Monday, February 28, 2011

South Dakota finds 25 more cases of Chronic Wasting Disease

Latest Chronic Wasting Disease Testing REsults

In the South Dakota CWD Surveillance period of July 1, 2010 - Jan. 31, 2011 a total of 1,650 samples have been collected for CWD surveillance. In addition, 71 samples were collected from North Dakota hunters in cooperation with the North Dakota Game and Fish Department.

Breakdown of the S.D. sampling is as follows:

243 elk sampled - 236 results returned as NOT Positive; 4 results pending; 3 positive

332 mule deer sampled - 324 results returned as NOT Positive; 8 positive

1075 white-tailed deer - 1061 results returned as NOT Positive; 14 positive

Below is a listing of the Positive cervids that have been found in South Dakota so far during the surveillance period.

Mule Deer male from Unit 27B in Fall River County. (Hunter harvest)

Elk female from unit H3E in Custer County. (Hunter Harvest)

Mule Deer male from Unit 27B in Fall River County. (Hunter Harvest)

Whitetail Deer mail from Unit 27B in Fall River County (Hunter Harvest Mule Deer male from unit 27A in Custer County. (Hunter Harvest)

Mule Deer female from unit 27A in Fall River County. (Hunter Harvest)

Whitetail Deer female from unit 27B in Fall River County. (Hunter Harvest)

Mule Deer male from unit 27B in Fall River County. (Hunter Harvest)

Whitetail Deer male from unit 27B in Fall River County. (Hunter Harvest)

Whitetail Deer female from unit BD4 in Custer County. (Hunter Harvest)

Whitetail Deer female from unit 27A in Fall River County. (Hunter Harvest)

Whitetail Deer male from unit 27A in Fall River County. (Hunter Harvest)

Mule Deer male from unit 21A in Custer County. (Hunter harvest)

Whitetail Deer female from Custer City Limits in Custer County. (City Deer Removal)

Mule Deer female from Rapid City Limits in Pennington County. (City Deer Removal)

Whitetail Deer female from Custer City Limits in Custer County. (City Deer Removal)

Whitetail Deer female from Unit 27B in Fall River County. (Hunter Harvest)

Elk male from Wind Cave National Park in Custer County. (Rut Mortality)

Mule Deer female from Wind Cave National Park in Custer County. (Vehicle Kill)

Elk male from Wind Cave National Park in Custer County (Sick/Surveillance)

To date, South Dakota has found 165 cases of CWD (118 deer and 47 elk) in free ranging deer and elk since testing began in 1997. Wind Cave National Park accounts for 34 of these animals (25 elk, 9 deer). Four elk and 1 deer have been found in Custer State Park. A total of 23,143 wild deer and elk have been tested for CWD since 1997.

Hunters may get their animal tested for chronic wasting disease by making their own arrangements directly through the SDSU Diagnostic Lab at 605.688.5171

http://gfp.sd.gov/wildlife/diseases/chronic-wasting-disease/cwd-testing-results.aspx


http://gfp.sd.gov/wildlife/diseases/chronic-wasting-disease/


Thursday, May 20, 2010

South Dakota CWD cases mounting

http://chronic-wasting-disease.blogspot.com/2010/05/south-dakota-cwd-cases-mounting.html



PLEASE NOTE THAT CWD HAS BEEN FOUND IN MUSCLE MEAT AND IN THE FAT OF DEER !

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease

Rachel C. Angers1,*, Shawn R. Browning1,*?, Tanya S. Seward2, Christina J. Sigurdson4,?, Michael W. Miller5, Edward A. Hoover4 and Glenn C. Telling1,2,3,§ + Author Affiliations

Abstract

The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.

Received for publication 21 November 2005. Accepted for publication 13 January 2006.

http://www.sciencemag.org/cgi/content/abstract/sci;311/5764/1117



Journal of Virology, September 2009, p. 9608-9610, Vol. 83, No. 18 0022-538X/09/$08.00+0 doi:10.1128/JVI.01127-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Prion Infectivity in Fat of Deer with Chronic Wasting Disease

Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840

Received 2 June 2009/ Accepted 24 June 2009

ABSTRACT Top ABSTRACT TEXT REFERENCES

Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.

snip...

The highest risk of human contact with CWD might be through exposure to high-titer CNS tissue through accidental skin cuts or corneal contact at the time of harvest and butchering. However, the likelihood of a human consuming fat infected with a low titer of the CWD agent is much higher. It is impossible to remove all the fat present within muscle tissue, and fat consumption is inevitable when eating meat. Of additional concern is the fact that meat from an individual deer harvested by a hunter is typically consumed over multiple meals by the same group of people. These individuals would thus have multiple exposures to the CWD agent over time, which might increase the chance for transfer of infection.

In the Rocky Mountain region of North America, wild deer are subject to predation by wolves, coyotes, bears, and mountain lions. Although canines such as wolves and coyotes are not known to be susceptible to prion diseases, felines definitely are susceptible to BSE (9) and might also be infected by the CWD agent. Deer infected with the CWD agent are more likely to be killed by predators such as mountain lions (11). Peripheral tissues, including lymph nodes, muscle, and fat, which harbor prion infectivity are more accessible for consumption than CNS tissue, which has the highest level of infectivity late in disease. Therefore, infectivity in these peripheral tissues may be important in potential cross-species CWD transmissions in the wild.

The present finding of CWD infectivity in deer fat tissue raises the possibility that prion infectivity might also be found in fat tissue of other infected ruminants, such as sheep and cattle, whose fat and muscle tissues are more widely distributed in both the human and domestic-animal food chains. Although the infectivity in fat tissues is low compared to that in the CNS, there may be significant differences among species and between prion strains. Two fat samples from BSE agent-infected cattle were reported to be negative by bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are 10,000-fold-less sensitive to BSE agent infection than transgenic mice expressing bovine PrP (4). It would be prudent to carry out additional infectivity assays on fat from BSE agent-infected cattle and scrapie agent-infected sheep using appropriate transgenic mice or homologous species to determine the risk from these sources.

http://jvi.asm.org/cgi/content/full/83/18/9608



THE LATEST DATA ON TISSUE INFECTIVITY

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

MAJOR CATEGORIES OF INFECTIVITY: TABLES IA, IB, IC

The assignment of tissues to high, low, and undetected infectivity categories is based exclusively upon observations of naturally occurring disease, or primary experimental infection by the oral route (in ruminants). The Tables do not include results from disease models using strains of TSE that have been adapted to experimental animals, because passaged strain phenotypes can differ significantly and unpredictably from those of naturally occurring disease. However, for tissues and fluids of exceptional public health interest, such as muscle, intestine, skin, secretions and excretions, experimental results have been indicated in footnotes.

Because the detection of misfolded prion protein (PrPTSE) broadly parallels infectivity titers in various tissues [Beekes et al 1996; Andreoletti et al 2004], PrPTSE testing results are presented in parallel with bioassay data.

Although a given tissue may be positive or negative in different varieties of TSE, the expert group considered a tissue to be potentially infectious even if a positive result occurred in only a single disease. The categorical assignment of tissues will almost certainly undergo further revision as new data accumulate from increasingly sensitive tests.

IA: High-infectivity tissues: CNS tissues that attain a high titer of infectivity in the later stages of all TSEs, and certain tissues that are anatomically associated with the CNS.

IB: Lower-infectivity tissues: peripheral tissues that have tested positive for infectivity and/or PrPTSE in at least one form of TSE.

IC: Tissues with no detectable infectivity: tissues that have been examined for infectivity and/or PrPTSE with negative results.

Data entries are shown as follows:

+ Presence of infectivity or PrPTSE

- Absence of detectable infectivity or PrPTSE

NT Not tested

NA Not applicable ?

Uncertain interpretation

( ) Limited or preliminary data

[ ] Infectivity or PrPTSE data based exclusively on bioassays in transgenic

(Tg)mice over-expressing the PrP-encoding gene or PrPTSE amplification methods.

A word of caution is offered about tissues in Table IB for which positive results are so far limited to either detection of PrPTSE using amplification techniques (PMCA), or infectivity bioassays in Tg mice that over-express PrP. The amounts of pathological protein or infectious agent detected by these exquisitely sensitive assays may well fall below the threshold of transmissibility for normal animals and humans. WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies 5

A good example is illustrated in the studies of urine and feces from deer infected with CWD: bioassays using normal deer as recipient subjects were negative; subsequent bioassays performed in Tg mice were positive. A similar discordance was observed for BSE muscle inoculated into cattle and Tgmice. Until more evidence is compiled showing that positive results in experimental PMCA and Tg mouse assays equate to a risk of transmitting disease under natural conditions, it cannot be assumed that such results imply the existence of a substantial risk to the health of animals or humans.

Considering the succession of updated Tables of the past few years, and the fact that inflammation has been shown to result in PrPTSE deposition in tissues that are not normally involved in TSE pathogenesis, it is evident that as testing continues, more tissues will find their way from Table IC into Table IB (but probably not from either Table IC or IB into Table IA). It is also evident that the data generated to date are far from complete, and that a great deal more work needs to be done if conclusions about the tissue distribution and significance of infectivity in a given TSE are to be based on direct measurements rather than by analogy to other forms of the disease.

Finally, it is critically important to understand that categories of infectivity are not the same as categories of risk, which require consideration not only of the level of infectivity in tissue, but also of the amount of tissue to which a person or animal is exposed, and the route by which infection is transmitted. For example, although the level of tissue infectivity is the most important factor in estimating the risk of transmission by instrument crosscontamination during surgical procedures (e.g., neurosurgery versus general surgery), it will be only one determinant of the risk of transmission by blood transfusions, in which a large amount of low-infectivity blood is administered intravenously, or the risk of transmission by foodstuffs that, irrespective of high or low infectivity, involve a comparatively inefficient oral route of infection.

snip...

Table IC: Tissues with no detected infectivity or PrPTSE

snip...

Musculo-skeletal tissues

Bone NT - NT - - NT NT NT NT NT

Tendon NT - NT - - NT NT NT NT NT

snip...

please see full text with tables here ;

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

also in the references at bottom i saw ;

12. A single positive marrow in multiple transmission attempts from cattle orally dosed with BSE-infected brain [Wells et al., 1999; Wells et al., 2005; Sohn et al., 2009].

http://www.who.int/bloodproducts/tablestissueinfectivity.pdf


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

please see ;

PLEASE NOTE ;

there are now two documented strains of CWD, and science is showing that indeed CWD could transmit to humans via transmission studies ;

P35

ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.

http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf


PPo3-7:

Prion Transmission from Cervids to Humans is Strain-dependent

Qingzhong Kong, Shenghai Huang,*Fusong Chen, Michael Payne, Pierluigi Gambetti and Liuting Qing Department of Pathology; Case western Reserve University; Cleveland, OH USA *Current address: Nursing Informatics; Memorial Sloan-Kettering Cancer Center; New York, NY USA

Key words: CWD, strain, human transmission

Chronic wasting disease (CWD) is a widespread prion disease in cervids (deer and elk) in North America where significant human exposure to CWD is likely and zoonotic transmission of CWD is a concern. Current evidence indicates a strong barrier for transmission of the classical CWD strain to humans with the PrP-129MM genotype. A few recent reports suggest the presence of two or more CWD strains. What remain unknown is whether individuals with the PrP-129VV/MV genotypes are also resistant to the classical CWD strain and whether humans are resistant to all natural or adapted cervid prion strains. Here we report that a human prion strain that had adopted the cervid prion protein (PrP) sequence through passage in cervidized transgenic mice efficiently infected transgenic mice expressing human PrP, indicating that the species barrier from cervid to humans is prion strain-dependent and humans can be vulnerable to novel cervid prion strains. Preliminary results on CWD transmission in transgenic mice expressing human PrP-129V will also be discussed.

Acknowledgement Supported by NINDS NS052319 and NIA AG14359.

PPo2-27:

Generation of a Novel form of Human PrPSc by Inter-species Transmission of Cervid Prions

Marcelo A. Barria,1 Glenn C. Telling,2 Pierluigi Gambetti,3 James A. Mastrianni4 and Claudio Soto1 1Mitchell Center for Alzheimer's disease and related Brain disorders; Dept of Neurology; University of Texas Houston Medical School; Houston, TX USA; 2Dept of Microbiology, Immunology & Molecular Genetics and Neurology; Sanders Brown Center on Aging; University of Kentucky Medical Center; Lexington, KY USA; 3Institute of Pathology; Case western Reserve University; Cleveland, OH USA; 4Dept of Neurology; University of Chicago; Chicago, IL USA

Prion diseases are infectious neurodegenerative disorders affecting humans and animals that result from the conversion of normal prion protein (PrPC) into the misfolded and infectious prion (PrPSc). Chronic wasting disease (CWD) of cervids is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. CWD is highly contagious and its origin, mechanism of transmission and exact prevalence are currently unclear. The risk of transmission of CWD to humans is unknown. Defining that risk is of utmost importance, considering that people have been infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrPC can be converted into the infectious form by CWD PrPSc we performed experiments using the Protein Misfolding Cyclic Amplification (PMCA) technique, which mimic in vitro the process of prion replication. Our results show that cervid PrPSc can induce the pathological conversion of human PrPC, but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, this newly generated human PrPSc exhibits a distinct biochemical pattern that differs from any of the currently known forms of human PrPSc, indicating that it corresponds to a novel human prion strain. Our findings suggest that CWD prions have the capability to infect humans, and that this ability depends on CWD strain adaptation, implying that the risk for human health progressively increases with the spread of CWD among cervids.

PPo2-7:

Biochemical and Biophysical Characterization of Different CWD Isolates

Martin L. Daus and Michael Beekes Robert Koch Institute; Berlin, Germany

Key words: CWD, strains, FT-IR, AFM

Chronic wasting disease (CWD) is one of three naturally occurring forms of prion disease. The other two are Creutzfeldt-Jakob disease in humans and scrapie in sheep. CWD is contagious and affects captive as well as free ranging cervids. As long as there is no definite answer of whether CWD can breach the species barrier to humans precautionary measures especially for the protection of consumers need to be considered. In principle, different strains of CWD may be associated with different risks of transmission to humans. Sophisticated strain differentiation as accomplished for other prion diseases has not yet been established for CWD. However, several different findings indicate that there exists more than one strain of CWD agent in cervids. We have analysed a set of CWD isolates from white-tailed deer and could detect at least two biochemically different forms of disease-associated prion protein PrPTSE. Limited proteolysis with different concentrations of proteinase K and/or after exposure of PrPTSE to different pH-values or concentrations of Guanidinium hydrochloride resulted in distinct isolate-specific digestion patterns. Our CWD isolates were also examined in protein misfolding cyclic amplification studies. This showed different conversion activities for those isolates that had displayed significantly different sensitivities to limited proteolysis by PK in the biochemical experiments described above. We further applied Fourier transform infrared spectroscopy in combination with atomic force microscopy. This confirmed structural differences in the PrPTSE of at least two disinct CWD isolates. The data presented here substantiate and expand previous reports on the existence of different CWD strains.

http://www.prion2010.org/bilder/prion_2010_program_latest_w_posters_4_.pdf?139&PHPSESSID=a30a38202cfec579000b77af81be3099


http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


A kind greetings from Bacliff, Texas !

please use this information with how ever many grains of salt you wish, i don't care what you eat.

cutting out the high risk cns portions will not do away with all the risk, even if you don't cut yourselves by butcher. they have now found in CWD the prion TSE agent in muscle and fat tissue, now they say with smaller amounts of infectivity, but i personally believe in the accumaltion as a factor of risk as well. seems these prion strains as they mutate, the get more virulent. you accumulate enough of the prions and you become clinical. what the threshold from sub-clinical to clinical would be, would depend on the route, the source, titre of infectivity, and ones genetic make up, and whom you expose and or infect while being sub-clinically exposed via the medical and surgical arena's i.e. friendly fire, is a frightening thought now, and a real risk factor. for them to keep saying that there is no _known_ risk factor to humans, with the cjd surveillance system and diagnostic criteria, they would never know. you are correct about the officials being misinformed and misleading. that's why i post the science behind any reports they publish on CWD, hoping someone will read it. personally i think the deer and elk hunting industry were a pawn in a big game of chess. the king was the cattle industry. they have brain washed every one into believing scrapie will not transmit to man, when all science shows that it will. the deer and elk industry were sacrificed. USDA et al tried to cover up mad cow disease, because the evidence was already out (without using a human guinea pig, which i promote over primates i.e. death row inmates, that's another story though), so they just kept saying cwd would not transmit to humans. when the evidence was the same for BSE to humans as it was for CWD to humans, as with Scrapie, and they knew this in 2000, or earlier. the evidence was the same in that study i.e. raymand et al, no matter how low, or high the risk factor is, the risk was the same for BSE, Scrapie, and CWD to humans ;

Clearly, it is premature to draw firm conclusions about CWD passing naturally into humans, cattle and sheep, but the present results suggest that CWD transmissions to humans would be as limited by PrP incompatibility as transmissions of BSE or sheep scrapie to humans. Although there is no evidence that sheep scrapie has affected humans, it is likely that BSE has caused variant CJD in 74 people (definite and probable variant CJD cases to date according to the UK CJD Surveillance Unit). Given the presumably large number of people exposed to BSE infectivity, the susceptibility of humans may still be very low compared with cattle, which would be consistent with the relatively inefficient conversion of human PrP-sen by PrPBSE. Nonetheless, since humans have apparently been infected by BSE, it would seem prudent to take reasonable measures to limit exposure of humans (as well as sheep and cattle) to CWD infectivity as has been recommended for other animal TSEs.

http://www.nature.com/emboj/journal/v19/n17/full/7593259a.html


THEN, 11 years later you get this ;


http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long


Our findings demonstrate that cervid PrPSc, upon strain adaptation by serial passages in vitro or in cervid transgenic mice, is capable of converting human PrPC to produce PrPSc with unique biochemical properties, likely representing a new human prion strain. The newly generated CWD-huPrPSc material has been inoculated into transgenic mice expressing human PrP to study infectivity and disease phenotype and this data will be published elsewhere. ...end


http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long


then you had this data ;



CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.

http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf



and why do we not want to do TSE transmission studies on chimpanzees $

snip...

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY

http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf



From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To:

Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.

That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention



-----Original Message-----


From:

Sent: Sunday, September 29, 2002 10:15 AM

To: [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

snip...

full text ;

http://chronic-wasting-disease.blogspot.com/2009/02/exotic-meats-usa-announces-urgent.html



FDA is not recalling this CWD positive elk meat for the well being of the dead elk ;



Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html



see full text ;

http://chronic-wasting-disease.blogspot.com/2009/04/cwd-update-infection-studies-in-two.html



Title: Experimental Second Passage of Chronic Wasting Disease (Cwd(mule Deer)) Agent to Cattle

Authors

Hamir, Amirali Kunkle, Robert Miller, Janice - ARS RETIRED Greenlee, Justin Richt, Juergen

Submitted to: Journal of Comparative Pathology Publication Type: Peer Reviewed Journal Publication Acceptance Date: July 25, 2005 Publication Date: January 1, 2006 Citation: Hamir, A.N., Kunkle, R.A., Miller, J.M., Greenlee, J.J., Richt, J.A. 2006. Experimental second passage of chronic wasting disease (CWD(mule deer)) agent to cattle. Journal of Comparative Pathology. 134(1):63-69.

Interpretive Summary: To compare the findings of experimental first and second passage of chronic wasting disease (CWD) in cattle, 6 calves were inoculated into the brain with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but the CWD agent was detected in their CNS tissues by 2 laboratory techniques (IHC and WB). These findings demonstrate that inoculated cattle amplify CWD agent but also develop clinical CNS signs without manifestation of microscopic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, namely, sheep scrapie. The current study confirms previous work that indicates that the diagnostic tests currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of microscopic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB. Technical Abstract: To compare clinicopathological findings of first and second passage of chronic wasting disease (CWD) in cattle, a group of calves (n=6) were intracerebrally inoculated with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and lost weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but PrPres was detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify CWD PrPres but also develop clinical CNS signs without manifestation of morphologic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, scrapie. The current study confirms previous work that indicates the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of neuropathologic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=178318



PLUS, oral transmission between cervids, either infected carcases AND ESPECIALLY FEED THAT HAS ANIMAL PROTEIN, PLEASE SEE ;

PRODUCT Custom deer feed made for a Wisconsin farm. The product was in bags holding about 40 pounds each. Recall # V-122-4. CODE 1-30-04 on the product invoice and mixing record. RECALLING FIRM/MANUFACTURER Crivitz Feed Mill, Crivitz, WI, by telephone on February 20, 2004. Wisconsin State initiated recall is complete. REASON The recalled deer feed contained steamed bone meal which is prohibited material in feed for ruminants.

VOLUME OF PRODUCT IN COMMERCE 515 pounds.

DISTRIBUTION WI.

END OF ENFORCEMENT REPORT FOR APRIL 7, 2004

###

http://www.fda.gov/bbs/topics/enforce/2004/ENF00842.html


Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): Early detection and late stage distribution of protease-resistant prion protein

Aru Balachandran, Noel P. Harrington, James Algire, Andrei Soutyrine, Terry R. Spraker, Martin Jeffrey, Lorenzo González, Katherine I. O’Rourke

Abstract — Chronic wasting disease (CWD), an important emerging prion disease of cervids, is readily transmitted by intracerebral or oral inoculation from deer-to-deer and elk-to-elk, suggesting the latter is a natural route of exposure. Studies of host range susceptibility to oral infection, particularly of those species found in habitats where CWD currently exists are imperative. This report describes the experimental transmission of CWD to red deer following oral inoculation with infectious CWD material of elk origin. At 18 to 20 months post-inoculation, mild to moderate neurological signs and weight loss were observed and animals were euthanized and tested using 3 conventional immunological assays. The data indicate that red deer are susceptible to oral challenge and that tissues currently used for CWD diagnosis show strong abnormal prion (PrPCWD) accumulation. Widespread peripheral PrPCWD deposition involves lymphoreticular tissues, endocrine tissues, and cardiac muscle and suggests a potential source of prion infectivity, a means of horizontal transmission and carrier state.

Can Vet J 2010;51:169–178

http://canadianveterinarians.net/publications-journal-issue-abstracts.aspx



Journal of General Virology (1999), 80, 2757-2764. © 1999 Society for General Microbiology

--------------------------------------------------------------------------------

Other Agents

Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus ) Christina J. Sigurdson1, Elizabeth S. Williams2, Michael W. Miller3, Terry R. Spraker1,4, Katherine I. O'Rourke5 and Edward A. Hoover1

Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523- 1671, USA1 Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, University of Wyoming, Laramie, WY 82070, USA 2 Colorado Division of Wildlife, Wildlife Research Center, 317 West Prospect Road, Fort Collins, CO 80526-2097, USA3 Colorado State University Veterinary Diagnostic Laboratory, 300 West Drake Road, Fort Collins, CO 80523-1671, USA4 Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, 337 Bustad Hall, Washington State University, Pullman, WA 99164-7030, USA5

Author for correspondence: Edward Hoover.Fax +1 970 491 0523. e-mail ehoover@lamar.colostate.edu

Abstract TOP Abstract Introduction Methods Results Discussion References

Mule deer fawns (Odocoileus hemionus) were inoculated orally with a brain homogenate prepared from mule deer with naturally occurring chronic wasting disease (CWD), a prion-induced transmissible spongiform encephalopathy. Fawns were necropsied and examined for PrP res, the abnormal prion protein isoform, at 10, 42, 53, 77, 78 and 80 days post-inoculation (p.i.) using an immunohistochemistry assay modified to enhance sensitivity. PrPres was detected in alimentary-tract-associated lymphoid tissues (one or more of the following: retropharyngeal lymph node, tonsil, Peyer's patch and ileocaecal lymph node) as early as 42 days p.i. and in all fawns examined thereafter (53 to 80 days p.i.). No PrPres staining was detected in lymphoid tissue of three control fawns receiving a control brain inoculum, nor was PrPres detectable in neural tissue of any fawn. PrPres-specific staining was markedly enhanced by sequential tissue treatment with formic acid, proteinase K and hydrated autoclaving prior to immunohistochemical staining with monoclonal antibody F89/160.1.5. These results indicate that CWD PrP res can be detected in lymphoid tissues draining the alimentary tract within a few weeks after oral exposure to infectious prions and may reflect the initial pathway of CWD infection in deer. The rapid infection of deer fawns following exposure by the most plausible natural route is consistent with the efficient horizontal transmission of CWD in nature and enables accelerated studies of transmission and pathogenesis in the native species.

http://vir.sgmjournals.org/cgi/content/full/80/10/2757



Chronic wasting disease (CWD), an important emerging prion disease of cervids, is readily transmitted by intracerebral or oral inoculation from deer-to-deer and elk-to-elk, suggesting the latter is a natural route of exposure.

http://canadianveterinarians.net/publications-journal-issue-abstracts.aspx



Chronic Wasting Disease Susceptibility of Four North American Rodents

Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A. Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI 53706, USA 2US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author email: cjohnson@svm.vetmed.wisc.edu

We intracerebrally challenged four species of native North American rodents that inhabit locations undergoing cervid chronic wasting disease (CWD) epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles (Myodes gapperi). The inocula were prepared from the brains of hunter-harvested white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles proved to be most susceptible, with a median incubation period of 272 days. Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the brains of all challenged meadow voles. Subsequent passages in meadow voles lead to a significant reduction in incubation period. The disease progression in red-backed voles, which are very closely related to the European bank vole (M. glareolus) which have been demonstrated to be sensitive to a number of TSEs, was slower than in meadow voles with a median incubation period of 351 days. We sequenced the meadow vole and red-backed vole Prnp genes and found three amino acid (AA) differences outside of the signal and GPI anchor sequences. Of these differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is particularly intriguing due its postulated involvement in "rigid loop" structure and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5 years post-inoculation, but appear to be exhibiting a high degree of disease penetrance. White-footed mice have an even longer incubation period but are also showing high penetrance. Second passage experiments show significant shortening of incubation periods. Meadow voles in particular appear to be interesting lab models for CWD. These rodents scavenge carrion, and are an important food source for many predator species. Furthermore, these rodents enter human and domestic livestock food chains by accidental inclusion in grain and forage. Further investigation of these species as potential hosts, bridge species, and reservoirs of CWD is required.

Potential Venison Exposure Among FoodNet Population Survey Respondents, 2006-2007

Ryan A. Maddox1*, Joseph Y. Abrams1, Robert C. Holman1, Lawrence B. Schonberger1, Ermias D. Belay1 Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA *Corresponding author e-mail: rmaddox@cdc.gov

The foodborne transmission of bovine spongiform encephalopathy to humans, resulting in variant Creutzfeldt-Jakob disease, indicates that humans can be susceptible to animal prion diseases. However, it is not known whether foodborne exposure to the agent causing chronic wasting disease (CWD) in cervids can cause human disease. The United States Foodborne Diseases Active Surveillance Network (FoodNet) conducts surveillance for foodborne diseases through an extensive survey administered to respondents in selected states. To describe the frequency of deer and elk hunting and venison consumption, five questions were included in the 2006-2007 FoodNet survey. This survey included 17,372 respondents in ten states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Of these respondents, 3,220 (18.5%) reported ever hunting deer or elk, with 217 (1.3%) reporting hunting in a CWD-endemic area (northeastern Colorado, southeastern Wyoming, and southwestern Nebraska). Of the 217 CWD-endemic area hunters, 74 (34.1%) were residents of Colorado. Respondents reporting hunting were significantly more likely to be male than female (prevalence ratio: 3.3, 95% confidence interval: 3.1-3.6) and, in general, older respondents were significantly more likely to report hunting than younger respondents. Venison consumption was reported by more than half (67.4%) of the study population, and most venison consumers (94.1%) reported that at least half of their venison came from the wild. However, more than half (59.1%) of the consumers reported eating venison only one to five times in their life or only once or twice a year. These findings indicate that a high percentage of the United States population engages in hunting and/or venison consumption. If CWD continues to spread to more areas across the country, a substantial number of people could potentially be exposed to the infectious agent.

http://www.cwd-info.org/pdf/3rd_CWD_Symposium_utah.pdf


http://chronic-wasting-disease.blogspot.com/


Thursday, February 17, 2011

Environmental Sources of Scrapie Prions

http://scrapie-usa.blogspot.com/2011/02/environmental-sources-of-scrapie-prions.html



TSS

Labels: , , , ,

Friday, February 25, 2011

Soil clay content underlies prion infection odds

Soil clay content underlies prion infection odds



W. David Walter 1 , * , Daniel P. Walsh 2 , * , Matthew L. Farnsworth 3 , Dana L. Winkelman 1 & Michael W. Miller 2

1 United States Department of the Interior, United States Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit , Fort Collins , Colorado

80523-1484, USA. 2 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, Colorado 80526-2097, USA. 3 United States Department

of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services, Centers for Epidemiology and Animal Health , Fort Collins , Colorado

80526-8117 , USA . * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to M.W.M.

(email: mike.miller@state.co.us ) .

Received 6 Sep 2010 | Accepted 19 Jan 2011 | Published 15 Feb 2011 DOI: 10.1038/ncomms1203



Environmental factors — especially soil properties — have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1 % increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9 % . Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.



snip....



The capacity of clay minerals and clay-laden soils to capture and enhance infectivity of shed or deposited prions 19,20,25 – 27 and the common tendency of ruminants to ingest soil both deliberately and incidentally in the course of foraging and grooming 12,44,45 provide an elegantly simple hypothetical mechanism for indirect prion transmission, as follows: infected individuals propagate infectious prions in mucosa-associated lymphoid tissues and shed prions into ingesta and saliva; ingested and environmental soil microparticles with a high phyllosilicate (especially smectite) content bind to, sequester and enhance infectivity of prions both before and after leaving the host; microparticle-bound prions are incorporated into surface soil; susceptible individuals consume contaminated soil and some become infected. (Also see Supplementary Figure S1 .) This mechanism may underlie the apparent importance of indirect transmission in explaining observed patterns of prion infection among captive mule deer 10,11 , and perhaps among sheep 3,4,6,7 . In light of these and others ’ findings, soil clay content and related environmental properties deserve greater attention in assessing local and regional risks of prion disease outbreaks and prospects for their control in natural and production settings.


http://www.nature.com/ncomms/journal/v2/n2/pdf/ncomms1203.pdf



PRION 2010

International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria

PRION 2010 is the top Global Annual TSE Conference in prion research, following a sequence of PRION meetings that were originally organized by the EU Network of Excellence NeuroPrion. In this proud tradition, PRION 2010 covers all aspects of this fascinating scientific area. PRION 2010 is a meeting of greatest interest for neuroscientists, protein structural biologists, geneticists, medical specialists including neurologists, neuropathologists, hygiene experts and blood product providers, veterinarians, epidemiologists, laboratory technicians, industry developers, risk assessors and managers. An outstanding list of Plenary Lecture, Symposia and Workshop Speakers is complemented by the plethora of original input from Poster Presentations. Special consideration is given this year to two areas of major interest: the renewed discussion about the zoonotic potential of animal prion diseases, given the emergence of atypical BSE and scrapie strains, and the breakthrough work on synthetic prions by several groups simultaneously.



snip...



PPo4-4:

Survival and Limited Spread of TSE Infectivity after Burial

Karen Fernie, Allister Smith and Robert A. Somerville The Roslin Institute and R(D)SVS; University of Edinburgh; Roslin, Scotland UK

Scrapie and chronic wasting disease probably spread via environmental routes, and there are also concerns about BSE infection remaining in the environment after carcass burial or waste 3disposal. In two demonstration experiments we are determining survival and migration of TSE infectivity when buried for up to five years, as an uncontained point source or within bovine heads. Firstly boluses of TSE infected mouse brain were buried in lysimeters containing either sandy or clay soil. Migration from the boluses is being assessed from soil cores taken over time. With the exception of a very small amount of infectivity found 25 cm from the bolus in sandy soil after 12 months, no other infectivity has been detected up to three years. Secondly, ten bovine heads were spiked with TSE infected mouse brain and buried in the two soil types. Pairs of heads have been exhumed annually and assessed for infectivity within and around them. After one year and after two years, infectivity was detected in most intracranial samples and in some of the soil samples taken from immediately surrounding the heads. The infectivity assays for the samples in and around the heads exhumed at years three and four are underway. These data show that TSE infectivity can survive burial for long periods but migrates slowly. Risk assessments should take into account the likely long survival rate when infected material has been buried.

The authors gratefully acknowledge funding from DEFRA.



PPo8-14:



Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

Samuel E. Saunders,1 Jason C. Bartz,2 Kurt C. Vercauteren3 and Shannon L. Bartelt-Hunt1 1Department of Civil Engineering; University of Nebraska-Lincoln; Peter Kiewit Institute; Omaha, Nebraska USA; 2Department of Medical Microbiology and Immunology; Creighton University; Omaha, Nebraska USA; 3USDA; Animal and Plant Health Inspection Service; Wildlife Services; National Wildlife Research Center; Fort Collins, CO USA

Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). Serial PMCA of treated soil samples suggests a greater than 6-log decrease in infectious titer compared with controls. We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity.


PPo8-13:



Degradation of Pathogenic Prion Protein and Prion Infectivity by Lichens

Christopher J. Johnson,1 James P. Bennett,1 Steven M. Biro,1,2 Cynthia M. Rodriguez,1,2 Richard A. Bessen3 and Tonie E. Rocke1

1USGS National Wildlife Health Center; 2Department of Bacteriology; University of Wisconsin, Madison; 3Department of Veterinary Molecular Biology; Montana State University; Bozeman, MT USA

Key words: prion, lichen, bioassay, protease, degradation

Few biological systems have been identified that degrade the transmissible spongiform encephalopathy (TSE)-associated form of the prion protein (PrPTSE) and TSE infectivity. Stability of the TSE agent allows scrapie and chronic wasting disease agents to persist in the environment and cause disease for years. Naturally-occurring or engineered processes that reduce infectivity in the environment could aid in limiting environmental TSE transmission. We have previously identified that species of at least three lichens, unusual, symbiotic organisms formed from a fungus and photosynthetic partner, contain a serine protease capable of degrading PrPTSE under gentle conditions. We tested the hypothesis that lichen extracts from these three species reduce TSE infectivity by treating infected brain homogenate with extracts and examining infectivity in mice. We found lichen extracts diminished TSE infectious titer by factors of 100 to 1,000 and that reductions in infectivity were not well-correlated with the extent of PrPTSE degradation observed by immunoblotting. For example, treatment of brain homogenate with Cladonia rangiferina extract caused <100-fold reduction in PrP immunoreactivity but ~1,000-fold decrease in infectivity, suggesting that some PrPTSE remaining after extract treatment was rendered uninfectious or that the lichen protease favors more infectious forms of PrPTSE. Our data also indicate that lichen species closely related to those with prion-degrading protease activity do not necessarily degrade PrPTSE. Characterization of the lichen species-specificity of PrPTSE degradation within the genera Cladonia and Usnea and comparison with known lichen phylogeny has yielded clusters of species on which to focus searches for anti-prion agents.



PPo8-20:


The Anti-prion Activity of Soil Organic Compounds Humic and Fulvic Acids

Joanna Narkiewicz,1,2 Ai H.N. Tran,1 Gabriele Giachin,1 Liviana Leita2 and Giuseppe Legname1, 1Neurobiology Sector; Scuola Internazionale Superiore di Studi Avanzati; International School for Advanced Studies; Bonomea, Trieste Italy; 2Agricultural Research Council (CRA); Research Centre for Soil-Plant System; Trieste, Gorizia Italy

A notable feature of prion diseases, as scrapie in sheep and chronic wasting disease in mule deer and elk, is horizontal transmission between grazing animals, suggesting that contaminated environment may contribute significantly to disease transmission. Increasing evidence suggests that soil may present natural reservoir of prion infectivity. Recent studies have shown that prions may persist in contaminated soil and remain infectious for years. As the mechanism of prion retention and persistence in soil is unknown, it is necessary to understand which soil components may interact with prions and thus contribute to disease transmission. Several reports indicate that prion have potential to interact with soil minerals, however the contribution of soil organic fraction in adsorption to prions has been neglected. Here, we present strong evidence for soil humic substances (HS) interaction with prions. We show that two HS, classified as humic and fulvic acids, interact with recombinant prion proteins in vitro. Moreover, we show that both HS possess anti-prion activity, both in vivo and in vitro. Both compounds induced elimination of PrPSc from chronically scrapie-infected GT1 mouse hypothalamic cells (ScGT1) in a dose-dependent manner. ScGT1 cells treatment with HS at concentration of 20mg/mL eliminated more than 95% of PrPSc and did not affect cell viability. Moreover, both HS induced inhibition of prion fibril formation in vitro, as determined by thioflavin T assay. Our results suggest that HS may contribute significantly to prion inactivation in natural soil environments.



PPo8-21:


Detection of PrPCWD in Rocky Mountain Elk Feces Using Protein Misfolding Cyclic Amplification

Bruce E Pulford,1 Terry Spraker,1 Jenny Powers,2 Margaret Wild2 and Mark D. Zabel1 1Department of Microbiology; Immunology and Pathology; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 2Biological Resource Management Division; United States National Park Service; CO, USA

Key words: CWD, feces, PMCA, elk

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting cervids, including mule and white-tailed deer (Odocoileus hemionus and virginianus), elk (Cervus elaphus nelsoni) and moose (Alces alces shirasi). The method of CWD transmission between hosts is unclear, though there is evidence that feces excreted by infected animals may play a role. Recently, CWD prions was detected in feces using bioassays in cervidized mice, which took many months to produce results. In this study, we use a more rapid procedure, protein misfolding cyclic amplification (PMCA), to test elk feces for the presence of PK-resistant cervid PrP (PrPCWD). Feces were collected from symptomatic and asymptomatic elk in several northern Colorado locations, homogenized, mixed with normal brain homogenate from Tg5037 mice (expressing cervid PrP) and subjected to up to 9 rounds of PMCA (1 round = 40 secs sonication/30 mins at 70% maximum power, 24 hours). Western blots were used to detect PrPCWD using BAR-224 anti-PrP antibody. Rectal and CNS tissue from the elk were IHC-labeled and examined for the presence of PrPCWD. Fecal samples from symptomatic and asymptomatic elk that tested positive by IHC showed characteristic PrPCWD bands on western blots following PMCA. In addition, PMCA detected PrPCWD in 25% of fecal samples from IHC-negative animals. These data suggest that PMCA may (1) prove useful as a non-invasive method to supplement or even replace IHC testing of cervids for CWD, and (2) identify additional asymptomatic carriers of CWD, the prevalence of which may be underestimated using IHC.



http://www.prion2010.org/bilder/prion_2010_program_latest_w_posters_4_.pdf?139&PHPSESSID=a30a38202cfec579000b77af81be3099




Wednesday, September 08, 2010



CWD PRION CONGRESS SEPTEMBER 8-11 2010



http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html



COMERCIAL IN CONFIDENCE

SPREADING OF UNPROCESSED BLOOD ON LAND

http://web.archive.org/web/20040315202749/www.bseinquiry.gov.uk/files/yb/1991/02/15003001.pdf



The BSE Inquiry / Statement No 19B (supplementary) Dr Alan Colchester Issued 06/08/1999 (not scheduled to give oral evidence) SECOND STATEMENT TO THE BSE INQUIRY Dr A Colchester BA BM BCh PhD FRCP Reader in Neurosciences & Computing, University of Kent at Canterbury; Consultant Neurologist, Guy’s Hospital London and William Harvey Hospital Ashford April 1999

snip...

88. Natural decay: Infectivity persists for a long time in the environment. A study by Palsson in 1979 showed how scrapie was contracted by healthy sheep, after they had grazed on land which had previously been grazed by scrapie-infected sheep, even though the land had lain fallow for three years before the healthy sheep were introduced. Brown also quoted an early experiment of his own (1991), where he had buried scrapie-infected hamster brain and found that he could still detect substantial infectivity three years later near where the material had been placed. 89. Potential environmental routes of infection: Brown discusses the various possible scenarios, including surface or subsurface deposits of TSE-contaminated material, which would lead to a build-up of long-lasting infectivity. Birds feeding on animal remains (such as gulls visiting landfill sites) could disperse infectivity. Other animals could become vectors if they later grazed on contaminated land. "A further question concerns the risk of contamination of the surrounding water table or even surface water channels, by effluents and discarded solid wastes from treatment plants. A reasonable conclusion is that there is a potential for human infection to result from environmental contamination by BSE-infected tissue residues. The potential cannot be quantified because of the huge numbers of uncertainties and assumptions that attend each stage of the disposal process". These comments, from a long established authority on TSEs, closely echo my own statements which were based on a recent examination of all the evidence. 90. Susceptibility: It is likely that transmissibility of the disease to humans in vivo is probably low, because sheep that die from scrapie and cattle that die from BSE are probably a small fraction of the exposed population. However, no definitive data are available.

91. Recommendations for disposal procedures: Brown recommends that material which is actually or potentially contaminated by BSE should be: 1) exposed to caustic soda; 2) thoroughly incinerated under carefully inspected conditions; and 3) that any residue should be buried in landfill, to a depth which would minimise any subsequent animal or human exposure, in areas that would not intersect with any potable water-table source.

92. This review and recommendations from Brown have particular importance. Brown is one of the world's foremost authorities on TSEs and is a senior researcher in the US National Institutes of Health (NIH). It is notable that such a respected authority is forthright in acknowledging the existence of potential risks, and in identifying the appropriate measures necessary to safeguard public health. Paper by SM Cousens, L Linsell, PG Smith, Dr M Chandrakumar, JW Wilesmith, RSG Knight, M Zeidler, G Stewart, RG Will, "Geographical distribution of variant CJD in the UK (excluding Northern Ireland)". Lancet 353:18-21, 2 nd January 1999 93. The above paper {Appendix 41 (02/01/99)} (J/L/353/18) examined the possibility that patients with vCJD (variant CJD) might live closer to rendering factories than would be expected by chance. All 26 cases of vCJD in the UK with onset up to 31 st August 1998 were studied. The incubation period of vCJD is not known but by analogy with other human TSEs could lie within the range 5-25 years. If vCJD had arisen by exposure to rendering products, such exposure might plausibly have occurred 8-10 years before the onset of symptoms. The authors were able to obtain the addresses of all rendering plants in the UK which were in production in 1988. For each case of vCJD, the distance from the place of residence on 1st January 1998 to the nearest rendering plant was calculated

snip...

http://web.archive.org/web/20030326042814/http://www.bseinquiry.gov.uk/files/ws/s019b.pdf



Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).

http://europa.eu.int/comm/food/fs/sc/ssc/out58_en.pdf



PAUL BROWN SCRAPIE SOIL TEST

http://collections.europarchive.org/tna/20080102120203/http://www.bseinquiry.gov.uk/files/sc/seac07/tab03.pdf



snip...


please see full text ;


Thursday, February 17, 2011

Environmental Sources of Scrapie Prions

http://scrapie-usa.blogspot.com/2011/02/environmental-sources-of-scrapie-prions.html




Chronic Wasting Disease—Prion Disease in the Wild

Citation: Bunk S (2004) Chronic Wasting Disease—Prion Disease in the Wild. PLoS Biol 2(4): e121. doi:10.1371/journal.pbio.0020121

Published: April 13, 2004

In 1967, mule deer in a research facility near Fort Collins, Colorado, in the United States apparently began to react badly to their captivity. At least, that was the guess of researchers working on the natural history and nutrition of the deer, which became listless and showed signs of depressed mood, hanging their heads and lowering their ears. They lost appetite and weight. Then they died—of emaciation, pneumonia, and other complications—or were euthanized. The scientists dubbed it chronic wasting disease (CWD), and for years they thought it might be caused by stress, nutritional deficiencies, or poisoning. A decade later, CWD was identified as one of the neurodegenerative diseases called spongiform encephalopathies, the most notorious example of which is bovine spongiform encephalopathy (BSE), more commonly known as mad cow disease. Nowadays, CWD is epidemic in the United States. Although no proof has yet emerged that it's transmissible to humans, scientific authorities haven't ruled out the possibility of a public health threat. The media have concentrated on this concern, and politicians have responded with escalated funding over the past two years for fundamental research into the many questions surrounding this mysterious disease.

Quite apart from how little is yet known about CWD, media interest is reason enough to step up investigation of it, says Mo Salman, a veterinary epidemiologist at Colorado State University in Fort Collins. He's been scientifically involved with BSE, since it was first discovered among cattle in the United Kingdom in 1986. He recalls predicting that lay interest in BSE would wane after five years. Instead, the disease was found in the mid-1990s to be capable of killing humans who ate tainted beef. “I was wrong, and it really changed my way of thinking, to differentiate between scientific evidence and the public perception,” Salman admits. “Because CWD is similar to BSE, the public perception is that we need to address this disease, to see if it has any link to human health.”

http://www.plosbiology.org/article/info:doi%2F10.1371%2Fjournal.pbio.0020121



* Williams reported in the same scientific paper that ``a few surplus deer and elk'' from CWD-infected state-run pens near Fort Collins had been released back into the wild. How many and in what years remains unclear. State officials say they can find few records.

http://www.highbeam.com/doc/1G1-87932644.html




Within the facilities, deer have had irregular and discontinuous contact with other wild ruminants and with domestic cattle, goats and sheep. In addition, other feral mammalian species either reside within or traverse the facilities’ pens.

Journal of Wildlife Diseases Vol. 16. No. 1, January, 1980 B Mice (Peromyscus sp., Mus musculus), rabbit (Lepus sp., Syluilagus sp.), raccoon (Procyon lotor), skunk (Mephitis

http://www.jwildlifedis.org/cgi/reprint/16/1/89




The Fort Collins facility became a CWD death trap. Between 1970 and 1981, 90 percent of the deer that stayed more than two years died from the disease or had to be euthanized. In 1980 the scourge emerged outside Colorado, at the Sybille Research Unit in southeastern Wyoming, 120 miles northwest of Fort Collins. The two facilities had exchanged deer for breeding purposes, thus indicating that the disease was infectious--even to a different species: soon the elk at the facilities contracted the disease. (Deer and elk both belong to the cervid family.)

For years, researchers thought CWD resulted from nutritional deficiencies, poisoning, or stress from confinement. But in 1977 Elizabeth S. Williams, studying for her doctorate at Colorado State University, discovered that this view was mistaken. When Williams looked at brain slices from infected animals, she saw that the tissue was full of microscopic holes. "I happened to be taking a course in neuropathology and had studied a lot of brain lesions," she recalls. The holes were unmistakably like scrapie, the sheep sickness that was the first documented spongiform encephalopathy.

In fact, CWD appears to have originated from scrapie. Richard E. Race of the National Institutes of Health Rocky Mountain Laboratories in Hamilton, Mont., conducted test tube studies that revealed no distinction between the malformed PrP of scrapie sheep and CWD cervids. Consistent with this discovery, Amir Hamir of the U.S. Department of Agriculture's National Animal Disease Center in Ames, Iowa, found no difference in the appearance of brain samples from elk with CWD and elk experimentally infected with scrapie. (BSE also probably arose from scrapie, after cows ate feed derived from infected sheep.)

Philip Yam is Scientific American's news editor. This article is adapted from his book, The Pathological Protein: Mad Cow, Chronic Wasting, and Other Deadly Prion Diseases, published in June. Overview/Chronic Wasting Disease

snip...end...tss


How did CWD get started? 17 Mar 98 webmaster opinion My best guess as to what really happened:


in the early days of the Ft. Collins facility, before they went to wild animal diseases, they studied scrapie and other diseases in sheep. The facility became contaminated, just like the pasture in Iceland. They hoped it wouldn't cross the species barrier.

Then they brought in mule deer. These became infected. No post-mortems were done, no tissues were saved, no records were kept; one worker there in 1967 wrote me to say they suspected scrapie at the time. They hoped it would go away.

The facility became grossly contaminated, 90% of the animals dying. No autopsies were supposedly done until 13 years into the disease, even though this was a disease research facility. They hoped it would go away.

Deer infected elk and other cervids. They hoped it would go away.

Pre-clinical animals were shipped to Wyoming, zoos, game farms, and released back into the wild. Wild animals infected each other at winter feeding stations at much higher rates than anyone expected. They hoped it would go away.

Infected wild animals were brought into various facilities. No monitoring had been done on wild animals. They hoped it would go away.

Tens of thousands of hunters ate contaminated meat from venison pooled into sausage. They hoped hunters wouldn't get CJD.

Some hunters subsequently donated blood which were pooled into batches of 50,000 doses or more. They hoped medical recipients wouldn't get CJD.

CWD is not scrapie, though it was probably originally triggered by scrapie. It is a different prion, a different amino acid sequence, after initial passage. CWD is probably not caused or spread through rendered downer protein feed like BSE. Its properties in humans are entirely unknown, the symptoms might be quite different from known forms of CJD.

http://www.mad-cow.org/elk_cwd.html#ddd




But the blanket slaughter programmes achieve little more than masking the superficial evidence of TSE, since they are merely taking out those susceptible populations that are at high risk of developing TSE. Meanwhile, the causal prerequisites remain well and truly cemented as Lendemic' into the bedrock of the TSE cluster environment. A good example of this is illustrated by the Colorado Division of Wildlife's failed attempts to annihilate so-called Chronic Wasting Disease (CWD) when they bulldozed the top six inches of soil from their CWD endemic deer facility at Fort Collins. CWD still returned. ...

http://www.mad-cow.org/99feb_cwd_special.html




DOW/CSU has never disclosed what happened to the original captive mule deer in 1967 -- were they released into the wild after the experiment, did any escape, did they exchange animals with the Wyoming facility, what were they fed, had there been prior scrapie sheep in the enclosure? It is ludicrous that they have never released the details -- as if the people who worked didn't keep lab notebooks.

My guess is that relevent documents were shredded long ago when they realized that the disease had gotten out of their facility -- with potentially devastating consequences to game tag sales and hence the very revenues that pay their salaries, never mind the legal liability. Now they are in too deep to confess. Just like MAFF.

The only other scenario that makes sense to me is a western Stetsonville: winter-ranged protein-caked deer, some of these got accidentally brought into the captive study.

http://www.mad-cow.org/colorado_exp.html



Tuesday, June 16, 2009

Infectious Prions in Pre-Clinical Deer and Transmission of Chronic Wasting Disease Solely by Environmental Exposure

http://chronic-wasting-disease.blogspot.com/2009/06/infectious-prions-in-pre-clinical-deer.html




Wednesday, October 14, 2009



Detection of protease-resistant cervid prion protein in water from a CWD-endemic area


http://chronic-wasting-disease.blogspot.com/2009/10/detection-of-protease-resistant-cervid.html


http://chronic-wasting-disease.blogspot.com/



Saturday, January 29, 2011

Atypical L-Type Bovine Spongiform Encephalopathy (L-BSE) Transmission to Cynomolgus Macaques, a Non-Human Primate

Jpn. J. Infect. Dis., 64 (1), 81-84, 2011


http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/atypical-l-type-bovine-spongiform.html



http://transmissiblespongiformencephalopathy.blogspot.com/




Wednesday, February 16, 2011

IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

http://scrapie-usa.blogspot.com/2011/02/in-confidence-scrapie-transmission-to.html





Seven main threats for the future linked to prions


The NeuroPrion network has identified seven main threats for the future linked to prions.

First threat

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed. Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.



Second threat


snip...



http://www.neuroprion.org/en/np-neuroprion.html




Wednesday, March 31, 2010

Atypical BSE in Cattle


To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.

http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2


snip...


please see all seven threats listed in the USA, and more...FULL TEXT ;



Thursday, August 12, 2010

Seven main threats for the future linked to prions

http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html


http://prionpathy.blogspot.com/





Friday, February 11, 2011

Creutzfeldt-Jakob disease (CJD) biannual update (2010/1) Emerging infections/CJD

http://creutzfeldt-jakob-disease.blogspot.com/2011/02/creutzfeldt-jakob-disease-cjd-biannual.html





Monday, February 7, 2011

FDA's Currently-Recommended Policies to Reduce the Possible Risk of Transmission of CJD and vCJD by Blood and Blood Products 2011 ???


http://tseac.blogspot.com/2011/02/fdas-currently-recommended-policies-to.html




Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

TSS

Labels:

Tuesday, February 22, 2011

Chronic wasting disease spreads farther west in Alberta

Chronic wasting disease spreads farther west in Alberta


Within five years could be found at Edmonton’s outskirts and in Calgary


By Hanneke Brooymans,


Chronic wasting disease in deer has spread farther west into the province and within five years will likely be found at Edmonton’s outskirts and in Calgary, says a University of Alberta biologist.

Dave Coltman came to that conclusion after looking at the latest testing results and map posted by Alberta Sustainable Resource Development last week.

Altogether, 17 new cases were found in the nearly 4,200 deer tested since September 2010. That brings the total number of wild deer cases found in Alberta since 2005 to 91.

CWD is caused by a prion, similar to bovine spongiform encephalopathy, that causes deer to slowly waste away.

In the past two years, the government has relied on a hunter surveillance program to track the spread of the disease.

Government staff collect the heads of deer killed by hunters in specific wildlife management areas where past cases have been found. They also test deer hunted in areas close to past cases. Prior to that, they had also used an aggressive winter cull program to reduce the densities of deer in infected areas.

Coltman, a biology professor who studies CWD, said the most recent map of the cases shows there are four new ones in a new wildlife management unit. He said the disease, as expected, is moving along river valleys.

“Those are like superhighways for CWD and deer.”

There are likely many more cases that haven’t been found, he said.

“If we’re going to continue to have surveillance to guess where the leading edge of this thing is, we’re going to have to go another set of management units further west, particularly in the south. It’s at the gates of Calgary now, basically.”

Alberta Sustainable Resource Development spokesman Darcy Whiteside said the testing program is nearing completion for the season. When it wraps up, they will evaluate their disease management program to see how it might change next season.

There is no evidence that the disease in its current form can infect humans. But research published earlier this year out of the United States suggests that over time, as the strain adapts over successive generations in the wild, it could become progressively more transmissible to humans. The study, published in The Journal of Biological Chemistry, said the transformation could take years or decades, or might not even happen. But it also notes that it is likely that CWD prions are progressively accumulating in the environment, since they bind tightly to soil and can remain infectious for a long time.

Coltman said there’s a delicate line to walk when talking about the risks associated with the disease. He doesn’t want to sound alarmist, but he also said that everyone working in the field expects there will come a day when a new form of a prion disease evolves from CWD and it could become transmissible to humans. The public wants to know what the chance is that that will happen. “It’s a very small number. ... But the day that it does happen it will blow up. And people will say, ‘Holy cow, we let it go and now look where we are.’ ”

Some hunters, when they get a call telling them their animal was positive, say they’ve already eaten the animal and don’t care.

“We tell people you can store it in the freezer until you get the results, but the (U.S. Centers for Disease Control) has found no link between eating deer or elk and prion disease in humans,” Whiteside said.

The World Health Organization recommends a precautionary approach, though, and says any animal product known to be infected with any prion disease should not be consumed by humans.

“Personally, I’d think twice about eating a deer if I knew it was positive,” Coltman said.

hbrooymans@edmontonjournal.com

Read more:

http://www.edmontonjournal.com/health/Chronic+wasting+disease+spreads+farther+west+Alberta/4328926/story.html#ixzz1EkoWTyX3



http://www.edmontonjournal.com/health/Chronic+wasting+disease+spreads+farther+west+Alberta/4328926/story.html





Thursday, February 10, 2011

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY REPORT UPDATE CANADA FEBRUARY 2011 and how to hide mad cow disease in Canada Current as of: 2011-01-31


http://madcowtesting.blogspot.com/2011/02/transmissible-spongiform-encephalopathy.html






Is Chronic Wasting Disease transmissible to man ?



I believe that the assumption that Chronic Wasting Disease is not infectious to man, is just that, an assumption, one that should be proven, not assumed. In my research of scientific studies on this matter, I have found that there is more science to show that indeed Chronic Wasting Disease is transmissible to man, than there is showing that it is not. The only problem is, scientist and the media refuse to acknowledge the science, and continue to go by a myth, and assume that it is not. This assumption could prove fatal in the long run. for how many, that is another assumption, but one that should be considered. ...

A kind greetings from Bacliff, Texas !

please use this information with how ever many grains of salt you wish, i don't care what you eat.

cutting out the high risk cns portions will not do away with all the risk, even if you don't cut yourselves by butcher. they have now found in CWD the prion TSE agent in muscle and fat tissue, now they say with smaller amounts of infectivity, but i personally believe in the accumaltion as a factor of risk as well. seems these prion strains as they mutate, the get more virulent. you accumulate enough of the prions and you become clinical. what the threshold from sub-clinical to clinical would be, would depend on the route, the source, titre of infectivity, and ones genetic make up, and whom you expose and or infect while being sub-clinically exposed via the medical and surgical arena's i.e. friendly fire, is a frightening thought now, and a real risk factor. for them to keep saying that there is no _known_ risk factor to humans, with the cjd surveillance system and diagnostic criteria, they would never know. you are correct about the officials being misinformed and misleading. that's why i post the science behind any reports they publish on CWD, hoping someone will read it. personally i think the deer and elk hunting industry were a pawn in a big game of chess. the king was the cattle industry. they have brain washed every one into believing scrapie will not transmit to man, when all science shows that it will. the deer and elk industry were sacrificed. USDA et al tried to cover up mad cow disease, because the evidence was already out (without using a human guinea pig, which i promote over primates i.e. death row inmates, that's another story though), so they just kept saying cwd would not transmit to humans. when the evidence was the same for BSE to humans as it was for CWD to humans, as with Scrapie, and they knew this in 2000, or earlier. the evidence was the same in that study i.e. raymand et al, no matter how low, or high the risk factor is, the risk was the same for BSE, Scrapie, and CWD to humans ;

Clearly, it is premature to draw firm conclusions about CWD passing naturally into humans, cattle and sheep, but the present results suggest that CWD transmissions to humans would be as limited by PrP incompatibility as transmissions of BSE or sheep scrapie to humans. Although there is no evidence that sheep scrapie has affected humans, it is likely that BSE has caused variant CJD in 74 people (definite and probable variant CJD cases to date according to the UK CJD Surveillance Unit). Given the presumably large number of people exposed to BSE infectivity, the susceptibility of humans may still be very low compared with cattle, which would be consistent with the relatively inefficient conversion of human PrP-sen by PrPBSE. Nonetheless, since humans have apparently been infected by BSE, it would seem prudent to take reasonable measures to limit exposure of humans (as well as sheep and cattle) to CWD infectivity as has been recommended for other animal TSEs.

http://www.nature.com/emboj/journal/v19/n17/full/7593259a.html


THEN, 11 years later you get this ;

http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long



Our findings demonstrate that cervid PrPSc, upon strain adaptation by serial passages in vitro or in cervid transgenic mice, is capable of converting human PrPC to produce PrPSc with unique biochemical properties, likely representing a new human prion strain. The newly generated CWD-huPrPSc material has been inoculated into transgenic mice expressing human PrP to study infectivity and disease phenotype and this data will be published elsewhere. ...end

http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long


then you had this data ;

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.

http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf



and why do we not want to do TSE transmission studies on chimpanzees $

snip...

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY

http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf



Prions in Skeletal Muscles of Deer with Chronic Wasting Disease

Rachel C. Angers1,*, Shawn R. Browning1,*?, Tanya S. Seward2, Christina J. Sigurdson4,?, Michael W. Miller5, Edward A. Hoover4 and Glenn C. Telling1,2,3,§ + Author Affiliations

Abstract

The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.

Received for publication 21 November 2005. Accepted for publication 13 January 2006.

http://www.sciencemag.org/cgi/content/abstract/sci;311/5764/1117


Journal of Virology, September 2009, p. 9608-9610, Vol. 83, No. 18 0022-538X/09/$08.00+0 doi:10.1128/JVI.01127-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Prion Infectivity in Fat of Deer with Chronic Wasting Disease

Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840

Received 2 June 2009/ Accepted 24 June 2009

ABSTRACT Top ABSTRACT TEXT REFERENCES

Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.

snip...

The highest risk of human contact with CWD might be through exposure to high-titer CNS tissue through accidental skin cuts or corneal contact at the time of harvest and butchering. However, the likelihood of a human consuming fat infected with a low titer of the CWD agent is much higher. It is impossible to remove all the fat present within muscle tissue, and fat consumption is inevitable when eating meat. Of additional concern is the fact that meat from an individual deer harvested by a hunter is typically consumed over multiple meals by the same group of people. These individuals would thus have multiple exposures to the CWD agent over time, which might increase the chance for transfer of infection.

In the Rocky Mountain region of North America, wild deer are subject to predation by wolves, coyotes, bears, and mountain lions. Although canines such as wolves and coyotes are not known to be susceptible to prion diseases, felines definitely are susceptible to BSE (9) and might also be infected by the CWD agent. Deer infected with the CWD agent are more likely to be killed by predators such as mountain lions (11). Peripheral tissues, including lymph nodes, muscle, and fat, which harbor prion infectivity are more accessible for consumption than CNS tissue, which has the highest level of infectivity late in disease. Therefore, infectivity in these peripheral tissues may be important in potential cross-species CWD transmissions in the wild.

The present finding of CWD infectivity in deer fat tissue raises the possibility that prion infectivity might also be found in fat tissue of other infected ruminants, such as sheep and cattle, whose fat and muscle tissues are more widely distributed in both the human and domestic-animal food chains. Although the infectivity in fat tissues is low compared to that in the CNS, there may be significant differences among species and between prion strains. Two fat samples from BSE agent-infected cattle were reported to be negative by bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are 10,000-fold-less sensitive to BSE agent infection than transgenic mice expressing bovine PrP (4). It would be prudent to carry out additional infectivity assays on fat from BSE agent-infected cattle and scrapie agent-infected sheep using appropriate transgenic mice or homologous species to determine the risk from these sources.

http://jvi.asm.org/cgi/content/full/83/18/9608



THE LATEST DATA ON TISSUE INFECTIVITY

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

MAJOR CATEGORIES OF INFECTIVITY: TABLES IA, IB, IC

The assignment of tissues to high, low, and undetected infectivity categories is based exclusively upon observations of naturally occurring disease, or primary experimental infection by the oral route (in ruminants). The Tables do not include results from disease models using strains of TSE that have been adapted to experimental animals, because passaged strain phenotypes can differ significantly and unpredictably from those of naturally occurring disease. However, for tissues and fluids of exceptional public health interest, such as muscle, intestine, skin, secretions and excretions, experimental results have been indicated in footnotes.

Because the detection of misfolded prion protein (PrPTSE) broadly parallels infectivity titers in various tissues [Beekes et al 1996; Andreoletti et al 2004], PrPTSE testing results are presented in parallel with bioassay data.

Although a given tissue may be positive or negative in different varieties of TSE, the expert group considered a tissue to be potentially infectious even if a positive result occurred in only a single disease. The categorical assignment of tissues will almost certainly undergo further revision as new data accumulate from increasingly sensitive tests.

IA: High-infectivity tissues: CNS tissues that attain a high titer of infectivity in the later stages of all TSEs, and certain tissues that are anatomically associated with the CNS.

IB: Lower-infectivity tissues: peripheral tissues that have tested positive for infectivity and/or PrPTSE in at least one form of TSE.

IC: Tissues with no detectable infectivity: tissues that have been examined for infectivity and/or PrPTSE with negative results.

Data entries are shown as follows:

+ Presence of infectivity or PrPTSE

- Absence of detectable infectivity or PrPTSE

NT Not tested

NA Not applicable ?

Uncertain interpretation

( ) Limited or preliminary data

[ ] Infectivity or PrPTSE data based exclusively on bioassays in transgenic

(Tg)mice over-expressing the PrP-encoding gene or PrPTSE amplification methods.

A word of caution is offered about tissues in Table IB for which positive results are so far limited to either detection of PrPTSE using amplification techniques (PMCA), or infectivity bioassays in Tg mice that over-express PrP. The amounts of pathological protein or infectious agent detected by these exquisitely sensitive assays may well fall below the threshold of transmissibility for normal animals and humans. WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies 5

A good example is illustrated in the studies of urine and feces from deer infected with CWD: bioassays using normal deer as recipient subjects were negative; subsequent bioassays performed in Tg mice were positive. A similar discordance was observed for BSE muscle inoculated into cattle and Tgmice. Until more evidence is compiled showing that positive results in experimental PMCA and Tg mouse assays equate to a risk of transmitting disease under natural conditions, it cannot be assumed that such results imply the existence of a substantial risk to the health of animals or humans.

Considering the succession of updated Tables of the past few years, and the fact that inflammation has been shown to result in PrPTSE deposition in tissues that are not normally involved in TSE pathogenesis, it is evident that as testing continues, more tissues will find their way from Table IC into Table IB (but probably not from either Table IC or IB into Table IA). It is also evident that the data generated to date are far from complete, and that a great deal more work needs to be done if conclusions about the tissue distribution and significance of infectivity in a given TSE are to be based on direct measurements rather than by analogy to other forms of the disease.

Finally, it is critically important to understand that categories of infectivity are not the same as categories of risk, which require consideration not only of the level of infectivity in tissue, but also of the amount of tissue to which a person or animal is exposed, and the route by which infection is transmitted. For example, although the level of tissue infectivity is the most important factor in estimating the risk of transmission by instrument crosscontamination during surgical procedures (e.g., neurosurgery versus general surgery), it will be only one determinant of the risk of transmission by blood transfusions, in which a large amount of low-infectivity blood is administered intravenously, or the risk of transmission by foodstuffs that, irrespective of high or low infectivity, involve a comparatively inefficient oral route of infection.

snip...

Table IC: Tissues with no detected infectivity or PrPTSE

snip...

Musculo-skeletal tissues

Bone NT - NT - - NT NT NT NT NT

Tendon NT - NT - - NT NT NT NT NT

snip...

please see full text with tables here ;

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

also in the references at bottom i saw ;

12. A single positive marrow in multiple transmission attempts from cattle orally dosed with BSE-infected brain [Wells et al., 1999; Wells et al., 2005; Sohn et al., 2009].

http://www.who.int/bloodproducts/tablestissueinfectivity.pdf


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

please see ;

PLEASE NOTE ;

there are now two documented strains of CWD, and science is showing that indeed CWD could transmit to humans via transmission studies ;

P35

ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.

http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf


PPo3-7:

Prion Transmission from Cervids to Humans is Strain-dependent

Qingzhong Kong, Shenghai Huang,*Fusong Chen, Michael Payne, Pierluigi Gambetti and Liuting Qing Department of Pathology; Case western Reserve University; Cleveland, OH USA *Current address: Nursing Informatics; Memorial Sloan-Kettering Cancer Center; New York, NY USA

Key words: CWD, strain, human transmission

Chronic wasting disease (CWD) is a widespread prion disease in cervids (deer and elk) in North America where significant human exposure to CWD is likely and zoonotic transmission of CWD is a concern. Current evidence indicates a strong barrier for transmission of the classical CWD strain to humans with the PrP-129MM genotype. A few recent reports suggest the presence of two or more CWD strains. What remain unknown is whether individuals with the PrP-129VV/MV genotypes are also resistant to the classical CWD strain and whether humans are resistant to all natural or adapted cervid prion strains. Here we report that a human prion strain that had adopted the cervid prion protein (PrP) sequence through passage in cervidized transgenic mice efficiently infected transgenic mice expressing human PrP, indicating that the species barrier from cervid to humans is prion strain-dependent and humans can be vulnerable to novel cervid prion strains. Preliminary results on CWD transmission in transgenic mice expressing human PrP-129V will also be discussed.

Acknowledgement Supported by NINDS NS052319 and NIA AG14359.

PPo2-27:

Generation of a Novel form of Human PrPSc by Inter-species Transmission of Cervid Prions

Marcelo A. Barria,1 Glenn C. Telling,2 Pierluigi Gambetti,3 James A. Mastrianni4 and Claudio Soto1 1Mitchell Center for Alzheimer's disease and related Brain disorders; Dept of Neurology; University of Texas Houston Medical School; Houston, TX USA; 2Dept of Microbiology, Immunology & Molecular Genetics and Neurology; Sanders Brown Center on Aging; University of Kentucky Medical Center; Lexington, KY USA; 3Institute of Pathology; Case western Reserve University; Cleveland, OH USA; 4Dept of Neurology; University of Chicago; Chicago, IL USA

Prion diseases are infectious neurodegenerative disorders affecting humans and animals that result from the conversion of normal prion protein (PrPC) into the misfolded and infectious prion (PrPSc). Chronic wasting disease (CWD) of cervids is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. CWD is highly contagious and its origin, mechanism of transmission and exact prevalence are currently unclear. The risk of transmission of CWD to humans is unknown. Defining that risk is of utmost importance, considering that people have been infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrPC can be converted into the infectious form by CWD PrPSc we performed experiments using the Protein Misfolding Cyclic Amplification (PMCA) technique, which mimic in vitro the process of prion replication. Our results show that cervid PrPSc can induce the pathological conversion of human PrPC, but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, this newly generated human PrPSc exhibits a distinct biochemical pattern that differs from any of the currently known forms of human PrPSc, indicating that it corresponds to a novel human prion strain. Our findings suggest that CWD prions have the capability to infect humans, and that this ability depends on CWD strain adaptation, implying that the risk for human health progressively increases with the spread of CWD among cervids.

PPo2-7:

Biochemical and Biophysical Characterization of Different CWD Isolates

Martin L. Daus and Michael Beekes Robert Koch Institute; Berlin, Germany

Key words: CWD, strains, FT-IR, AFM

Chronic wasting disease (CWD) is one of three naturally occurring forms of prion disease. The other two are Creutzfeldt-Jakob disease in humans and scrapie in sheep. CWD is contagious and affects captive as well as free ranging cervids. As long as there is no definite answer of whether CWD can breach the species barrier to humans precautionary measures especially for the protection of consumers need to be considered. In principle, different strains of CWD may be associated with different risks of transmission to humans. Sophisticated strain differentiation as accomplished for other prion diseases has not yet been established for CWD. However, several different findings indicate that there exists more than one strain of CWD agent in cervids. We have analysed a set of CWD isolates from white-tailed deer and could detect at least two biochemically different forms of disease-associated prion protein PrPTSE. Limited proteolysis with different concentrations of proteinase K and/or after exposure of PrPTSE to different pH-values or concentrations of Guanidinium hydrochloride resulted in distinct isolate-specific digestion patterns. Our CWD isolates were also examined in protein misfolding cyclic amplification studies. This showed different conversion activities for those isolates that had displayed significantly different sensitivities to limited proteolysis by PK in the biochemical experiments described above. We further applied Fourier transform infrared spectroscopy in combination with atomic force microscopy. This confirmed structural differences in the PrPTSE of at least two disinct CWD isolates. The data presented here substantiate and expand previous reports on the existence of different CWD strains.

http://www.prion2010.org/bilder/prion_2010_program_latest_w_posters_4_.pdf?139&PHPSESSID=a30a38202cfec579000b77af81be3099



http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To:

Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.

That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From:

Sent: Sunday, September 29, 2002 10:15 AM

To: [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

snip...

full text ;

http://chronic-wasting-disease.blogspot.com/2009/02/exotic-meats-usa-announces-urgent.html



FDA is not recalling this CWD positive elk meat for the well being of the dead elk ;



Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html



see full text ;

http://chronic-wasting-disease.blogspot.com/2009/04/cwd-update-infection-studies-in-two.html



YOU CANNOT COOK THE PRION MAD COW AGENT OUT OF A BURGER, not even ashing to 600°C. ...TSS

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

Paul Brown*,dagger , Edward H. RauDagger , Bruce K. Johnson*, Alfred E. Bacote*, Clarence J. Gibbs Jr.*, and D. Carleton Gajdusek§

* Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, and Dagger Environmental Protection Branch, Division of Safety, Office of Research Services, National Institutes of Health, Bethesda, MD 20892; and § Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France

Contributed by D. Carleton Gajdusek, December 22, 1999

Abstract

One-gram samples from a pool of crude brain tissue from hamsters infected with the 263K strain of hamster-adapted scrapie agent were placed in covered quartz-glass crucibles and exposed for either 5 or 15 min to dry heat at temperatures ranging from 150°C to 1,000°C. Residual infectivity in the treated samples was assayed by the intracerebral inoculation of dilution series into healthy weanling hamsters, which were observed for 10 months; disease transmissions were verified by Western blot testing for proteinase-resistant protein in brains from clinically positive hamsters. Unheated control tissue contained 9.9 log10LD50/g tissue; after exposure to 150°C, titers equaled or exceeded 6 log10LD50/g, and after exposure to 300°C, titers equaled or exceeded 4 log10LD50/g. Exposure to 600°C completely ashed the brain samples, which, when reconstituted with saline to their original weights, transmitted disease to 5 of 35 inoculated hamsters. No transmissions occurred after exposure to 1,000°C. These results suggest that an inorganic molecular template with a decomposition point near 600°C is capable of nucleating the biological replication of the scrapie agent.

transmissible spongiform encephalopathy | scrapie | prion | medical waste | incineration

Introduction

The infectious agents responsible for transmissible spongiform encephalopathy (TSE) are notoriously resistant to most physical and chemical methods used for inactivating pathogens, including heat. It has long been recognized, for example, that boiling is ineffective and that higher temperatures are most efficient when combined with steam under pressure (i.e., autoclaving). As a means of decontamination, dry heat is used only at the extremely high temperatures achieved during incineration, usually in excess of 600°C. It has been assumed, without proof, that incineration totally inactivates the agents of TSE, whether of human or animal origin. It also has been assumed that the replication of these agents is a strictly biological process (1), although the notion of a "virus" nucleant of an inorganic molecular cast of the infectious beta -pleated peptide also has been advanced (2). In this paper, we address these issues by means of dry heat inactivation studies.

see full text:

http://www.pnas.org/cgi/content/full/97/7/3418



Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

Cathrin E. Bruederle1*, Robert M. Hnasko1, Thomas Kraemer2, Rafael A. Garcia3, Michael J. Haas3, William N. Marmer3, John Mark Carter1

1 USDA-ARS WRRC, Foodborne Contaminants Research Unit, Albany, California, United States of America, 2 Forensic Toxicology, Institute of Legal Medicine, Saarland University, Homburg/Saar, Germany, 3 USDA-ARS ERRC, Fats, Oils and Animal Coproducts Research Unit, Wyndmoor, Pennsylvania, United States of America

The epidemic of bovine spongiform encephalopathy (BSE) has led to a world-wide drop in the market for beef by-products, such as Meat-and-Bone Meal (MBM), a fat-containing but mainly proteinaceaous product traditionally used as an animal feed supplement. While normal rendering is insufficient, the production of biodiesel from MBM has been suggested to destroy infectivity from transmissible spongiform encephalopathies (TSEs). In addition to producing fuel, this method simultaneously generates a nutritious solid residue. In our study we produced biodiesel from MBM under defined conditions using a modified form of alkaline methanolysis. We evaluated the presence of prion in the three resulting phases of the biodiesel reaction (Biodiesel, Glycerol and Solid Residue) in vitro and in vivo. Analysis of the reaction products from 263K scrapie infected MBM led to no detectable immunoreactivity by Western Blot. Importantly, and in contrast to the biochemical results the solid MBM residue from the reaction retained infectivity when tested in an animal bioassay. Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.

snip...

Discussion Top Decontamination of pathogenic prions has turned out to be a challenging endeavor. Prions are known to be unusually resistant to common decontamination methods. BSE is believed to be a result of insufficient decontamination and rendering methods of ruminant coproducts that were used as animal feed. Although this led to a devastating feed-borne epidemic among cattle, a major concern here is the overwhelming evidence for the zoonotic transmission of bovine prions to humans [20]. Total elimination of TSEs requires methods that completely destroy any potential prion infectivity in a large scale format. Production of biodiesel from bovine fat and brain tissue has been proposed to be a useful tool for decontamination of prions resulting in safe biodiesel [21]. In our study we evaluated an inexpensive large scale method (in situ transesterification) for production of biodiesel for TSE decontamination potential. Furthermore we investigated potential infectivity present not only in the biodiesel but also in the two other phases developed from the process, a solid MBM residue and glycerol. The solid MBM residue is of particular interest for its potential as a nutritious feed additive for ruminants such as cattle. In our hands, under optimal conditions for transesterification, the solid MBM residue retained 7% of the initial triglyceride and 90% of the initial protein content [17]

The alkaline methanolysis method efficiently produced biodiesel from MBM spiked with hamster brain and the method eliminated PrPsc detection in all products as determined by Western blot. Our biochemical results are comparable to previous studies, at least with regards to the biodiesel and glycerol phase [15]. Biodiesel and glycerol products had no detectable infectivity in our long term animal assay (survival>200d). In contrast to the biodiesel and glycerol phase, we show that the remaining solid MBM residue that had been spiked with scrapie brain retained infectivity in our sensitive bioassay. All animals inoculated with the infected solid MBM residue developed scrapie. However, increased survival time suggests the reaction did reduce infectivity in solid MBM residue from 10-3 ID50 to 10-9 ID50 (a partial decontamination of ~6 logs), based on a standard hamster survival curve that we established in our laboratory according to previous reported results [18]. The broad distribution of time-to-death for these animals is likely due to uneven distribution of infectious material in the inoculum, as the residue produced a relatively coarse suspension in the syringe. We suggest that, in addition to disinfection by the alkaline methanolysis reaction, we observe significant partitioning of infectivity, from the liquid phases into the solid residue. Another possible explanation for increased survival of animals inoculated with the solid MBM residue could be a high binding affinity of the prion protein to MBM and thus a sustained release from MBM in the brain. A phenomenon like this was described previously for prion binding to soil minerals [22]. In our study, when spiked into MBM, PrPsc was only detectable by Western Blot after boiling of sample in detergent. On the other hand we could show that control animals that received infected MBM not subjected to the reaction (MBM sc) developed disease in a time frame comparable to a standard scrapie brain homogenate.

Our results clearly show that Western Blot detection alone is insufficient to conclude on the absence of infectious prion, particularly when assessing a grossly heterogeneous sample such as MBM. This study illustrates that lack of prion detection in vitro does not necessarily exclude infectivity as determined by bioassay.

Furthermore the residual scrapie infectivity detected in the solid MBM residue probably limits the use of ruminant MBM as a feed additive to only non-ruminants, such as fish and fowl, as they are not susceptible to TSEs. Relatively minor variations of this reaction (e.g., more heat and/or alkali) may prove fully effective for complete destruction of infectivity in the solid MBM residue, but must be cost-effective if suspect MBM is to be considered as a ruminant feed additive.

Citation: Bruederle CE, Hnasko RM, Kraemer T, Garcia RA, Haas MJ, et al. (2008) Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production. PLoS ONE 3(8): e2969. doi:10.1371/journal.pone.0002969

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: April 21, 2008; Accepted: July 24, 2008; Published: August 13, 2008

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: CRIS 5325-32000-007-00D and CRIS 5325-32000-008-00D

Competing interests: The authors have declared that no competing interests exist.

* E-mail: cathrin.bruederle@gmail.com

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002969


Wednesday, December 29, 2010

CWD Update 99 December 13, 2010

http://chronic-wasting-disease.blogspot.com/2010/12/cwd-update-99-december-13-2010.html



Thursday, February 10, 2011

CWD ILLINOIS UPDATE FEBRUARY 2011 Locations of CWD-Positive Deer - Updated 2/07/2011

http://chronic-wasting-disease.blogspot.com/2011/02/cwd-illinois-update-february-2011.html



Thursday, February 10, 2011

Chronic Wasting Disease Found In A White-Tailed Deer In Maryland

http://chronic-wasting-disease.blogspot.com/2011/02/chronic-wasting-disease-found-in-white.html



Wednesday, February 09, 2011

CWD Minnesota deer feeding ban covering Dodge, Goodhue, Olmsted, and Wabasha counties will become effective Feb. 14, 2011

http://chronic-wasting-disease.blogspot.com/2011/02/cwd-minnesota-deer-feeding-ban-covering.html



Tuesday, January 25, 2011

Minnesota, National Veterinary Services Laboratory in Ames, Iowa, has confirmed CWD case near Pine Island

http://chronic-wasting-disease.blogspot.com/2011/01/minnesota-national-veterinary-services.html



Monday, February 14, 2011

THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER

Journal of Wildlife Diseases, 47(1), 2011, pp. 78-93 © Wildlife Disease Association 2011

http://chronic-wasting-disease.blogspot.com/2011/02/role-of-predation-in-disease-control.html



Thursday, February 10, 2011

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY REPORT UPDATE CANADA FEBRUARY 2011 and how to hide mad cow disease in Canada Current as of: 2011-01-31

http://madcowtesting.blogspot.com/2011/02/transmissible-spongiform-encephalopathy.html



Friday, February 18, 2011

UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS ''PLEADS GUILTY"

http://bse-atypical.blogspot.com/2011/02/united-states-of-america-vs-galen-j.html



Saturday, January 29, 2011

Atypical L-Type Bovine Spongiform Encephalopathy (L-BSE) Transmission to Cynomolgus Macaques, a Non-Human Primate

Jpn. J. Infect. Dis., 64 (1), 81-84, 2011

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/atypical-l-type-bovine-spongiform.html



Friday, February 11, 2011

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

http://nor-98.blogspot.com/2011/02/atypicalnor98-scrapie-infectivity-in.html



Wednesday, February 16, 2011

IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

http://scrapie-usa.blogspot.com/2011/02/in-confidence-scrapie-transmission-to.html



Thursday, February 17, 2011

Environmental Sources of Scrapie Prions

http://scrapie-usa.blogspot.com/2011/02/environmental-sources-of-scrapie-prions.html



Tuesday, January 18, 2011

Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/agent-strain-variation-in-human-prion.html


Wednesday, January 19, 2011

EFSA and ECDC review scientific evidence on possible links between TSEs in animals and humans Webnachricht 19 Januar 2011

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/efsa-and-ecdc-review-scientific.html



Transmissible Spongiform Encephalopathy and the O.I.E.

OIE Terrestrial Animal Health Standards Commission / September 2010

The EU takes note of the fact that atypical scrapie is not an OIE listed disease. Nevertheless, it will remain notifiable in the EU. Moreover it must be stressed that any emergence of this disease should be notified to the OIE by Members and that scientific data should continue to be gathered.

snip...

Zoonotic Potential

Has transmission to humans been proven? (with the exception of artificial

circumstances) AND

Is human infection associated with severe consequences? (death or prolonged illness)



http://ec.europa.eu/food/international/organisations/docs/EU_comments_OIE_terrestrial_animal_health_code_en.pdf



Saturday, December 18, 2010

OIE Global Conference on Wildlife Animal Health and Biodiversity – Preparing for the Future (TSE AND PRIONS) Paris (France), 23-25 February 2011

I see again that the OIE has done little to help eradicate all animal TSE from the globe, and in fact in my opinion, have help enhance the spread of BSE and other animal TSE globally by their industry friendly regulations. I tried to warn the OIE in 2002 about CWD and the potential, but very real threat of CWD to humans. I was told that they were seriously considering this. what happened ? NOW, the OIE and the USDA collaborate to make legal the trading of all strains of atypical BSE legal, and in fact have done so with the atypical scrapie, when science has made perfectly clear the risk factors to humans and other species. I have said it once (see below), and i will say again ;

"THE OIE has now shown they are nothing more than a National Trading Brokerage for all strains of animal TSE. AS i said before, OIE should hang up there jock strap now, since it appears they will buckle every time a country makes some political hay about trade protocol, commodities and futures. IF they are not going to be science based, they should do everyone a favor and dissolve there organization."

JUST about every country that went by the infamous O.I.E. B.S.E. guidelines, most all came down with B.S.E. ...TSS

NOW, some history on the failed OIE BSE/TSE policy, and why the OIE allowed BSE and other TSE to spread around the globe $$$

SNIP...

i proposed to OIE years ago to include CWD. but with these new atypical case of TSE showing up in cattle and sheep, it will be interesting to see how the OIE handles the USA demands on weakening the BSE/TSE regs for exporting countries;

Date: Fri, 12 Jul 2002 16:11:42 -0700

Reply-To: B S E-l

Sender: Bovine Spongiform Encephalopathy

From: TSS

Subject: CWD/USA — CWD/OIE?

snip...

Greetings List Members,

speaking with someone at the OIE about my concerns with CWD and the non-testing for TSEs in USA cattle, i find it very sad that the OIE does not follow CWD related issues. BUT, they voice my same concerns and said changes are in the makings. sadly, the changes will take about 2 years?

snip...

''I agree with you Dr Terry. The OIE, namely the International Animal Health Code Commission is working on making proposals to Member Countries to change the OIE lists so to avoid some the problems mentioned in you e-mail. This will take at least two years before adoption by the International Committee.''

snip...

two years is a very long time, on an issue of such importance to both humans and animals...

kind regards, terry

snip...

PAGE 25 Transmission Studies Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculam (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in all of these species with the shortest incubation period in the ferret...



http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf



Saturday, December 18, 2010

OIE Global Conference on Wildlife Animal Health and Biodiversity - Preparing for the Future (TSE AND PRIONS) Paris (France), 23-25 February 2011


http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/oie-global-conference-on-wildlife.html




now, what about iatrogenic CJD i.e. friendly fire and or the pass if forward mode of transmission, from all of the above ???


Friday, February 11, 2011

Creutzfeldt-Jakob disease (CJD) biannual update (2010/1) Emerging infections/CJD

http://creutzfeldt-jakob-disease.blogspot.com/2011/02/creutzfeldt-jakob-disease-cjd-biannual.html



Saturday, February 12, 2011

Another Pathologists dies from CJD, another potential occupational death ?

http://creutzfeldt-jakob-disease.blogspot.com/2011/02/another-pathologists-dies-from-cjd.html



Monday, February 7, 2011

FDA's Currently-Recommended Policies to Reduce the Possible Risk of Transmission of CJD and vCJD by Blood and Blood Products 2011 ???

http://tseac.blogspot.com/2011/02/fdas-currently-recommended-policies-to.html



Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: