvested CWD susceptible species. TPWD will be providing additional information to landowners and hunters in Gillespie County regarding CWD sampling locations and options to have their deer tested. Additionally, hunters outside of established surveillance and containment zones are encouraged to voluntarily submit their harvest for testing at a check station, for free, before heading home from the field. A map of TPWD check stations for all CWD zones can be found on the TPWD website.
CWD is a fatal neurological disease found in certain cervids, including deer, elk, moose and other members of the deer family. The disease is highly transmissible and can remain infectious on the landscape for several years. If left unmanaged, CWD can have long-term impacts on the native deer herd and local economies. Clinical signs may include progressive weight loss, stumbling or tremors with a lack of coordination, excessive thirst, salivation or urination, loss of appetite, teeth grinding, abnormal head posture and/or drooping ears. These signs may not become evident until long after animals have become infected. Therefore, testing is the best tool available for detecting CWD at an early stage and containing it with appropriate management strategies.
To date there is no evidence that CWD poses a risk to humans or non-cervids. However, as a precaution, the U.S. Centers for Disease Control and the World Health Organization recommend not to consume meat from infected animals.
For more information about CWD, visit the TPWD web site or the TAHC web site.
###
Texas CWD Count As Of Late August 2022 Totals 376 TPWC Implements Two Year Surveillance Zone Four Counties
TPW Commission Implements Two Year Chronic Wasting Disease Surveillance Zone in Four Counties
Sept. 1, 2022 Media Contact: TPWD News, Business Hours, 512-389-8030
AUSTIN— A surveillance zone covering almost 200,000 acres in Duval, Jim Wells, Live Oak and McMullen counties will be implemented for two years after feedback was received in the August meeting of the Texas Parks and Wildlife (TPW) Commission. This zone will take effect prior to the 2022-2023 hunting season and TPW commissioners will consider the resulting data presented by Texas Parks and Wildlife Department (TPWD) staff to assess the need for continued surveillance in the established zone.
This zone will include land between U.S. Highway 281 to the east, Farm to Market Road 624 to the north and U.S. Highway 59 to the west. The southern border follows a series of roads including County Road 101, Highway 44, County Roads 145, 172, 170, and 120.
This zone also includes the cities of Alice and Freer, as well as highways 59, 44, and 281 between the cities and the main body of the surveillance zone. This will provide a legal means for hunters to transport whole carcasses to deer-processing facilities and/or CWD check stations located in those cities rather than having to quarter the carcasses first.
As of late August 2022, 376 captive or free-ranging cervids — including white-tailed deer, mule deer, red deer and elk — in 15 Texas counties have tested positive for CWD. First recognized in 1967 in captive mule deer in Colorado, CWD has since been documented in captive and/or free-ranging deer in 30 states and three Canadian provinces.
Testing for CWD allows wildlife biologists to get a clearer picture of the presence of the disease statewide. Proactive monitoring improves the state’s response time to a CWD detection and can greatly reduce the risk of the disease spreading to neighboring captive and free-ranging deer populations.
Hunters outside of established surveillance and containment zones are encouraged to voluntarily submit their harvest for testing at a check station for free before heading home from the field. A map of TPWD check stations can be found on the TPWD website.
CWD is a fatal neurological disease found in certain cervids, including deer, elk, moose and other members of the deer family. The disease is highly contagious, never goes dormant and can remain infectious on the landscape for several years. If left unmanaged, CWD can have long-term impacts on the native deer herd and local economies. Symptoms may not become evident until long after animals have become infected, so testing is the best tool available for detecting CWD at the earliest stage of infection possible and containing it with appropriate management strategies. Clinical signs may include progressive weight loss, stumbling or tremors with a lack of coordination, excessive thirst, salivation or urination, loss of appetite, teeth grinding, abnormal head posture and/or drooping ears.
To date there is no evidence that CWD poses a risk to humans or non-cervids. However, as a precaution, the U.S. Centers for Disease Control and the World Health Organization recommend against consuming meat from infected animals.
For more information about CWD, visit the TPWD web site or the TAHC web site.
CWD Positives in Texas
CWD Positive
Confirmation Date Free Range/Captive County Source Species Sex Age
pending Breeder Deer Hunt Facility #9 White-tailed Deer F 3.9
pending Breeder Deer Hunt Facility #9 White-tailed Deer M 1.8
N/A Free Range Hartley N/A Mule Deer M 5.5
2022-05-27 Free Range El Paso N/A Mule Deer M 3.5
2022-05-25 Free Range El Paso N/A Mule Deer M 4.5
2022-04-21 Breeder Release Site Medina Facility #4 White-tailed Deer M 4.5
2022-04-21 Breeder Release Site Medina Facility #4 White-tailed Deer M 4.5
2022-04-07 Free Range El Paso N/A Mule Deer F 4.5
2022-04-07 Free Range Hudspeth N/A Mule Deer M 8.5
2022-02-28 Breeder Deer Hunt Facility #9 White-tailed Deer M 1.9
2022-02-18 Breeder Deer Kimble Facility #6 White-tailed Deer Unknown 3.5
2022-01-25 Free Range Medina N/A White-tailed Deer F 5.5
2022-01-12 Breeder Deer Hunt Facility #9 White-tailed Deer M 1.5
2022-01-12 Breeder Deer Hunt Facility #9 White-tailed Deer F 3.5
2022-01-12 Breeder Release Site Medina Facility #3 Red Deer F 4.5
2022-01-12 Free Range Hartley N/A White-tailed Deer M 3.5
2022-01-12 Free Range Hartley N/A Mule Deer M 5.5
2022-01-12 Free Range Hartley N/A Mule Deer M 4.5
2022-01-12 Free Range Hartley N/A Mule Deer M 5.5
2022-01-12 Free Range Hartley N/A Mule Deer F 3.5
2022-01-12 Breeder Deer Kimble Facility #6 White-tailed Deer Unknown 5.5
2022-01-12 Free Range Hartley N/A Mule Deer M 3.5
2022-01-12 Free Range Hartley N/A Mule Deer M 7.5
2022-01-10 Free Range Medina N/A White-tailed Deer M 4.5
2022-01-10 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.3
2022-01-10 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 5.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 2.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer F 1.4
2022-01-07 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 5.4
2022-01-06 Free Range Medina N/A White-tailed Deer M 2.5
2021-12-28 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2021-12-28 Breeder Deer Uvalde Facilities #7 & 8 White-tailed Deer M 3.4
2021-12-13 Free Range Medina N/A White-tailed Deer M 3.5
2021-12-13 Breeder Deer Duval Facility #13 White-tailed Deer F 4.4
Showing 1 to 100 of 369
National CWD Tracking Map
snip... see full listing of CWD positives at;
“Regarding the current situation involving CWD in permitted deer breeding facilities, TPWD records indicate that within the last five years, the seven CWD-positive facilities transferred a total of 2,530 deer to 270 locations in 102 counties and eight locations in Mexico (the destinations included 139 deer breeding facilities, 118 release sites, five Deer Management Permit sites, and three nursing facilities).'' ...
It is apparent that prior to the recent emergency rules, the CWD detection rules were ineffective at detecting CWD earlier in the deer breeding facilities where it was eventually discovered and had been present for some time; this creates additional concern regarding adequate mitigation of the risk of transferring CWD-positive breeder deer to release sites where released breeder deer come into contact with free-ranging deer...
Commission Agenda Item No. 5 Exhibit B
DISEASE DETECTION AND RESPONSE RULES
PROPOSAL PREAMBLE
1. Introduction.
snip...
***> A third issue is the accuracy of mortality reporting. Department records indicate that for each of the last five years an average of 26 deer breeders have reported a shared total of 159 escapes. Department records for the same time period indicate an average of 31 breeding facilities reported a shared total of 825 missing deer (deer that department records indicate should be present in the facility, but cannot be located or verified).
Counties where CWD Exposed Deer were Released, September 2021
Number of CWD Exposed Deer Released by County, September 2021
CHRONIC WASTING DISEASE CASESCWD - STATUS OF CAPTIVE HERDS Updated July 2022
WEDNESDAY, SEPTEMBER 07, 2022
Exploring the possibility of CWD transmission through artificial insemination of semen from CWD positive bucks
TUESDAY, DECEMBER 31, 2019
In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus
TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if?
SUNDAY, FEBRUARY 16, 2020
***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion?
THURSDAY, JULY 10, 2014
supercalifragilisticexpialidocious or superovulationcwdtsepriondocious ?
(It was noted with concern that hormone extracts could be manufactured by a veterinary surgeon for administration to animals under his care without any Medicines Act Control.) PITUITARY EXTRACT This was used to help cows super ovulate.
*** This tissue was considered to be of greatest risk of containing BSE and consequently transmitting the disease. ***
http://www.bseinquiry.gov.uk/files/yb/1988/06/08011001.pdf
http://web.archive.org/web/20090718143059/http://www.bseinquiry.gov.uk/files/yb/1988/06/08011001.pdf
MONDAY, MAY 02, 2022
SUMMARY MINUTES OF THE 412th COMMISSION MEETING Texas Animal Health Commission TAHC CWD TSE PrP Update
SATURDAY, APRIL 30, 2022
H.R.5608 - Chronic Wasting Disease Research and Management Act 117th Congress (2021-2022) Singeltary Submission
PRICE OF CWD TSE PRP POKER GOES UP, WHO'S ALL IN$$$
just out!
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Samia Hannaoui1 · Irina Zemlyankina1 · Sheng Chun Chang1 · Maria Immaculata Arifn1 · Vincent Béringue2 · Debbie McKenzie3 · Hermann M. Schatzl1 · Sabine Gilch1
Received: 24 May 2022 / Revised: 5 August 2022 / Accepted: 7 August 2022
© The Author(s) 2022
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Keywords Chronic wasting disease · CWD · Zoonotic potential · Prion strains · Zoonotic prions
HIGHLIGHTS OF THIS STUDY
================================
Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
In this study, we evaluated the zoonotic potential of CWD using a transgenic mouse model overexpressing human M129-PrPC (tg650 [12]). We inoculated tg650 mice intracerebrally with two deer CWD isolates, Wisc-1 and 116AG [22, 23, 27, 29]. We demonstrate that this transgenic line was susceptible to infection with CWD prions and displayed a distinct leading clinical sign, an atypical PrPSc signature and unusual fecal shedding of infectious prions. Importantly, these prions generated by the human PrP transgenic mice were transmissible upon passage. Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for infection. We demonstrated in a human transgenic mouse model that the species barrier for transmission of CWD to humans is not absolute. The fact that its signature was not typical raises the questions whether CWD would manifest in humans as a subclinical infection, whether it would arise through direct or indirect transmission including an intermediate host, or a silent to uncovered human-to-human transmission, and whether current detection techniques will be sufficient to unveil its presence.
Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.
Our results indicate that if CWD crosses the species-barrier to humans, it is unlikely to resemble the most common forms of human prion diseases with respect to clinical signs, tissue tropism and PrPSc signature. For instance, PrPSc in variable protease-sensitive prionopathy (VPSPr), a sporadic form of human prion disease, and in the genetic form Gerstmann-Sträussler-Scheinker syndrome (GSS) is defined by an atypical PK-resistant PrPSc fragment that is non-glycosylated and truncated at both C- and N-termini, with a molecular weight between 6 and 8 kDa [24, 44–46]. These biochemical features are unique and distinctive from PrPSc (PrP27-30) found in most other human or animal prion disease. The atypical PrPSc signature detected in brain homogenate of tg650 mice #321 (1st passage) and #3063 (2nd passage), and the 7–8 kDa fragment (Figs. 2, 4) are very similar to that of GSS, both in terms of migration profile and the N-terminal cleavage site.
CWD in humans might remain subclinical but with PrPSc deposits in the brain with an unusual morphology that does not resemble the patterns usually seen in different prion diseases (e.g., mouse #328; Fig. 3), clinical with untraceable abnormal PrP (e.g., mouse #327) but still transmissible and uncovered upon subsequent passage (e.g., mouse #3063; Fig. 4), or prions have other reservoirs than the usual ones, hence the presence of infectivity in feces (e.g., mouse #327) suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.
suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.
These findings have strong implications for public health and CWD management.
=================================
Supplementary Information The online version contains supplementary material available at
snip...see full text;
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data.
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison.
Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿
Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations
In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease
Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
Research Paper
Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer
Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzieORCID Icon show less
Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022
Download citation
ABSTRACT
Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.
TUESDAY, AUGUST 23, 2022
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
These findings have strong implications for public health and CWD management.
snip...see full text;
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Thursday, October 28, 2021
Chronic Wasting Disease (CWD) TSE Prion Zoonosis, friendly fire, iatrogenic transmission, blood products, sporadic CJD, what if?
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION MAD COW TYPE DISEASE
THE tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
ENVIRONMENT FACTORS FOR THE TRANSMISSION OF CWD TSE PRP
Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces
Environment International
Available online 13 June 2022, 107347
Environment International
Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces
Qi Yuana Gag e Rowdenb Tiffany M.Wolfc Marc D.Schwabenlanderb Peter A.LarsenbShannon L.Bartelt-Huntd Jason C.Bartza
a Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178, United States of America
b Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, United States of America
c Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, United States of America
d Department of Civil and Environmental Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, 68182, United States of America
Received 26 April 2022, Revised 8 June 2022, Accepted 9 June 2022, Available online 13 June 2022.
Highlights • An innovative method for prion recovery from swabs was developed.
• Recovery of prions decreased as swab-drying time was increased.
• Recovery of CWD prions from stainless steel and glass was approximately 30%.
• RT-QuIC enhanced CWD prion detection by 4 orders of magnitude.
• Surface-recovered CWD prion was sufficient for efficient RT-QuIC detection.
Abstract
Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.
snip...
5. Conclusions
Chronic wasting disease is spreading in North America and it is hypothesized that in CWD-endemic areas environmental persistence of CWD prions can exacerbate disease transmission. The development of a sensitive CWD prion detection method from environmentally relevant surfaces is significant for monitoring, risk assessment, and control of CWD. In this study, we developed a novel swab-extraction procedure for field deployable sampling of CWD prions from stainless steel, glass, and wood. We found that extended swab-drying was unfavorable for extraction, indicating that hydrated storage of swabs after sampling aided in prion recovery. Recoverable CWD prions from stainless steel and glass was approximately 30%, which was greater than from wood. RT-QuIC analysis of the swab extracts resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude compared to conventional immunodetection techniques. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this developed method was similar to the original CWD prion load without surface contact. This method of prion sampling and recovery, in combination with ultrasensitive detection methods, allows for prion detection from contaminated environmental surfaces.
Research Paper
Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer
Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzie
ORCID Icon show less
Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022
Download citation
ABSTRACT
Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.
KEYWORDS: Prion chronic wasting diseasesex differences species differences disease prevalence cervid protein expression glands
Paper
Rapid recontamination of a farm building occurs after attempted prion removal
Kevin Christopher Gough BSc (Hons), PhD Claire Alison Baker BSc (Hons) Steve Hawkins MIBiol Hugh Simmons BVSc, MRCVS, MBA, MA Timm Konold DrMedVet, PhD, MRCVS … See all authors
First published: 19 January 2019 https://doi.org/10.1136/vr.105054
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
snip...
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
***>This is very likely to have parallels with control efforts for CWD in cervids.
***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years
***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.
JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12
Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free
Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3
Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1
The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.
snip...
Discussion
snip...
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
***> 172. Establishment of PrPCWD extraction and detection methods in the farm soil
Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn
Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea
Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
MONDAY, APRIL 19, 2021
Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat® process, AT) ???
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
THURSDAY, FEBRUARY 28, 2019
BSE infectivity survives burial for five years with only limited spread
5 or 6 years quarantine is NOT LONG ENOUGH FOR CWD TSE PRION !!!
QUARANTINE NEEDS TO BE 21 YEARS FOR CWD TSE PRION !
FRIDAY, APRIL 30, 2021
Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?
***> Confidential!!!!
***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
and so it seems...
Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years
Published: May 9, 2007
snip...
Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.
snip...
Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document
Heading Off a Wildlife Epidemic
Charles E. Gilliland (Aug 18, 2021)
The Takeaway
Landowners in certain parts of the state need to be aware of chronic wasting disease, which can greatly reduce the number of deer. While there are no known cures or ways to eradicate the disease, the Texas Parks and Wildlife Department is taking measures to reduce its spread.
A multitude of risks threaten to undermine Texas landowners' efforts to manage their land. Some of those spring from past activities but can leave invisible living legacies behind. Anthrax, for example. An outbreak of anthrax in livestock leaves a scattering of spores across the countryside that can activate and infect replacement herds.
Chronic wasting disease (CWD) in wildlife poses a similar potential problem for landowners in certain parts of Texas. CWD infects members of the Cervidae family, namely deer, elk, moose, etc. CWD does not pose dangers to livestock, and scientists have not found evidence of the disease infecting humans. However, it is always fatal to stricken wildlife, threatening a destructive wave of infections among deer herds where the disease has spread. Therefore, CWD poses a direct threat to one of the primary motives for owning rural land: wildlife herd management.
Profiling CWD
CWD belongs to a family of disorders known as prion diseases, or transmissible spongiform encephalopathies (TSEs). It includes Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, or mad cow disease, in cattle. The Centers for Disease Control and Prevention describes these maladies in detail:
The causative agents of TSEs are believed to be prions. The term “prions" refers to abnormal, pathogenic agents that are transmissible and are able to induce abnormal folding of specific normal cellular proteins called prion proteins that are found most abundantly in the brain. The functions of these normal prion proteins are still not completely understood. The abnormal folding of the prion proteins leads to brain damage and the characteristic signs and symptoms of the disease. Prion diseases are usually rapidly progressive and always fatal.
CWD symptoms include dramatic weight loss, stumbling, listlessness, decreased social interaction, loss of fear of humans, and excessive salivating. However, animals typically exhibit no symptoms until 18-24 months after contracting the disease. In addition, these symptoms could be caused by other conditions, so formal testing is needed to reliably diagnose CWD.
Obviously, an infected animal may spread the disease to other members of the herd during the nonsymptomatic phase of infection. Perhaps even worse, the body casts off prions, so an infected animal will cast off diseased prions. Therefore, an infected herd can leave infection in the soil and remain infectious to host animals, much like anthrax.
CWD Comes to Texas
Scientists first identified CWD in mule deer in Colorado in 1967. Since that time, CWD has spread to Wyoming, Montana, Wisconsin, Pennsylvania, and other states.
CWD first appeared in Hudspeth County in 2012 in free-ranging mule deer. In 2015, the Texas Parks and Wildlife Department (TPWD) found CWD in white-tailed deer in captive facilities in Medina County. By 2021, a total of 224 cases had been identified in 13 counties. Tests confirmed cases in two red deer, four elk, 49 mule deer, and 169 white-tailed deer.
See the TPWD site for details. Texas A&M AgriLife Extension provides a good overview of the disease in A Guide to Chronic Wasting Disease (CWD) in Texas Cervids.
Containing the Spread
Currently, there is no known cure for the disease nor any mechanism to eradicate it. Therefore, TPWD management of CWD seeks to contain the spread to areas of confirmed infections.
The plan has established five CWD zones with confirmed infections: Kimble County Zone, Trans-Pecos Zone, South Central Zone, Panhandle Zone, and Val Verde County Zone. The latest edition of the TPWD Outdoor Annual provides maps of each zone indicating official stations performing testing for CWD. All hunters harvesting animals in these zones must take them to one of these stations to have them tested for CWD within 48 hours of the harvest. In addition, hunters can transport carcasses out of the zones only after all brain and spinal cord tissue have been removed. TPWD will provide a receipt for the sample.
Because the spread of CWD is evolving, regulations can change quickly. Therefore, anyone involved in hunting activity should consult the most recent Outdoor Annual for the latest regulations. To reduce the chances of spreading the disease, TPWD regulations also restrict the movement of live deer from CWD zones.
Impact on Rural Landowners
CWD poses a significant threat to the future of hunting in Texas. Deer population declines of 45 and 50 percent have been documented in Colorado and Wyoming. A broad infection of Texas deer populations resulting in similar population impacts would inflict severe economic damage to rural communities and could negatively impact land markets. Specifically, those landowners seeking to establish a thriving herd of deer could avoid buying in areas with confirmed CWD infections.
As they do with anthrax-susceptible properties, land brokers may find it advisable to inquire about the status of CWD infections on properties that they present for sale. Prospective buyers should also investigate the status of the wildlife on prospective properties. In addition, existing landowners should monitor developments as TPWD crafts management strategies to identify and contain this deadly disease.
Dr. Gilliland (c-gilliland@tamu.edu) is a research economist with the Texas Real Estate Research Center at Texas A&M University.
Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces
Environment International
Available online 13 June 2022, 107347
Environment International
Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces
Qi Yuana Gag e Rowdenb Tiffany M.Wolfc Marc D.Schwabenlanderb Peter A.LarsenbShannon L.Bartelt-Huntd Jason C.Bartza
a Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178, United States of America
b Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, United States of America
c Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, United States of America
d Department of Civil and Environmental Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, 68182, United States of America
Received 26 April 2022, Revised 8 June 2022, Accepted 9 June 2022, Available online 13 June 2022.
Get rights and content
Under a Creative Commons license Open access
Highlights • An innovative method for prion recovery from swabs was developed.
• Recovery of prions decreased as swab-drying time was increased.
• Recovery of CWD prions from stainless steel and glass was approximately 30%.
• RT-QuIC enhanced CWD prion detection by 4 orders of magnitude.
• Surface-recovered CWD prion was sufficient for efficient RT-QuIC detection.
Abstract
Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.
snip...
5. Conclusions
Chronic wasting disease is spreading in North America and it is hypothesized that in CWD-endemic areas environmental persistence of CWD prions can exacerbate disease transmission. The development of a sensitive CWD prion detection method from environmentally relevant surfaces is significant for monitoring, risk assessment, and control of CWD. In this study, we developed a novel swab-extraction procedure for field deployable sampling of CWD prions from stainless steel, glass, and wood. We found that extended swab-drying was unfavorable for extraction, indicating that hydrated storage of swabs after sampling aided in prion recovery. Recoverable CWD prions from stainless steel and glass was approximately 30%, which was greater than from wood. RT-QuIC analysis of the swab extracts resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude compared to conventional immunodetection techniques. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this developed method was similar to the original CWD prion load without surface contact. This method of prion sampling and recovery, in combination with ultrasensitive detection methods, allows for prion detection from contaminated environmental surfaces.
Research Paper
Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer
Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzie
ORCID Icon show less
Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022
Download citation
ABSTRACT
Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.
KEYWORDS: Prion chronic wasting diseasesex differences species differences disease prevalence cervid protein expression glands
FRIDAY, APRIL 30, 2021
Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?
***> Confidential!!!!
***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
WEDNESDAY, MAY 17, 2017
*** Chronic Wasting Disease CWD TSE Prion aka Mad Deer Disease and the Real Estate Market Land Values ***
MONDAY, MARCH 05, 2018
TRUCKING AROUND AND SPREADING CHRONIC WASTING DISEASE CWD TSE PRION VIA MOVEMENT OF CERVID AND TRANSPORTATION VEHICLES
TUESDAY, JUNE 28, 2022
TAHC PROPOSES CHANGES TO VOLUNTARY CWD PROGRAM CHAPTER 40, CHRONIC WASTING DISEASE SINGELTARY SUBMISSION JUNE 28, 2022
***> TEXAS HISTORY OF CWD <***
Singeltary telling TAHC, that CWD was waltzing into Texas from WSMR around Trans Pecos region, starting around 2001, 2002, and every year, there after, until New Mexico finally shamed TAHC et al to test where i had been telling them to test for a decade. 2012 cwd was detected first right there where i had been trying to tell TAHC for 10 years.
***> Singeltary on Texas Chronic Wasting Disease CWD TSE Prion History <***
FRIDAY, JULY 15, 2022
Texas Chronic Wasting Disease CWD TSE Prion Positives Increase By 8 to 369 TOTAL Confirmed To Date
MONDAY, AUGUST 29, 2022
Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies 2021 Annual Report
Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission
Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification
Sunday, January 10, 2021
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission
Greetings APHIS et al,
I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.
THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal.
Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban.
The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.
WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.
WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.
AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...
Tuesday, May 31, 2022
89th General Session of the World Assembly of OIE Delegates image for WOAH General Summit 2022 Chronic Wasting Disease CWD TSE Prion Discussions and Concerns
Published: 06 September 2021
***> Chronic wasting disease: a cervid prion infection looming to spillover
Alicia Otero, Camilo Duque Velásquez, Judd Aiken & Debbie McKenzie
Veterinary Research volume 52, Article number: 115 (2021)
***> cattle, pigs, sheep, cwd, tse, prion, oh my!
***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006).
Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip.....
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip.....
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip.....
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip.....
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip.....
CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
See what DEFRA says;
For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
THURSDAY, SEPTEMBER 01, 2022
Texas CWD Count As Of Late August 2022 Totals 376 TPWC Implements Two Year Surveillance Zone Four Counties
TEXAS CWD STRAIN
77. Assessing chronic wasting disease strain differences in free-ranging cervids across the United States
Kaitlyn M. Wagnera, Caitlin Ott-Connb, Kelly Strakab, Bob Dittmarc, Jasmine Battend, Robyn Piercea, Mercedes Hennessya, Elizabeth Gordona, Brett Israela, Jenn Ballarde and Mark D Zabela
aPrion Research Center at Colorado State University; bMichigan Department of Natural Resources; cTexas Parks and Wildlife Department; dMissouri Department of Conservation, 5. Arkansas Game and Fish Commission CONTACT Kaitlyn M. Wagner miedkait@rams.colostate.edu
ABSTRACT
Background/Introduction: Chronic wasting disease (CWD) is an invariably fatal prion disease affecting captive and free-ranging cervids, including white-tailed deer, mule deer, moose, elk, and reindeer. Since the initial description of the disease in the 1960’s, CWD has spread to 23 states, 3 Canadian Provinces, South Korea, Norway and, most recently, Finland. While some outbreaks of CWD were caused by transport of infected animals from endemic regions, the origin of CWD in other epizootics is unclear and has not been characterized. Previous studies have shown that there are two distinct strains of CWD. However, the continuous spread and the unclear origin of several outbreaks warrant continued surveillance and further characterization of strain diversity.
Materials and Methods: To address these knowledge gaps, we used biochemical tests to assess strain differences between CWD outbreaks in Michigan, Texas, Missouri, and Colorado, USA. Brain or lymph node samples were homogenized and digested in 50 µg/mL proteinase K (PK). These samples were then run on a Western blot to assess glycoform ratio and electrophoretic mobility. Texas samples were digested in 100 µg/mL PK. To assess conformational stability, brain or lymph node homogenates were incubated in increasing concentrations of guanidine hydrochloride from 0 M to 4 M in 0.5 M increments. Samples were then precipitated in methanol overnight, washed and PK digested in 50 µg/mL PK before slot blotting.
Results: Our results have found significant differences in glycoform ratio between CWD from Michigan and Colorado, but no differences were observed in conformational stability assays. Interestingly, when testing our CWD isolates from Texas to analyse electrophoretic mobility and glycoform ratio, we found that these samples did not exhibit the characteristic band shift when treated with PK, but PK resistant material remained. Additionally, results from our conformational stability assay demonstrate a unique profile of these Texas isolates. Testing of samples from Missouri is currently underway.
Conclusions: Thus far, our data indicate that there are strain differences between CWD circulating in Michigan and CWD in Colorado and provide important insight into CWD strain differences between two non-contiguous outbreaks. We have also identified a unique strain of CWD in Texas with biochemical strain properties not seen in any of our other CWD isolates. These results highlight the importance of continued surveillance to better understand this devastating disease. These results have important implications for CWD emergence, evolution and our understanding of prion strain heterogeneity on the landscape.
SEE VIDEOS!
2004
Jeff Swann and his Mom, cwd link... sporadic CJD? CBC NEWS Jeff Schwan sCJD, CWD, and Professor Aguzzi on BSE and sporadic CJD
CBCnews
2004
April 22, 2004, 10:30 AM CDT
Guests: Patrick Singh, Terry Schwan, Janet Skarbek, Bill Fielding
(BEGIN VIDEOTAPE)
ANNOUNCER: DEBORAH NORVILLE TONIGHT.
TUESDAY, MAY 11, 2021
A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet
Monday, April 12, 2021
Improving the Predictive Value of Prion Inactivation Validation Methods to Minimize the Risks of Iatrogenic Transmission With Medical Instruments
THURSDAY, DECEMBER 16, 2021
Detection of CWD prions in naturally infected white‑tailed deer fetuses and gestational tissues by PMCA
THURSDAY, DECEMBER 16, 2021
RT‑QuIC detection of CWD prion seeding activity in white‑tailed deer muscle tissues
SUNDAY, MAY 08, 2022
USA National Prion Disease Pathology Surveillance Center Surveillance Update April 11th, 2022
FRIDAY, SEPTEMBER 02, 2022
Texas Chronic Wasting Disease Discovered at a Deer Breeding Facility in Gillespie County
MONDAY, SEPTEMBER 12, 2022
OKLAHOMA ODWC ACTIVATES CWD RESPONSE PLAN AFTER DISEASED DEER FOUND WITHIN MILES OF PANHANDLE
Terry S. Singeltary Sr., Bacliff, Texas USA 77518 flounder9@verizon.net