Thursday, June 25, 2015
 CWD-positive white-tailed deer found on Eau Claire County farm
Release Date: June 24, 2015
Contact: Raechelle Cline, 608-224-5005 Jim Dick, Communications Director, 
608-224-5020
MADISON – A white-tailed deer from a breeding farm in Eau Claire County has 
tested positive for chronic wasting disease (CWD), Wisconsin State Veterinarian 
Dr. Paul McGraw announced today. The National Veterinary Services Laboratory in 
Ames, Iowa, confirmed the test results.
The 7-year-old Eau Claire County doe, which died on the farm, was one of 
about 167 deer reported to be on the 12 acre farm, according to the farm’s March 
2015 registration.
Samples were taken from the doe on June 8 in accordance with Wisconsin 
Department of Agriculture, Trade and Consumer Protection’s (DATCP’s) rules, 
which require testing of farm-raised deer and elk when they die or are killed. 
McGraw quarantined the Eau Claire County herd, which stops movement of live deer 
from the property, except to slaughter. Disposition of the remaining deer will 
depend upon the outcome of the investigation. The DATCP Animal Health Division’s 
investigation will also examine the animal’s history and trace movements of deer 
onto and off the property to determine whether other herds may have been exposed 
to the CWD test-positive deer.
### 
what about all the escapees and or the good old SSS shoot, shovel, and shut 
up. 
you know the excuse, works well for cattle and BSE, just ask Canadian 
Alberta premier Ralph Klein ‘'
*** I guess any self-respecting rancher would have shot, shovelled and shut 
up, but he didn't do that." — Klein recalls how the mad cow crisis started and 
rancher Marwyn Peaster's role.’’ 
I would guess it works well for cervids too. that old sickly looking 
captive cervid that happens to escape never to be found ??? oops...records??? 
what records???
Friday, September 20, 2013 
Missouri State records show gaps in oversight of captive deer farms, 
ranches
a few escapees off the top of my head ;
Tuesday, November 27, 2012 
Pennsylvania ‘Pink 23’ Adams County exposed CWD Escaped Deer shot, but 
where are the other escapees ? 
Saturday, June 29, 2013 
PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN 
INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA 
Tuesday, June 11, 2013 
CWD GONE WILD, More cervid escapees from more shooting pens on the loose in 
Pennsylvania 
Wisconsin : 436 Deer Have Escaped From Farms to Wild
Date: March 18, 2003 Source: Milwaukee Journal Sentinel
Contacts: LEE BERGQUIST lbergquist@journalsentinel.com 
State finds violations, lax record keeping at many sites, report says A 
state inspection of private deer farms, prompted by the discovery of chronic 
wasting disease, found that 436 white-tailed deer escaped into the wild, 
officials said Tuesday
The Department of Natural Resources found that captive deer have escaped 
from one-third of the state's 550 deer farms over the lifetime of the 
operations. The agency also uncovered hundreds of violations and has sought a 
total of 60 citations or charges against deer farm operators.
Hundreds of deer escape
The DNR found a total of 671 deer that escaped farms - 436 of which were 
never found - because of storm-damaged fences, gates being left open or the 
animals jumping over or through fences.
In one example in Kewaunee County, a deer farmer's fence was knocked down 
in a summer storm. Ten deer escaped, and the farmer told the DNR he had no 
intention of trying to reclaim them. The DNR found five of the deer, killed them 
and cited the farmer for violation of a regulation related to fencing.
Another deer farmer near Mishicot, in Manitowoc County, released all nine 
of his whitetails last summer after he believed the discovery of chronic wasting 
disease was going to drive down the market for captive deer.
The DNR found 24 instances of unlicensed deer farms and issued 19 
citations.
Game Farms Inspected
A summary of the findings of the Department of Natural Resources' 
inspection of 550 private white-tailed deer farms in the state: The deer farms 
contained at least 16,070 deer, but the DNR believes there are more deer in 
captivity than that because large deer farms are unable to accurately count 
their deer. 671 deer had escaped from game farms, including 436 that were never 
found.
24 farmers were unlicensed. One had been operating illegally since 1999 
after he was denied a license because his deer fence did not meet minimum 
specifications.
Records maintained by operators ranged from "meticulous documentation to 
relying on memory." At least 227 farms conducted various portions of their deer 
farm business with cash. Over the last three years, 1,222 deer died on farms for 
various reasons. Disease testing was not performed nor required on the majority 
of deer. Farmers reported doing business with people in 22 other states and one 
Canadian province. ..
Earl Ray Tomblin, Governor Frank Jezioro, Director 
News Release: November 4, 2011 
Facebook: WV Commerce - State Parks 
Hoy Murphy, Public Information Officer (304) 957-9365 hoy.r.murphy@wv.gov 
Contact: Curtis Taylor, Wildlife Resources Section Chief 304-558-2771 
DNR.Wildlife@wv.gov 
Elk escape from captive cervid facility in Pennsylvania near West Virginia 
border 
SOUTH CHARLESTON, W.Va. – The West Virginia Division of Natural Resources 
(WVDNR) has confirmed with officials from the Pennsylvania Department of 
Agriculture (PDA) that at least two elk, including one adult bull and one cow, 
have escaped from a captive cervid facility (deer and elk farms) in Greene 
County, Pa. Greene County shares a common border with Marshall, Wetzel and 
Monongalia counties in West Virginia. The elk escaped from a captive cervid 
facility located approximately three miles from the West Virginia-Pennsylvania 
border. 
The PDA regulates captive cervid facilities in Pennsylvania. A 
representative of the agency was unaware if the recent escaped elk were tagged. 
The WVDNR regulates captive cervid facilities in West Virginia. In West 
Virginia, all captive cervids in breeding facilities must be ear-tagged, and 
there are currently no reported elk escapes from any facility in West Virginia. 
A bull elk has been seen recently in Wetzel County, W.Va., according to 
WVDNR officials. There have been no reports of cow elk sightings in either 
Wetzel County, W.Va., or Greene County, Pa. No free-ranging wild elk live within 
150 miles of Wetzel County. The elk sighted in Wetzel County is likely the 
escaped animal from the captive facility in Pennsylvania. 
Friday, September 28, 2012 
Stray elk renews concerns about deer farm security Minnesota 
Monday, June 11, 2012 
*** OHIO Captive deer escapees and non-reporting ***
Thursday, October 23, 2014 
FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE PRESERVE 
Thursday, April 02, 2015 
OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's 
properties near Millersburg 
Wednesday, February 11, 2015 
World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with 
two counts of tampering with evidence 
Friday, April 04, 2014 
*** Wisconsin State officials kept silent on CWD discovery at game farm *** 
Tuesday, October 07, 2014 
*** Wisconsin white-tailed deer tested positive for CWD on a Richland 
County breeding farm, and a case of CWD has been discovered on a Marathon County 
hunting preserve 
Wednesday, March 04, 2015 
Disease sampling results provide current snapshot of CWD in Wisconsin 
finding 324 positive detections statewide in 2014 
what about CWD infection rates on some of these game farms ???
CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) 
FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever 
in a North American captive herd. RECOMMENDATION: That the Board approve the 
purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat 
Program inPortage County and approve the restrictions on public use of the 
site.SUMMARY:
For Immediate Release Thursday, October 2, 2014 
Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or 
Dustin.VandeHoef@IowaAgriculture.gov
TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 
79.8 percent of the deer tested positive for the disease
DES MOINES – The Iowa Department of Agriculture and Land Stewardship today 
announced that the test results from the depopulation of a quarantined captive 
deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the 
herd, tested positive for Chronic Wasting Disease (CWD). The owners of the 
quarantined herd have entered into a fence maintenance agreement with the Iowa 
Department of Agriculture and Land Stewardship,which requires the owners to 
maintain the 8’ foot perimeter fence around the herd premises for five years 
after the depopulation was complete and the premises had been cleaned and 
disinfected CWD is a progressive, fatal, degenerative neurological disease of 
farmed and free-ranging deer, elk, and moose. There is no known treatment or 
vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA 
Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services 
Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting 
preserve in southeast IA was positive for CWD. An investigation revealed that 
this animal had just been introduced into the hunting preserve from the 
above-referenced captive deer herd in north-central Iowa.The captive deer herd 
was immediately quarantined to prevent the spread of CWD. The herd has remained 
in quarantine until its depopulation on August 25 to 27, 2014.The Iowa 
Department of Agriculture and Land Stewardship participated in a joint operation 
to depopulate the infected herd with USDA Veterinary Services, which was the 
lead agency, and USDA Wildlife Services.Federal indemnity funding became 
available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at 
that time, which was before depopulation and testing, at $1,354,250. At that 
time a herd plan was developed with the owners and officials from USDA and the 
Iowa Department of Agriculture and Land Stewardship.Once the depopulation was 
complete and the premises had been cleaned and disinfected, indemnity of 
$917,100.00 from the USDA has been or will be paid to the owners as compensation 
for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land 
Stewardship operates a voluntary CWD program for farms that sell live animals. 
Currently 145 Iowa farms participate in the voluntary program. The 
above-referenced captive deer facility left the voluntary CWD program prior to 
the discovery of the disease as they had stopped selling live animals. All deer 
harvested in a hunting preserve must be tested for CWD. -30-
*** see history of this CWD blunder here ; 
On June 5, 2013, DNR conducted a fence inspection, after gaining approval 
from surrounding landowners, and confirmed that the fenced had beencut or 
removed in at least four separate locations; that the fence had degraded and was 
failing to maintain the enclosure around the Quarantined Premises in at least 
one area; that at least three gates had been opened;and that deer tracks were 
visible in and around one of the open areas in the sand on both sides of the 
fence, evidencing movement of deer into the Quarantined Premises.
Friday, December 14, 2012 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
snip... 
In the USA, under the Food and Drug Administration’s BSE Feed Regulation 
(21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) 
from deer and elk is prohibited for use in feed for ruminant animals. With 
regards to feed for non-ruminant animals, under FDA law, CWD positive deer may 
not be used for any animal feed or feed ingredients. For elk and deer considered 
at high risk for CWD, the FDA recommends that these animals do not enter the 
animal feed system. However, this recommendation is guidance and not a 
requirement by law. 
Animals considered at high risk for CWD include: 
1) animals from areas declared to be endemic for CWD and/or to be CWD 
eradication zones and 
2) deer and elk that at some time during the 60-month period prior to 
slaughter were in a captive herd that contained a CWD-positive animal. 
Therefore, in the USA, materials from cervids other than CWD positive 
animals may be used in animal feed and feed ingredients for non-ruminants. 
The amount of animal PAP that is of deer and/or elk origin imported from 
the USA to GB can not be determined, however, as it is not specified in TRACES. 
It may constitute a small percentage of the 8412 kilos of non-fish origin 
processed animal proteins that were imported from US into GB in 2011. 
Overall, therefore, it is considered there is a __greater than negligible 
risk___ that (nonruminant) animal feed and pet food containing deer and/or elk 
protein is imported into GB. 
There is uncertainty associated with this estimate given the lack of data 
on the amount of deer and/or elk protein possibly being imported in these 
products. 
snip... 
36% in 2007 (Almberg et al., 2011). In such areas, population declines of 
deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of 
Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs 
of CWD in affected adults are weight loss and behavioural changes that can span 
weeks or months (Williams, 2005). In addition, signs might include excessive 
salivation, behavioural alterations including a fixed stare and changes in 
interaction with other animals in the herd, and an altered stance (Williams, 
2005). These signs are indistinguishable from cervids experimentally infected 
with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be 
introduced into countries with BSE such as GB, for example, infected deer 
populations would need to be tested to differentiate if they were infected with 
CWD or BSE to minimise the risk of BSE entering the human food-chain via 
affected venison. 
snip... 
The rate of transmission of CWD has been reported to be as high as 30% and 
can approach 100% among captive animals in endemic areas (Safar et al., 2008). 
snip... 
In summary, in endemic areas, there is a medium probability that the soil 
and surrounding environment is contaminated with CWD prions and in a 
bioavailable form. In rural areas where CWD has not been reported and deer are 
present, there is a greater than negligible risk the soil is contaminated with 
CWD prion. 
snip... 
In summary, given the volume of tourists, hunters and servicemen moving 
between GB and North America, the probability of at least one person travelling 
to/from a CWD affected area and, in doing so, contaminating their clothing, 
footwear and/or equipment prior to arriving in GB is greater than negligible. 
For deer hunters, specifically, the risk is likely to be greater given the 
increased contact with deer and their environment. However, there is significant 
uncertainty associated with these estimates. 
snip... 
Therefore, it is considered that farmed and park deer may have a higher 
probability of exposure to CWD transferred to the environment than wild deer 
given the restricted habitat range and higher frequency of contact with tourists 
and returning GB residents. 
snip... 
Friday, December 14, 2012 
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced 
into Great Britain? A Qualitative Risk Assessment October 2012 
CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD 
$$$
CWD, spreading it around...
for the game farm industry, and their constituents, to continue to believe 
that they are _NOT_, and or insinuate that they have _NEVER_ been part of the 
problem, will only continue to help spread cwd. the game farming industry, from 
the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet 
mills, shooting pens, to large ranches, are not the only problem, but it is 
painfully obvious that they have been part of the problem for decades and 
decades, just spreading it around, as with transportation and or exportation and 
or importation of cervids from game farming industry, and have been proven to 
spread cwd. no one need to look any further than South Korea blunder ; 
=========================================== 
spreading cwd around...
Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of 
farmed elk in Saskatchewan in a single epidemic. All of these herds were 
depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease 
eradication program. Animals, primarily over 12 mo of age, were tested for the 
presence CWD prions following euthanasia. Twenty-one of the herds were linked 
through movements of live animals with latent CWD from a single infected source 
herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily 
infected herds. 
***The source herd is believed to have become infected via importation of 
animals from a game farm in South Dakota where CWD was subsequently diagnosed 
(7,4). A wide range in herd prevalence of CWD at the time of herd depopulation 
of these herds was observed. Within-herd transmission was observed on some 
farms, while the disease remained confined to the introduced animals on other 
farms. 
spreading cwd around...
Friday, May 13, 2011 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the 
Republic of Korea 
Chronic Wasting Disease (CWD) outbreaks and surveillance program in the 
Republic of Korea 
Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, 
Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research 
Division, National Veterinary Research and Quarantine Service, Republic of Korea 
Chronic wasting disease (CWD) has been recognized as an important prion 
disease in native North America deer and Rocky mountain elks. The disease is a 
unique member of the transmissible spongiform encephalopathies (TSEs), which 
naturally affects only a few species. CWD had been limited to USA and Canada 
until 2000. 
On 28 December 2000, information from the Canadian government showed that a 
total of 95 elk had been exported from farms with CWD to Korea. These consisted 
of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 
elk in 1997, which had been held in pre export quarantine at the “source 
farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD 
surveillance program was initiated by the Ministry of Agriculture and Forestry 
(MAF) in 2001. 
All elks imported in 1997 were traced back, however elks imported in 1994 
were impossible to identify. CWD control measures included stamping out of all 
animals in the affected farm, and thorough cleaning and disinfection of the 
premises. In addition, nationwide clinical surveillance of Korean native 
cervids, and improved measures to ensure reporting of CWD suspect cases were 
implemented. 
Total of 9 elks were found to be affected. CWD was designated as a 
notifiable disease under the Act for Prevention of Livestock Epidemics in 2002. 
Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 
2005. 
Since February of 2005, when slaughtered elks were found to be positive, 
all slaughtered cervid for human consumption at abattoirs were designated as 
target of the CWD surveillance program. Currently, CWD laboratory testing is 
only conducted by National Reference Laboratory on CWD, which is the Foreign 
Animal Disease Division (FADD) of National Veterinary Research and Quarantine 
Service (NVRQS). 
In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the 
human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 
41 Sika deer and 5 Albino deer – were culled and one elk was found to be 
positive. Epidemiological investigations were conducted by Veterinary 
Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary 
services. 
Epidemiologically related farms were found as 3 farms and all cervid at 
these farms were culled and subjected to CWD diagnosis. Three elks and 5 
crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2. 
All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and 
confirmed as negative. 
Further epidemiological investigations showed that these CWD outbreaks were 
linked to the importation of elks from Canada in 1994 based on circumstantial 
evidences. 
In December 2010, one elk was confirmed as positive at Farm 5. 
Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – 
were culled and one Manchurian Sika deer and seven Sika deer were found to be 
positive. This is the first report of CWD in these sub-species of deer. 
Epidemiological investigations found that the owner of the Farm 2 in CWD 
outbreaks in July 2010 had co-owned the Farm 5. 
In addition, it was newly revealed that one positive elk was introduced 
from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed 
(species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as 
negative. 
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, 
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve 
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 
3Encore Health Resources, Houston, Texas, USA
Chronic wasting disease (CWD) is a widespread and expanding prion disease 
in free-ranging and captive cervid species in North America. The zoonotic 
potential of CWD prions is a serious public health concern. Current literature 
generated with in vitro methods and in vivo animal models (transgenic mice, 
macaques and squirrel monkeys) reports conflicting results. The susceptibility 
of human CNS and peripheral organs to CWD prions remains largely unresolved. In 
our earlier bioassay experiments using several humanized transgenic mouse lines, 
we detected protease-resistant PrPSc in the spleen of two out of 140 mice that 
were intracerebrally inoculated with natural CWD isolates, but PrPSc was not 
detected in the brain of the same mice. Secondary passages with such 
PrPSc-positive CWD-inoculated humanized mouse spleen tissues led to efficient 
prion transmission with clear clinical and pathological signs in both humanized 
and cervidized transgenic mice. Furthermore, a recent bioassay with natural CWD 
isolates in a new humanized transgenic mouse line led to clinical prion 
infection in 2 out of 20 mice. These results indicate that the CWD prion has the 
potential to infect human CNS and peripheral lymphoid tissues and that there 
might be asymptomatic human carriers of CWD infection. 
================== 
***These results indicate that the CWD prion has the potential to infect 
human CNS and peripheral lymphoid tissues and that there might be asymptomatic 
human carriers of CWD infection.*** 
================== 
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover 
Prion Research Center; Colorado State University; Fort Collins, CO USA
The propensity for trans-species prion transmission is related to the 
structural characteristics of the enciphering and heterologous PrP, but the 
exact mechanism remains mostly mysterious. Studies of the effects of primary or 
tertiary prion protein structures on trans-species prion transmission have 
relied primarily upon animal bioassays, making the influence of prion protein 
structure vs. host co-factors (e.g. cellular constituents, trafficking, and 
innate immune interactions) difficult to dissect. As an alternative strategy, we 
used real-time quakinginduced conversion (RT-QuIC) to investigate trans-species 
prion conversion.
To assess trans-species conversion in the RT-QuIC system, we compared 
chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions, 
as well as feline CWD (fCWD) and feline spongiform encephalopathy (FSE). Each 
prion was seeded into each host recombinant PrP (full-length rPrP of 
white-tailed deer, bovine or feline). We demonstrated that fCWD is a more 
efficient seed for feline rPrP than for white-tailed deer rPrP, which suggests 
adaptation to the new host.
Conversely, FSE maintained sufficient BSE characteristics to more 
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was 
competent for conversion by CWD and fCWD. ***This insinuates that, at the level 
of protein:protein interactions, the barrier preventing transmission of CWD to 
humans is less robust than previously estimated.
================
***This insinuates that, at the level of protein:protein interactions, the 
barrier preventing transmission of CWD to humans is less robust than previously 
estimated.***
================ 
Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, 
and Candace Mathiason Colorado State University; Fort Collins, CO USA
Chronic wasting disease (CWD) is the transmissible spongiform 
encephalopathy (TSE), of free-ranging and captive cervids (deer, elk and moose). 
The presence of infectious prions in the tissues, bodily fluids and 
environments of clinical and preclinical CWD-infected animals is thought to 
account for its high transmission efficiency. Recently it has been recognized 
that mother to offspring transmission may contribute to the facile transmission 
of some TSEs. Although the mechanism behind maternal transmission is not yet 
known, the extended asymptomatic TSE carrier phase (lasting years to decades) 
suggests that it may have implications in the spread of prions.
Placental trafficking and/or secretion in milk are 2 means by which 
maternal prion transmission may occur. In these studies we explore these avenues 
during early and late infection using a transgenic mouse model expressing cervid 
prion protein. Na€ıve and CWD-infected dams were bred at both timepoints, and 
were allowed to bear and raise their offspring. Milk was collected from the dams 
for prion analysis, and the offspring were observed for TSE disease progression. 
Terminal tissues harvested from both dams and offspring were analyzed for 
prions.
We have demonstrated that 
(1) CWDinfected TgCerPRP females successfully breed and bear offspring, and 
(2) the presence of PrPCWD in reproductive and mammary tissue from 
CWD-infected dams. 
We are currently analyzing terminal tissue harvested from offspring born to 
CWD-infected dams for the detection of PrPCWD and amplification competent 
prions. These studies will provide insight into the potential mechanisms and 
biological significance associated with mother to offspring transmission of 
TSEs.
============== 
P.157: Uptake of prions into plants
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole 
Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife 
Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI 
USA
Soil may preserve chronic wasting disease (CWD) and scrapie infectivity in 
the environment, making consumption or inhalation of soil particles a plausible 
mechanism whereby na€ıve animals can be exposed to prions. Plants are known to 
absorb a variety of substances from soil, including whole proteins, yet the 
potential for plants to take up abnormal prion protein (PrPTSE) and preserve 
prion infectivity is not known. In this study, we assessed PrPTSE uptake into 
roots using laser scanning confocal microscopy with fluorescently tagged PrPTSE 
and we used serial protein misfolding cyclic amplification (sPMCA) and detect 
and quantify PrPTSE levels in plant aerial tissues. Fluorescence was identified 
in the root hairs of the model plant Arabidopsis thaliana, as well as the crop 
plants alfalfa (Medicago sativa), barley (Hordeum vulgare) and tomato (Solanum 
lycopersicum) upon exposure to tagged PrPTSE but not a tagged control 
preparation. Using sPMCA, we found evidence of PrPTSE in aerial tissues of A. 
thaliana, alfalfa and maize (Zea mays) grown in hydroponic cultures in which 
only roots were exposed to PrPTSE. Levels of PrPTSE in plant aerial tissues 
ranged from approximately 4 £ 10 ¡10 to 1 £ 10 ¡9 g PrPTSE g ¡1 plant dry weight 
or 2 £ 105 to 7 £ 106 intracerebral ID50 units g ¡1 plant dry weight. Both stems 
and leaves of A. thaliana grown in culture media containing prions are 
infectious when intracerebrally-injected into mice. ***Our results suggest that 
prions can be taken up by plants and that contaminated plants may represent a 
previously unrecognized risk of human, domestic species and wildlife exposure to 
prions.
===========
***Our results suggest that prions can be taken up by plants and that 
contaminated plants may represent a previously unrecognized risk of human, 
domestic species and wildlife exposure to prions.***
SEE ;
Friday, May 15, 2015 
Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions 
Report 
============ 
P.19: Characterization of chronic wasting disease isolates from freeranging 
deer (Odocoileus sp) in Alberta and Saskatchewan, Canada
Camilo Duque Velasquez1, Chiye Kim1, Nathalie Daude1, Jacques van der 
Merwe1, Allen Herbst1, Trent Bollinger2, Judd Aiken1, and Debbie McKenzie1 
1Centre for Prions and Protein Folding Diseases; University of Alberta; 
Edmonton, Canada; 2Western College of Veterinary Medicine; University of 
Saskatchewan; Saskatoon, Canada
Chronic wasting disease (CWD) is an emerging prion disease of free ranging 
and captive species of Cervidae. In North America, CWD is enzootic in some wild 
cervid populations and can circulate among different deer species. The 
contagious nature of CWD prions and the variation of cervid PRNP alleles, which 
influence host susceptibility, can result in the emergence and adaptation of 
different CWD strains. These strains may impact transmission host range, disease 
diagnosis, spread dynamics and efficacy of potential vaccines. We are 
characterizing different CWD agents by biochemical analysis of the PrPCWD 
conformers, propagation in vitro cell assays1 and by comparing transmission 
properties and neuropathology in Tg33 (Q95G96) and Tg60 (Q95S96) mice.2 Although 
Tg60 mice expressing S96- PrPC have been shown resistant to CWD infectivity from 
various cervid species,2,3 
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived 
from experimental infection of deer expressing H95G96-PrPC. The diversity of 
strains present in free-ranging mule deer (Odocoileus hemionus) and white-tailed 
deer (Odocoileus virginianus) from Alberta and Saskatchewan is being determined 
and will allow us to delineate the properties of CWD agents circulating in CWD 
enzootic cervid populations of Canada.
References
1. van der Merwe J, Aiken J, Westaway D, McKenzie D. The standard scrapie 
cell assay: Development, utility and prospects. Viruses 2015; 7(1):180–198; 
PMID:25602372; http://dx.doi.org/10.3390/v7010180
2. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller 
M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting 
disease in transgenic mice expressing a naturally occurring allelic variant of 
deer prion protein. J Virol 2007; 81(9):4533–4539; PMID: 17314157; http://dx. doi.org/10.1128/JVI.02762-06
3. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison 
of chronic wasting disease infectivity from deer with variation at prion protein 
residue 96. J Virol 2011; 85(17):9235–9238; PMID: 21697479; http://dx.doi.org/10.1128/JVI.00790-11
=========
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived 
from experimental infection of deer expressing H95G96-PrPC.
========== 
P.136: Mother to offspring transmission of CWD—Detection in fawn tissues 
using the QuIC assay
Amy Nalls, Erin McNulty, Clare Hoover, Jeanette Hayes-Klug, Kelly Anderson, 
Edward Hoover, and Candace Mathiason Colorado State University; Fort Collins, CO 
USA
To investigate the role mother to offspring transmission plays in chronic 
wasting disease (CWD), we have employed a small, polyestrous breeding, indoor 
maintainable cervid model, the Reeves’ muntjac deer. Muntjac doe were inoculated 
with CWD and tested positive by lymphoid biopsy at 4 months post inoculation. 
From these CWD-infected doe, we obtained 3 viable fawns. These fawns tested 
IHC-positive for CWD by lymphoid biopsy as early as 40 d post birth, and all 
have been euthanized due to clinical disease at 31, 34 and 59 months post birth. 
The QuIC assay demonstrates sensitivity and specificity in the detection of 
conversion competent prions in peripheral IHC-positive tissues including tonsil, 
mandibular, partotid, retropharyngeal, and prescapular lymph nodes, adrenal 
gland, spleen and liver. In summary, using the muntjac deer model, we have 
demonstrated CWD clinical disease in offspring born to CWD-infected doe and 
found that the QuIC assay is an effective tool in the detection of prions in 
peripheral tissues. ***Our findings demonstrate that transmission of prions from 
mother to offspring can occur, and may be underestimated for all prion 
diseases.
===============
***Our findings demonstrate that transmission of prions from mother to 
offspring can occur, and may be underestimated for all prion diseases. 
===============
I strenuously once again urge the FDA and its industry constituents, to 
make it MANDATORY that all ruminant feed be banned to all ruminants, and this 
should include all cervids as soon as possible for the following 
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from 
deer and elk is prohibited for use in feed for ruminant animals. With regards to 
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used 
for any animal feed or feed ingredients. For elk and deer considered at high 
risk for CWD, the FDA recommends that these animals do not enter the animal feed 
system. 
***However, this recommendation is guidance and not a requirement by law. 
======
31 Jan 2015 at 20:14 GMT 
*** Ruminant feed ban for cervids in the United States? ***
31 Jan 2015 at 20:14 GMT 
Friday, May 22, 2015 
*** Chronic Wasting Disease and Program Updates - 2014 NEUSAHA Annual 
Meeting 12-14 May 2014 ***
Saturday, May 30, 2015 
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS 
Wednesday, June 10, 2015 
Zoonotic Potential of CWD Prions 
LATE-BREAKING ABSTRACTS
PRION CONFERENCE 2014 HELD IN ITALY RECENTLY CWD BSE TSE UPDATE 
> First transmission of CWD to transgenic mice over-expressing bovine 
prion protein gene (TgSB3985) 
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping 
up the future of prion research
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First 
transmission of CWD to transgenic mice over-expressing bovine prion protein gene 
(TgSB3985) 
P.126: Successful transmission of chronic wasting disease (CWD) into mice 
over-expressing bovine prion protein (TgSB3985) 
Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana 
Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1 
1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of 
California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA 
Keywords: chronic wasting disease, transmission, transgenic mouse, bovine 
prion protein 
Background. CWD is a disease affecting wild and farmraised cervids in North 
America. Epidemiological studies provide no evidence of CWD transmission to 
humans. Multiple attempts have failed to infect transgenic mice expressing human 
PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal 
human PrPC in vitro provides additional evidence that transmission of CWD to 
humans cannot be easily achieved. However, a concern about the risk of CWD 
transmission to humans still exists. This study aimed to establish and 
characterize an experimental model of CWD in TgSB3985 mice with the following 
attempt of transmission to TgHu mice. 
Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were 
intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse 
(CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly 
injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD) 
or elk (CWD/Elk). Animals were observed for clinical signs of neurological 
disease and were euthanized when moribund. Brains and spleens were removed from 
all mice for PrPCWD detection by Western blotting (WB). A histological analysis 
of brains from selected animals was performed: brains were scored for the 
severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain 
regions. 
Results. Clinical presentation was consistent with TSE. More than 90% of 
TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres 
in the brain but only mice in the latter group carried PrPCWD in their spleens. 
We found evidence for co-existence or divergence of two CWD/ Tga20 strains based 
on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk 
or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen 
by WB. However, on neuropathological examination we found presence of amyloid 
plaques that stained positive for PrPCWD in three CWD/WTD- and two 
CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and 
CWD/Elkinfected mice were similar but unique as compared to profiles of BSE, 
BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM 
mice tested positive for PrPCWD by WB or by immunohistochemical detection. 
Conclusions. To our knowledge, this is the first established experimental 
model of CWD in TgSB3985. We found evidence for co-existence or divergence of 
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. 
Finally, we observed phenotypic differences between cervid-derived CWD and 
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway 
to characterize these strains. 
PRION 2014 CONFERENCE
CHRONIC WASTING DISEASE CWD 
A FEW FINDINGS ; 
Conclusions. To our knowledge, this is the first established experimental 
model of CWD in TgSB3985. We found evidence for co-existence or divergence of 
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. 
Finally, we observed phenotypic differences between cervid-derived CWD and 
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway 
to characterize these strains. 
We conclude that TSE infectivity is likely to survive burial for long time 
periods with minimal loss of infectivity and limited movement from the original 
burial site. However PMCA results have shown that there is the potential for 
rainwater to elute TSE related material from soil which could lead to the 
contamination of a wider area. These experiments reinforce the importance of 
risk assessment when disposing of TSE risk materials. 
The results show that even highly diluted PrPSc can bind efficiently to 
polypropylene, stainless steel, glass, wood and stone and propagate the 
conversion of normal prion protein. For in vivo experiments, hamsters were ic 
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, 
inoculated with 263K-contaminated implants of all groups, developed typical 
signs of prion disease, whereas control animals inoculated with non-contaminated 
materials did not.
Our data establish that meadow voles are permissive to CWD via peripheral 
exposure route, suggesting they could serve as an environmental reservoir for 
CWD. Additionally, our data are consistent with the hypothesis that at least two 
strains of CWD circulate in naturally-infected cervid populations and provide 
evidence that meadow voles are a useful tool for CWD strain typing. 
Conclusion. CWD prions are shed in saliva and urine of infected deer as 
early as 3 months post infection and throughout the subsequent >1.5 year 
course of infection. In current work we are examining the relationship of 
prionemia to excretion and the impact of excreted prion binding to surfaces and 
particulates in the environment.
Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) 
are shed in urine of infected deer as early as 6 months post inoculation and 
throughout the subsequent disease course. Further studies are in progress 
refining the real-time urinary prion assay sensitivity and we are examining more 
closely the excretion time frame, magnitude, and sample variables in 
relationship to inoculation route and prionemia in naturally and experimentally 
CWD-infected cervids.
Conclusions. Our results suggested that the odds of infection for CWD is 
likely controlled by areas that congregate deer thus increasing direct 
transmission (deer-to-deer interactions) or indirect transmission 
(deer-to-environment) by sharing or depositing infectious prion proteins in 
these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely 
controlled by separate factors than found in the Midwestern and endemic areas 
for CWD and can assist in performing more efficient surveillance efforts for the 
region.
Conclusions. During the pre-symptomatic stage of CWD infection and 
throughout the course of disease deer may be shedding multiple LD50 doses per 
day in their saliva. CWD prion shedding through saliva and excreta may account 
for the unprecedented spread of this prion disease in nature. 
P.28: Modeling prion species barriers and the new host effect using RT-QuIC 
Kristen A Davenport, Davin M Henderson, Candace K Mathiason, and Edward A 
Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA 
The propensity for trans-species prion transmission is related to the 
structural characteristics of the enciphering and heterologous PrP, but the 
exact mechanism remains mostly mysterious. 
Studies of the effects of primary or tertiary prion protein 
www.landesbioscience.com Prion 37 structures on trans-species prion transmission 
have relied upon animal bioassays, making the influence of prion protein 
structure vs. host co-factors (e.g. cellular constituents, trafficking, and 
innate immune interactions) difficult to dissect. 
As an alternative strategy, we are using real-time quaking-induced 
conversion (RT-QuIC) to investigate the propensity for and the kinetics of 
trans-species prion conversion. RT-QuIC has the advantage of providing more 
defined conditions of seeded conversion to study the specific role of native 
PrP:PrPRES interactions as a component of the species barrier. 
We are comparing chronic wasting disease (CWD) and bovine spongiform 
encephalopathy (BSE) prions by seeding each prion into its native host recPrP 
(full-length bovine recPrP, or white tail deer recPrP) vs. into the heterologous 
species. 
Upon establishing the characteristics of intra-species and inter-species 
prion seeding for CWD and BSE prions, we will evaluate the seeding kinetics and 
cross-species seeding efficiencies of BSE and CWD passaged into a common new 
host—feline—shown to be a permissive host for both CWD and BSE. 
*** We hypothesize that both BSE prions and CWD prions passaged through 
felines will seed human recPrP more efficiently than BSE or CWD from the 
original hosts, evidence that the new host will dampen the species barrier 
between humans and BSE or CWD. The new host effect is particularly relevant as 
we investigate potential means of trans-species transmission of prion disease. 
Chronic Wasting Disease Susceptibility of Four North American Rodents 
Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A. 
Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel 
J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary 
Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI 
53706, USA 2US Geological Survey, National Wildlife Health Center, 6006 
Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural 
Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary 
Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author 
email: cjohnson@svm.vetmed.wisc.edu 
We intracerebrally challenged four species of native North American rodents 
that inhabit locations undergoing cervid chronic wasting disease (CWD) 
epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed 
mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles 
(Myodes gapperi). The inocula were prepared from the brains of hunter-harvested 
white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles 
proved to be most susceptible, with a median incubation period of 272 days. 
Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the 
brains of all challenged meadow voles. Subsequent passages in meadow voles lead 
to a significant reduction in incubation period. The disease progression in 
red-backed voles, which are very closely related to the European bank vole (M. 
glareolus) which have been demonstrated to be sensitive to a number of TSEs, was 
slower than in meadow voles with a median incubation period of 351 days. We 
sequenced the meadow vole and red-backed vole Prnp genes and found three amino 
acid (AA) differences outside of the signal and GPI anchor sequences. Of these 
differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is 
particularly intriguing due its postulated involvement in "rigid loop" structure 
and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5 
years post-inoculation, but appear to be exhibiting a high degree of disease 
penetrance. White-footed mice have an even longer incubation period but are also 
showing high penetrance. Second passage experiments show significant shortening 
of incubation periods. Meadow voles in particular appear to be interesting lab 
models for CWD. These rodents scavenge carrion, and are an important food source 
for many predator species. Furthermore, these rodents enter human and domestic 
livestock food chains by accidental inclusion in grain and forage. Further 
investigation of these species as potential hosts, bridge species, and 
reservoirs of CWD is required. 
please see ; 
Monday, August 8, 2011 
*** Susceptibility of Domestic Cats to CWD Infection ***
Oral.29: Susceptibility of Domestic Cats to CWD Infection
Amy Nalls, Nicholas J. Haley, Jeanette Hayes-Klug, Kelly Anderson, Davis M. 
Seelig, Dan S. Bucy, Susan L. Kraft, Edward A. Hoover and Candace K. 
Mathiason†
Colorado State University; Fort Collins, CO USA†Presenting author; Email: 
ckm@lamar.colostate.edu
Domestic and non-domestic cats have been shown to be susceptible to one 
prion disease, feline spongiform encephalopathy (FSE), thought to be transmitted 
through consumption of bovine spongiform encephalopathy (BSE) contaminated meat. 
Because domestic and free ranging felids scavenge cervid carcasses, including 
those in CWD affected areas, we evaluated the susceptibility of domestic cats to 
CWD infection experimentally. Groups of n = 5 cats each were inoculated either 
intracerebrally (IC) or orally (PO) with CWD deer brain homogenate. Between 
40–43 months following IC inoculation, two cats developed mild but progressive 
symptoms including weight loss, anorexia, polydipsia, patterned motor behaviors 
and ataxia—ultimately mandating euthanasia. Magnetic resonance imaging (MRI) on 
the brain of one of these animals (vs. two age-matched controls) performed just 
before euthanasia revealed increased ventricular system volume, more prominent 
sulci, and T2 hyperintensity deep in the white matter of the frontal hemisphere 
and in cortical grey distributed through the brain, likely representing 
inflammation or gliosis. PrPRES and widely distributed peri-neuronal vacuoles 
were demonstrated in the brains of both animals by immunodetection assays. No 
clinical signs of TSE have been detected in the remaining primary passage cats 
after 80 months pi. Feline-adapted CWD was sub-passaged into groups (n=4 or 5) 
of cats by IC, PO, and IP/SQ routes. Currently, at 22 months pi, all five IC 
inoculated cats are demonstrating abnormal behavior including increasing 
aggressiveness, pacing, and hyper responsiveness. 
*** Two of these cats have developed rear limb ataxia. Although the limited 
data from this ongoing study must be considered preliminary, they raise the 
potential for cervid-to-feline transmission in nature.
AD.63: 
Susceptibility of domestic cats to chronic wasting disease 
Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin 
Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1 1Colorado 
State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN 
USA 
Domestic and nondomestic cats have been shown to be susceptible to feline 
spongiform encephalopathy (FSE), almost certainly caused by consumption of 
bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and 
free-ranging nondomestic felids scavenge cervid carcasses, including those in 
areas affected by chronic wasting disease (CWD), we evaluated the susceptibility 
of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 
cats each were inoculated either intracerebrally (IC) or orally (PO) with 
CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated 
cats developed signs consistent with prion disease, including a stilted gait, 
weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail 
tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from 
these two cats were pooled and inoculated into cohorts of cats by IC, PO, and 
intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted 
CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased 
incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the 
symptomatic cats by western blotting and immunohistochemistry and abnormalities 
were seen in magnetic resonance imaging, including multifocal T2 fluid 
attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size 
increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 
IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns 
consistent with the early stage of feline CWD. 
*** These results demonstrate that CWD can be transmitted and adapted to 
the domestic cat, thus raising the issue of potential cervid-to- feline 
transmission in nature. 
www.landesbioscience.com 
PO-081: Chronic wasting disease in the cat— Similarities to feline 
spongiform encephalopathy (FSE) 
FELINE SPONGIFORM ENCEPHALOPATHY FSE 
2011 
*** After a natural route of exposure, 100% of white-tailed deer were 
susceptible to scrapie. 
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET 
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF 
THE STUDIES ON CWD TRANSMISSION TO CATTLE ; 
----- Original Message ----- 
From: David Colby To: flounder9@verizon.net 
Cc: stanley@XXXXXXXX 
Sent: Tuesday, March 01, 2011 8:25 AM 
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + 
Author Affiliations 
Dear Terry Singeltary, 
Thank you for your correspondence regarding the review article Stanley 
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner 
asked that I reply to your message due to his busy schedule. We agree that the 
transmission of CWD prions to beef livestock would be a troubling development 
and assessing that risk is important. In our article, we cite a peer-reviewed 
publication reporting confirmed cases of laboratory transmission based on 
stringent criteria. The less stringent criteria for transmission described in 
the abstract you refer to lead to the discrepancy between your numbers and ours 
and thus the interpretation of the transmission rate. We stand by our assessment 
of the literature--namely that the transmission rate of CWD to bovines appears 
relatively low, but we recognize that even a low transmission rate could have 
important implications for public health and we thank you for bringing attention 
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor 
Department of Chemical Engineering University of Delaware 
===========END...TSS============== 
Thursday, July 03, 2014 
How Chronic Wasting Disease is affecting deer population and what’s the 
risk to humans and pets? 
*** The potential impact of prion diseases on human health was greatly 
magnified by the recognition that interspecies transfer of BSE to humans by beef 
ingestion resulted in vCJD. While changes in animal feed constituents and 
slaughter practices appear to have curtailed vCJD, there is concern that CWD of 
free-ranging deer and elk in the U.S. might also cross the species barrier. 
Thus, consuming venison could be a source of human prion disease. Whether BSE 
and CWD represent interspecies scrapie transfer or are newly arisen prion 
diseases is unknown. Therefore, the possibility of transmission of prion disease 
through other food animals cannot be ruled out. There is evidence that vCJD can 
be transmitted through blood transfusion. There is likely a pool of unknown size 
of asymptomatic individuals infected with vCJD, and there may be asymptomatic 
individuals infected with the CWD equivalent. These circumstances represent a 
potential threat to blood, blood products, and plasma supplies. 
Wednesday, March 04, 2015 
*** Disease sampling results provide current snapshot of CWD in Wisconsin 
finding 324 positive detections statewide in 2014 
Tuesday, October 07, 2014 
*** Wisconsin white-tailed deer tested positive for CWD on a Richland 
County breeding farm, and a case of CWD has been discovered on a Marathon County 
hunting preserve 
Terry S. Singeltary Sr.
Tuesday, June 16, 2015
Missouri MDC changes deer hunting regs to help slow CWD
MDC changes deer hunting regs to help slow CWD
JEFFERSON CITY, Mo. – The Missouri Department of Conservation (MDC) is asking deer hunters in 19 central and northeastern Missouri counties to help limit the spread of a deadly deer disease through increased harvest opportunities this fall and winter. The Missouri Conservation Commission recently approved several changes to regulations for the upcoming 2015-16 fall deer hunting season that focus on slowing the spread of chronic wasting disease (CWD).
Chronic Wasting Disease infects only deer and other members of the deer family by causing degeneration of brain tissue, which slowly leads to death. The disease has no vaccine or cure and is 100-percent fatal.
"A primary way CWD is spread is through deer-to-deer contact," explained MDC State Wildlife Veterinarian Kelly Straka. "Deer gathering and interacting in larger numbers can potentially increase the spread in an area. Young bucks can also potentially spread the disease to new areas as they search for territories and mates."
REGULATION CHANGES
The regulation changes focus on slowing the spread of the disease in and around counties where CWD has been found. The changes will remove the antler-point restriction so hunters can harvest more young bucks. The changes will also increase the availability of firearms antlerless permits from 1 to 2 to help thin local deer numbers.
COUNTIES IMPACTED
These regulation changes add to similar measures MDC enacted in 2012 for six counties in northeastern Missouri after CWD was discovered in Linn and Macon counties. Counties affected by those regulation changes were Adair, Chariton, Linn, Macon, Randolph, and Sullivan.
The recent regulation changes add five more northeastern counties of Knox, Scotland, Schuyler, Shelby, and Putnam and come after six deer tested positive for CWD this past fall and winter in Adair County.
The recent regulation changes also include eight counties in central Missouri and come after a buck harvested in Cole County tested positive for the disease this past winter. Those counties are Boone, Callaway, Cole, Cooper, Miller, Moniteau, Morgan, and Osage.
"The challenge with CWD is that there is no way to fully eradicate the disease from an area once it has become established," said Dr. Straka. "While we do not expect short-term population impacts from the disease, CWD is likely to have serious long-term consequences to the health of Missouri's deer herd. Therefore, we have and will continue to focus on slowing the spread of the disease among deer in the affected areas, and trying to limit the spread to new areas of the state."
CWD TESTING RESULTS
The Missouri Department of Conservation (MDC) reports that a total of 16 new cases of CWD were found in free-ranging deer through its testing efforts this past fall and winter. Of the 16 new cases, nine were found in Macon County, six in Adair County, and one in Cole County.
These 16 new cases bring the total number of Missouri free-ranging deer that have tested positive for CWD to 26 overall since the disease was first discovered in the state in 2010.
MDC collected more than 3,400 tissue samples for CWD testing from harvested and other free-ranging deer this past fall and winter. The Department has collected more than 43,000 tissue samples since it began testing for the emerging disease in 2001. MDC will continue increased testing efforts this fall and winter in areas where CWD has been found.
MDC is also considering regulation changes for the 2016-17 deer season that would require testing of deer harvested during the opening weekend of the fall firearms season in the 19 counties in and around where CWD has been found.
DON'T TRANSPORT CARCASSES!
Dr. Straka said that hunters can also spread the disease by transporting and improperly disposing of potentially infected deer carcasses. She explained that CWD can be spread through carcass parts that contain brain, spinal cord, eyes, spleen, or lymph nodes.
"To help prevent the spread of diseases, such as CWD, we strongly discourage deer hunters from moving carcasses of harvested deer from the immediate area," she said.
"If possible, remove meat in the field and leave the carcass behind. If it's necessary to move the carcass before processing, place the remaining carcass parts after processing in trash bags and properly dispose of them through a trash service or landfill."
She added that some parts of a harvested deer are safe to move out of the immediate area.
"Items that are safe to transport are meat that is cut and wrapped, or has been boned out," she explained. "Also safe to transport are quarters or other portions of meat with no part of the spine or head attached, hides or capes from which all excess tissue has been removed, antlers including ones attached to skull plates or skulls that have been cleaned of all muscle and brain tissue, and finished taxidermy products."
MDC is considering regulation changes for the 2016-17 deer season that would prohibit the movement of carcass parts from the 19 counties in and around where CWD has been found and prohibit the importation of certain cervid carcass parts into Missouri.
AVOID FEEDING DEER
Dr. Straka added that MDC strongly discourages hunters and others from feeding or providing salt and minerals to deer.
"Feeding and mineral sites can concentrate deer from a broad area and place them in very close proximity to one another," she explained. "This can increase the transmission of the disease."
A regulation that prohibits the feeding of deer and placement of consumable products -- such as salt and mineral blocks -- that are intended to concentrate deer is already in effect in Adair, Chariton, Linn, Macon, Randolph, and Sullivan counties.
MDC is considering a regulation change for the 2016-17 deer season that would expand that regulation to include the 13 additional counties in northeastern and central Missouri in and around where CWD has been found.
PUBLIC COMMENTS WELCOME
MDC welcomes public comment on the regulation changes under consideration for the 2016-17 deer season. Comment online at mdc.mo.gov/node/6.
DEER HUNTING IN MISSOURI
Missouri offers some of the best deer hunting in the country, and deer hunting is an important part of many Missourians' lives and family traditions. The continued spread of CWD in Missouri is likely to reduce future hunting and wildlife-watching opportunities for Missouri's nearly 520,000 deer hunters and almost two million wildlife watchers. Deer hunting is also an important economic driver in Missouri and gives a $1 billion annual boost to the state and local economies.
DEER HUNTING DATES
Fall deer hunting season dates are as follows.
- Archery: Sept. 15 to Nov. 13 and Nov. 25 to Jan. 15
- Urban Firearms: Oct. 9 to 12
- Youth Firearms: Oct. 31 and Nov. 1 and Jan. 2 and 3, 2016
- November Firearms: Nov. 14 to 24
- Antlerless Firearms: Nov. 25 to Dec. 6
- Alternative Methods: Dec. 19 to 29
MDC reports two new cases of CWD found in Adair and Macon counties 
Published on: Jan. 26, 2015
Posted by Joe Jerek
JEFFERSON CITY, Mo. -- The Missouri Department of Conservation (MDC) 
reports that two new cases of chronic wasting disease (CWD) have recently been 
found in north-central Missouri. One was found in an adult buck harvested by a 
hunter in Macon County and the other in an adult doe harvested by a hunter in 
Adair County. These two new cases bring the total of Missouri free-ranging deer 
that have tested positive for CWD to five for this hunting season and 15 
overall. The total cases of CWD in Missouri captive and free-ranging deer now 
stands at 26.
CWD was first discovered in Missouri in 2010 at a private hunting preserve 
in Linn County. All cases of CWD in Missouri have been limited to Macon, Linn, 
and Adair counties, which are part of MDC's six-county CWD Containment Zone. 
Additional counties included in the zone are Chariton, Randolph, and Sullivan. 
Monday, January 26, 2015 
Missouri MDC reports two new cases of CWD found in Adair and Macon counties 
LATE-BREAKING ABSTRACTS
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, 
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve 
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 
3Encore Health Resources, Houston, Texas, USA
Chronic wasting disease (CWD) is a widespread and expanding prion disease 
in free-ranging and captive cervid species in North America. The zoonotic 
potential of CWD prions is a serious public health concern. Current literature 
generated with in vitro methods and in vivo animal models (transgenic mice, 
macaques and squirrel monkeys) reports conflicting results. The susceptibility 
of human CNS and peripheral organs to CWD prions remains largely unresolved. In 
our earlier bioassay experiments using several humanized transgenic mouse lines, 
we detected protease-resistant PrPSc in the spleen of two out of 140 mice that 
were intracerebrally inoculated with natural CWD isolates, but PrPSc was not 
detected in the brain of the same mice. Secondary passages with such 
PrPSc-positive CWD-inoculated humanized mouse spleen tissues led to efficient 
prion transmission with clear clinical and pathological signs in both humanized 
and cervidized transgenic mice. Furthermore, a recent bioassay with natural CWD 
isolates in a new humanized transgenic mouse line led to clinical prion 
infection in 2 out of 20 mice. These results indicate that the CWD prion has the 
potential to infect human CNS and peripheral lymphoid tissues and that there 
might be asymptomatic human carriers of CWD infection. 
================== 
***These results indicate that the CWD prion has the potential to infect 
human CNS and peripheral lymphoid tissues and that there might be asymptomatic 
human carriers of CWD infection.*** 
================== 
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover 
Prion Research Center; Colorado State University; Fort Collins, CO USA
The propensity for trans-species prion transmission is related to the 
structural characteristics of the enciphering and heterologous PrP, but the 
exact mechanism remains mostly mysterious. Studies of the effects of primary or 
tertiary prion protein structures on trans-species prion transmission have 
relied primarily upon animal bioassays, making the influence of prion protein 
structure vs. host co-factors (e.g. cellular constituents, trafficking, and 
innate immune interactions) difficult to dissect. As an alternative strategy, we 
used real-time quakinginduced conversion (RT-QuIC) to investigate trans-species 
prion conversion.
To assess trans-species conversion in the RT-QuIC system, we compared 
chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions, 
as well as feline CWD (fCWD) and feline spongiform encephalopathy (FSE). Each 
prion was seeded into each host recombinant PrP (full-length rPrP of 
white-tailed deer, bovine or feline). We demonstrated that fCWD is a more 
efficient seed for feline rPrP than for white-tailed deer rPrP, which suggests 
adaptation to the new host.
Conversely, FSE maintained sufficient BSE characteristics to more 
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was 
competent for conversion by CWD and fCWD. ***This insinuates that, at the level 
of protein:protein interactions, the barrier preventing transmission of CWD to 
humans is less robust than previously estimated.
================
***This insinuates that, at the level of protein:protein interactions, the 
barrier preventing transmission of CWD to humans is less robust than previously 
estimated.***
================
Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, Amy Nalls, 
and Candace Mathiason Colorado State University; Fort Collins, CO USA
Chronic wasting disease (CWD) is the transmissible spongiform 
encephalopathy (TSE), of free-ranging and captive cervids (deer, elk and moose). 
The presence of infectious prions in the tissues, bodily fluids and 
environments of clinical and preclinical CWD-infected animals is thought to 
account for its high transmission efficiency. Recently it has been recognized 
that mother to offspring transmission may contribute to the facile transmission 
of some TSEs. Although the mechanism behind maternal transmission is not yet 
known, the extended asymptomatic TSE carrier phase (lasting years to decades) 
suggests that it may have implications in the spread of prions.
Placental trafficking and/or secretion in milk are 2 means by which 
maternal prion transmission may occur. In these studies we explore these avenues 
during early and late infection using a transgenic mouse model expressing cervid 
prion protein. Na€ıve and CWD-infected dams were bred at both timepoints, and 
were allowed to bear and raise their offspring. Milk was collected from the dams 
for prion analysis, and the offspring were observed for TSE disease progression. 
Terminal tissues harvested from both dams and offspring were analyzed for 
prions.
We have demonstrated that 
(1) CWDinfected TgCerPRP females successfully breed and bear offspring, and 
(2) the presence of PrPCWD in reproductive and mammary tissue from 
CWD-infected dams. 
We are currently analyzing terminal tissue harvested from offspring born to 
CWD-infected dams for the detection of PrPCWD and amplification competent 
prions. These studies will provide insight into the potential mechanisms and 
biological significance associated with mother to offspring transmission of 
TSEs.
==============
P.157: Uptake of prions into plants
Christopher Johnson1, Christina Carlson1, Matthew Keating1,2, Nicole 
Gibbs1, Haeyoon Chang1, Jamie Wiepz1, and Joel Pedersen1 1USGS National Wildlife 
Health Center; Madison, WI USA; 2University of Wisconsin - Madison; Madison, WI 
USA
Soil may preserve chronic wasting disease (CWD) and scrapie infectivity in 
the environment, making consumption or inhalation of soil particles a plausible 
mechanism whereby na€ıve animals can be exposed to prions. Plants are known to 
absorb a variety of substances from soil, including whole proteins, yet the 
potential for plants to take up abnormal prion protein (PrPTSE) and preserve 
prion infectivity is not known. In this study, we assessed PrPTSE uptake into 
roots using laser scanning confocal microscopy with fluorescently tagged PrPTSE 
and we used serial protein misfolding cyclic amplification (sPMCA) and detect 
and quantify PrPTSE levels in plant aerial tissues. Fluorescence was identified 
in the root hairs of the model plant Arabidopsis thaliana, as well as the crop 
plants alfalfa (Medicago sativa), barley (Hordeum vulgare) and tomato (Solanum 
lycopersicum) upon exposure to tagged PrPTSE but not a tagged control 
preparation. Using sPMCA, we found evidence of PrPTSE in aerial tissues of A. 
thaliana, alfalfa and maize (Zea mays) grown in hydroponic cultures in which 
only roots were exposed to PrPTSE. Levels of PrPTSE in plant aerial tissues 
ranged from approximately 4 £ 10 ¡10 to 1 £ 10 ¡9 g PrPTSE g ¡1 plant dry weight 
or 2 £ 105 to 7 £ 106 intracerebral ID50 units g ¡1 plant dry weight. Both stems 
and leaves of A. thaliana grown in culture media containing prions are 
infectious when intracerebrally-injected into mice. ***Our results suggest that 
prions can be taken up by plants and that contaminated plants may represent a 
previously unrecognized risk of human, domestic species and wildlife exposure to 
prions.
===========
***Our results suggest that prions can be taken up by plants and that 
contaminated plants may represent a previously unrecognized risk of human, 
domestic species and wildlife exposure to prions.***
SEE ;
Friday, May 15, 2015 
Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions 
Report 
============ 
P.19: Characterization of chronic wasting disease isolates from freeranging 
deer (Odocoileus sp) in Alberta and Saskatchewan, Canada
Camilo Duque Velasquez1, Chiye Kim1, Nathalie Daude1, Jacques van der 
Merwe1, Allen Herbst1, Trent Bollinger2, Judd Aiken1, and Debbie McKenzie1 
1Centre for Prions and Protein Folding Diseases; University of Alberta; 
Edmonton, Canada; 2Western College of Veterinary Medicine; University of 
Saskatchewan; Saskatoon, Canada
Chronic wasting disease (CWD) is an emerging prion disease of free ranging 
and captive species of Cervidae. In North America, CWD is enzootic in some wild 
cervid populations and can circulate among different deer species. The 
contagious nature of CWD prions and the variation of cervid PRNP alleles, which 
influence host susceptibility, can result in the emergence and adaptation of 
different CWD strains. These strains may impact transmission host range, disease 
diagnosis, spread dynamics and efficacy of potential vaccines. We are 
characterizing different CWD agents by biochemical analysis of the PrPCWD 
conformers, propagation in vitro cell assays1 and by comparing transmission 
properties and neuropathology in Tg33 (Q95G96) and Tg60 (Q95S96) mice.2 Although 
Tg60 mice expressing S96- PrPC have been shown resistant to CWD infectivity from 
various cervid species,2,3 
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived 
from experimental infection of deer expressing H95G96-PrPC. The diversity of 
strains present in free-ranging mule deer (Odocoileus hemionus) and white-tailed 
deer (Odocoileus virginianus) from Alberta and Saskatchewan is being determined 
and will allow us to delineate the properties of CWD agents circulating in CWD 
enzootic cervid populations of Canada.
References
1. van der Merwe J, Aiken J, Westaway D, McKenzie D. The standard scrapie 
cell assay: Development, utility and prospects. Viruses 2015; 7(1):180–198; 
PMID:25602372; http://dx.doi.org/10.3390/v7010180
2. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller 
M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting 
disease in transgenic mice expressing a naturally occurring allelic variant of 
deer prion protein. J Virol 2007; 81(9):4533–4539; PMID: 17314157; http://dx. doi.org/10.1128/JVI.02762-06
3. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison 
of chronic wasting disease infectivity from deer with variation at prion protein 
residue 96. J Virol 2011; 85(17):9235–9238; PMID: 21697479; http://dx.doi.org/10.1128/JVI.00790-11
=========
***these transgenic mice are susceptible to H95 C CWD, a CWD strain derived 
from experimental infection of deer expressing H95G96-PrPC.
========== 
P.136: Mother to offspring transmission of CWD—Detection in fawn tissues 
using the QuIC assay
Amy Nalls, Erin McNulty, Clare Hoover, Jeanette Hayes-Klug, Kelly Anderson, 
Edward Hoover, and Candace Mathiason Colorado State University; Fort Collins, CO 
USA
To investigate the role mother to offspring transmission plays in chronic 
wasting disease (CWD), we have employed a small, polyestrous breeding, indoor 
maintainable cervid model, the Reeves’ muntjac deer. Muntjac doe were inoculated 
with CWD and tested positive by lymphoid biopsy at 4 months post inoculation. 
From these CWD-infected doe, we obtained 3 viable fawns. These fawns tested 
IHC-positive for CWD by lymphoid biopsy as early as 40 d post birth, and all 
have been euthanized due to clinical disease at 31, 34 and 59 months post birth. 
The QuIC assay demonstrates sensitivity and specificity in the detection of 
conversion competent prions in peripheral IHC-positive tissues including tonsil, 
mandibular, partotid, retropharyngeal, and prescapular lymph nodes, adrenal 
gland, spleen and liver. In summary, using the muntjac deer model, we have 
demonstrated CWD clinical disease in offspring born to CWD-infected doe and 
found that the QuIC assay is an effective tool in the detection of prions in 
peripheral tissues. ***Our findings demonstrate that transmission of prions from 
mother to offspring can occur, and may be underestimated for all prion 
diseases.
===============
***Our findings demonstrate that transmission of prions from mother to 
offspring can occur, and may be underestimated for all prion diseases. 
===============
I strenuously once again urge the FDA and its industry constituents, to 
make it MANDATORY that all ruminant feed be banned to all ruminants, and this 
should include all cervids as soon as possible for the following 
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from 
deer and elk is prohibited for use in feed for ruminant animals. With regards to 
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used 
for any animal feed or feed ingredients. For elk and deer considered at high 
risk for CWD, the FDA recommends that these animals do not enter the animal feed 
system. 
***However, this recommendation is guidance and not a requirement by law. 
======
31 Jan 2015 at 20:14 GMT 
*** Ruminant feed ban for cervids in the United States? ***
31 Jan 2015 at 20:14 GMT 
Friday, May 22, 2015 
*** Chronic Wasting Disease and Program Updates - 2014 NEUSAHA Annual 
Meeting 12-14 May 2014 ***
Saturday, May 30, 2015 
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS 
Wednesday, June 10, 2015 
Zoonotic Potential of CWD Prions 
LATE-BREAKING ABSTRACTS
PRION CONFERENCE 2014 HELD IN ITALY RECENTLY CWD BSE TSE UPDATE 
> First transmission of CWD to transgenic mice over-expressing bovine 
prion protein gene (TgSB3985) 
PRION 2014 - PRIONS: EPIGENETICS and NEURODEGENERATIVE DISEASES – Shaping 
up the future of prion research
Animal TSE Workshop 10.40 – 11.05 Talk Dr. L. Cervenakova First 
transmission of CWD to transgenic mice over-expressing bovine prion protein gene 
(TgSB3985) 
P.126: Successful transmission of chronic wasting disease (CWD) into mice 
over-expressing bovine prion protein (TgSB3985) 
Larisa Cervenakova,1 Christina J Sigurdson,2 Pedro Piccardo,3 Oksana 
Yakovleva,1 Irina Vasilyeva,1 Jorge de Castro,1 Paula Saá,1 and Anton Cervenak1 
1American Red Cross, Holland Laboratory; Rockville, MD USA; 2University of 
California; San Diego, CA USA; 3Lab TSE/OBRR /CBER/FDA; Rockville, MD USA 
Keywords: chronic wasting disease, transmission, transgenic mouse, bovine 
prion protein 
Background. CWD is a disease affecting wild and farmraised cervids in North 
America. Epidemiological studies provide no evidence of CWD transmission to 
humans. Multiple attempts have failed to infect transgenic mice expressing human 
PRNP gene with CWD. The extremely low efficiency of PrPCWD to convert normal 
human PrPC in vitro provides additional evidence that transmission of CWD to 
humans cannot be easily achieved. However, a concern about the risk of CWD 
transmission to humans still exists. This study aimed to establish and 
characterize an experimental model of CWD in TgSB3985 mice with the following 
attempt of transmission to TgHu mice. 
Materials and Methods. TgSB3985 mice and wild-type FVB/ NCrl mice were 
intracranially injected with 1% brain homogenate from a CWD-infected Tga20 mouse 
(CWD/Tga20). TgSB3985 and TgRM (over-expressing human PrP) were similarly 
injected with 5% brain homogenates from CWD-infected white-tailed deer (CWD/WTD) 
or elk (CWD/Elk). Animals were observed for clinical signs of neurological 
disease and were euthanized when moribund. Brains and spleens were removed from 
all mice for PrPCWD detection by Western blotting (WB). A histological analysis 
of brains from selected animals was performed: brains were scored for the 
severity of spongiform change, astrogliosis, and PrPCWD deposition in ten brain 
regions. 
Results. Clinical presentation was consistent with TSE. More than 90% of 
TgSB3985 and wild-type mice infected with CWD/Tga20, tested positive for PrPres 
in the brain but only mice in the latter group carried PrPCWD in their spleens. 
We found evidence for co-existence or divergence of two CWD/ Tga20 strains based 
on biochemical and histological profiles. In TgSB3985 mice infected with CWD-elk 
or CWD-WTD, no animals tested positive for PrPCWD in the brain or in the spleen 
by WB. However, on neuropathological examination we found presence of amyloid 
plaques that stained positive for PrPCWD in three CWD/WTD- and two 
CWD/Elk-infected TgSB3985 mice. The neuropathologic profiles in CWD/WTD- and 
CWD/Elkinfected mice were similar but unique as compared to profiles of BSE, 
BSE-H or CWD/Tg20 agents propagated in TgSB3985 mice. None of CWD-infected TgRM 
mice tested positive for PrPCWD by WB or by immunohistochemical detection. 
Conclusions. To our knowledge, this is the first established experimental 
model of CWD in TgSB3985. We found evidence for co-existence or divergence of 
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. 
Finally, we observed phenotypic differences between cervid-derived CWD and 
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway 
to characterize these strains. 
PRION 2014 CONFERENCE
CHRONIC WASTING DISEASE CWD 
A FEW FINDINGS ; 
Conclusions. To our knowledge, this is the first established experimental 
model of CWD in TgSB3985. We found evidence for co-existence or divergence of 
two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. 
Finally, we observed phenotypic differences between cervid-derived CWD and 
CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway 
to characterize these strains. 
We conclude that TSE infectivity is likely to survive burial for long time 
periods with minimal loss of infectivity and limited movement from the original 
burial site. However PMCA results have shown that there is the potential for 
rainwater to elute TSE related material from soil which could lead to the 
contamination of a wider area. These experiments reinforce the importance of 
risk assessment when disposing of TSE risk materials. 
The results show that even highly diluted PrPSc can bind efficiently to 
polypropylene, stainless steel, glass, wood and stone and propagate the 
conversion of normal prion protein. For in vivo experiments, hamsters were ic 
injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, 
inoculated with 263K-contaminated implants of all groups, developed typical 
signs of prion disease, whereas control animals inoculated with non-contaminated 
materials did not.
Our data establish that meadow voles are permissive to CWD via peripheral 
exposure route, suggesting they could serve as an environmental reservoir for 
CWD. Additionally, our data are consistent with the hypothesis that at least two 
strains of CWD circulate in naturally-infected cervid populations and provide 
evidence that meadow voles are a useful tool for CWD strain typing. 
Conclusion. CWD prions are shed in saliva and urine of infected deer as 
early as 3 months post infection and throughout the subsequent >1.5 year 
course of infection. In current work we are examining the relationship of 
prionemia to excretion and the impact of excreted prion binding to surfaces and 
particulates in the environment.
Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) 
are shed in urine of infected deer as early as 6 months post inoculation and 
throughout the subsequent disease course. Further studies are in progress 
refining the real-time urinary prion assay sensitivity and we are examining more 
closely the excretion time frame, magnitude, and sample variables in 
relationship to inoculation route and prionemia in naturally and experimentally 
CWD-infected cervids.
Conclusions. Our results suggested that the odds of infection for CWD is 
likely controlled by areas that congregate deer thus increasing direct 
transmission (deer-to-deer interactions) or indirect transmission 
(deer-to-environment) by sharing or depositing infectious prion proteins in 
these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely 
controlled by separate factors than found in the Midwestern and endemic areas 
for CWD and can assist in performing more efficient surveillance efforts for the 
region.
Conclusions. During the pre-symptomatic stage of CWD infection and 
throughout the course of disease deer may be shedding multiple LD50 doses per 
day in their saliva. CWD prion shedding through saliva and excreta may account 
for the unprecedented spread of this prion disease in nature. 
P.28: Modeling prion species barriers and the new host effect using RT-QuIC 
Kristen A Davenport, Davin M Henderson, Candace K Mathiason, and Edward A 
Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA 
The propensity for trans-species prion transmission is related to the 
structural characteristics of the enciphering and heterologous PrP, but the 
exact mechanism remains mostly mysterious. 
Studies of the effects of primary or tertiary prion protein 
www.landesbioscience.com Prion 37 structures on trans-species prion transmission 
have relied upon animal bioassays, making the influence of prion protein 
structure vs. host co-factors (e.g. cellular constituents, trafficking, and 
innate immune interactions) difficult to dissect. 
As an alternative strategy, we are using real-time quaking-induced 
conversion (RT-QuIC) to investigate the propensity for and the kinetics of 
trans-species prion conversion. RT-QuIC has the advantage of providing more 
defined conditions of seeded conversion to study the specific role of native 
PrP:PrPRES interactions as a component of the species barrier. 
We are comparing chronic wasting disease (CWD) and bovine spongiform 
encephalopathy (BSE) prions by seeding each prion into its native host recPrP 
(full-length bovine recPrP, or white tail deer recPrP) vs. into the heterologous 
species. 
Upon establishing the characteristics of intra-species and inter-species 
prion seeding for CWD and BSE prions, we will evaluate the seeding kinetics and 
cross-species seeding efficiencies of BSE and CWD passaged into a common new 
host—feline—shown to be a permissive host for both CWD and BSE. 
*** We hypothesize that both BSE prions and CWD prions passaged through 
felines will seed human recPrP more efficiently than BSE or CWD from the 
original hosts, evidence that the new host will dampen the species barrier 
between humans and BSE or CWD. The new host effect is particularly relevant as 
we investigate potential means of trans-species transmission of prion disease. 
Chronic Wasting Disease Susceptibility of Four North American Rodents 
Chad J. Johnson1*, Jay R. Schneider2, Christopher J. Johnson2, Natalie A. 
Mickelsen2, Julia A. Langenberg3, Philip N. Bochsler4, Delwyn P. Keane4, Daniel 
J. Barr4, and Dennis M. Heisey2 1University of Wisconsin School of Veterinary 
Medicine, Department of Comparative Biosciences, 1656 Linden Drive, Madison WI 
53706, USA 2US Geological Survey, National Wildlife Health Center, 6006 
Schroeder Road, Madison WI 53711, USA 3Wisconsin Department of Natural 
Resources, 101 South Webster Street, Madison WI 53703, USA 4Wisconsin Veterinary 
Diagnostic Lab, 445 Easterday Lane, Madison WI 53706, USA *Corresponding author 
email: cjohnson@svm.vetmed.wisc.edu 
We intracerebrally challenged four species of native North American rodents 
that inhabit locations undergoing cervid chronic wasting disease (CWD) 
epidemics. The species were: deer mice (Peromyscus maniculatus), white-footed 
mice (P. leucopus), meadow voles (Microtus pennsylvanicus), and red-backed voles 
(Myodes gapperi). The inocula were prepared from the brains of hunter-harvested 
white-tailed deer from Wisconsin that tested positive for CWD. Meadow voles 
proved to be most susceptible, with a median incubation period of 272 days. 
Immunoblotting and immunohistochemistry confirmed the presence of PrPd in the 
brains of all challenged meadow voles. Subsequent passages in meadow voles lead 
to a significant reduction in incubation period. The disease progression in 
red-backed voles, which are very closely related to the European bank vole (M. 
glareolus) which have been demonstrated to be sensitive to a number of TSEs, was 
slower than in meadow voles with a median incubation period of 351 days. We 
sequenced the meadow vole and red-backed vole Prnp genes and found three amino 
acid (AA) differences outside of the signal and GPI anchor sequences. Of these 
differences (T56-, G90S, S170N; read-backed vole:meadow vole), S170N is 
particularly intriguing due its postulated involvement in "rigid loop" structure 
and CWD susceptibility. Deer mice did not exhibit disease signs until nearly 1.5 
years post-inoculation, but appear to be exhibiting a high degree of disease 
penetrance. White-footed mice have an even longer incubation period but are also 
showing high penetrance. Second passage experiments show significant shortening 
of incubation periods. Meadow voles in particular appear to be interesting lab 
models for CWD. These rodents scavenge carrion, and are an important food source 
for many predator species. Furthermore, these rodents enter human and domestic 
livestock food chains by accidental inclusion in grain and forage. Further 
investigation of these species as potential hosts, bridge species, and 
reservoirs of CWD is required. 
please see ; 
Monday, August 8, 2011 
*** Susceptibility of Domestic Cats to CWD Infection ***
Oral.29: Susceptibility of Domestic Cats to CWD Infection
Amy Nalls, Nicholas J. Haley, Jeanette Hayes-Klug, Kelly Anderson, Davis M. 
Seelig, Dan S. Bucy, Susan L. Kraft, Edward A. Hoover and Candace K. 
Mathiason†
Colorado State University; Fort Collins, CO USA†Presenting author; Email: 
ckm@lamar.colostate.edu
Domestic and non-domestic cats have been shown to be susceptible to one 
prion disease, feline spongiform encephalopathy (FSE), thought to be transmitted 
through consumption of bovine spongiform encephalopathy (BSE) contaminated meat. 
Because domestic and free ranging felids scavenge cervid carcasses, including 
those in CWD affected areas, we evaluated the susceptibility of domestic cats to 
CWD infection experimentally. Groups of n = 5 cats each were inoculated either 
intracerebrally (IC) or orally (PO) with CWD deer brain homogenate. Between 
40–43 months following IC inoculation, two cats developed mild but progressive 
symptoms including weight loss, anorexia, polydipsia, patterned motor behaviors 
and ataxia—ultimately mandating euthanasia. Magnetic resonance imaging (MRI) on 
the brain of one of these animals (vs. two age-matched controls) performed just 
before euthanasia revealed increased ventricular system volume, more prominent 
sulci, and T2 hyperintensity deep in the white matter of the frontal hemisphere 
and in cortical grey distributed through the brain, likely representing 
inflammation or gliosis. PrPRES and widely distributed peri-neuronal vacuoles 
were demonstrated in the brains of both animals by immunodetection assays. No 
clinical signs of TSE have been detected in the remaining primary passage cats 
after 80 months pi. Feline-adapted CWD was sub-passaged into groups (n=4 or 5) 
of cats by IC, PO, and IP/SQ routes. Currently, at 22 months pi, all five IC 
inoculated cats are demonstrating abnormal behavior including increasing 
aggressiveness, pacing, and hyper responsiveness. 
*** Two of these cats have developed rear limb ataxia. Although the limited 
data from this ongoing study must be considered preliminary, they raise the 
potential for cervid-to-feline transmission in nature.
AD.63: 
Susceptibility of domestic cats to chronic wasting disease 
Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin 
Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1 1Colorado 
State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN 
USA 
Domestic and nondomestic cats have been shown to be susceptible to feline 
spongiform encephalopathy (FSE), almost certainly caused by consumption of 
bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and 
free-ranging nondomestic felids scavenge cervid carcasses, including those in 
areas affected by chronic wasting disease (CWD), we evaluated the susceptibility 
of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 
cats each were inoculated either intracerebrally (IC) or orally (PO) with 
CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated 
cats developed signs consistent with prion disease, including a stilted gait, 
weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail 
tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from 
these two cats were pooled and inoculated into cohorts of cats by IC, PO, and 
intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted 
CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased 
incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the 
symptomatic cats by western blotting and immunohistochemistry and abnormalities 
were seen in magnetic resonance imaging, including multifocal T2 fluid 
attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size 
increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 
IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns 
consistent with the early stage of feline CWD. 
*** These results demonstrate that CWD can be transmitted and adapted to 
the domestic cat, thus raising the issue of potential cervid-to- feline 
transmission in nature. 
www.landesbioscience.com 
PO-081: Chronic wasting disease in the cat— Similarities to feline 
spongiform encephalopathy (FSE) 
FELINE SPONGIFORM ENCEPHALOPATHY FSE 
2011 
*** After a natural route of exposure, 100% of white-tailed deer were 
susceptible to scrapie. 
UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET 
AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF 
THE STUDIES ON CWD TRANSMISSION TO CATTLE ; 
----- Original Message ----- 
From: David Colby To: flounder9@verizon.net 
Cc: stanley@XXXXXXXX 
Sent: Tuesday, March 01, 2011 8:25 AM 
Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + 
Author Affiliations 
Dear Terry Singeltary, 
Thank you for your correspondence regarding the review article Stanley 
Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner 
asked that I reply to your message due to his busy schedule. We agree that the 
transmission of CWD prions to beef livestock would be a troubling development 
and assessing that risk is important. In our article, we cite a peer-reviewed 
publication reporting confirmed cases of laboratory transmission based on 
stringent criteria. The less stringent criteria for transmission described in 
the abstract you refer to lead to the discrepancy between your numbers and ours 
and thus the interpretation of the transmission rate. We stand by our assessment 
of the literature--namely that the transmission rate of CWD to bovines appears 
relatively low, but we recognize that even a low transmission rate could have 
important implications for public health and we thank you for bringing attention 
to this matter. Warm Regards, David Colby -- David Colby, PhDAssistant Professor 
Department of Chemical Engineering University of Delaware 
===========END...TSS============== 
Thursday, July 03, 2014 
How Chronic Wasting Disease is affecting deer population and what’s the 
risk to humans and pets? 
*** The potential impact of prion diseases on human health was greatly 
magnified by the recognition that interspecies transfer of BSE to humans by beef 
ingestion resulted in vCJD. While changes in animal feed constituents and 
slaughter practices appear to have curtailed vCJD, there is concern that CWD of 
free-ranging deer and elk in the U.S. might also cross the species barrier. 
Thus, consuming venison could be a source of human prion disease. Whether BSE 
and CWD represent interspecies scrapie transfer or are newly arisen prion 
diseases is unknown. Therefore, the possibility of transmission of prion disease 
through other food animals cannot be ruled out. There is evidence that vCJD can 
be transmitted through blood transfusion. There is likely a pool of unknown size 
of asymptomatic individuals infected with vCJD, and there may be asymptomatic 
individuals infected with the CWD equivalent. These circumstances represent a 
potential threat to blood, blood products, and plasma supplies. 
Terry S. Singeltary Sr.


