Thursday, April 02, 2015

Kansas Chronic Wasting Disease CWD Spreads 9 Confirmed Positive including first-time cases in six southwest counties

Wasting disease spreads through more western Kansas deer

 

By Michael Pearce - The Wichita Eagle 04/01/2015 6:17 PM | Updated: 04/01/2015 6:31 PM

 

Nine deer shot by hunters last fall tested positive for chronic wasting disease in western Kansas, including first-time cases in six southwest counties.

 

Nine deer shot by hunters last fall tested positive for chronic wasting disease in western Kansas, including first-time cases in six southwest counties. Michael Pearce / The Wichita Eagle

 

Chronic wasting disease, an illness that’s 100 percent fatal in deer and elk, has spread to six new counties in southwest Kansas. To date, the disease has never been passed to humans or livestock, though it is related to mad cow disease and some other illnesses that can be fatal to both.

 

Shane Hesting, Kansas Department of Wildlife, Parks and Tourism, wildlife disease coordinator, said of about 600 deer tested, nine carried the disease. Most were shot by hunters during deer seasons. New counties with the disease are Gray, Hodgeman, Kearny, Pawnee, Meade and Scott counties, with one deer each. Decatur, Norton and Rawlins counties in northwest Kansas each had one deer test positive from last fall’s samples. All three have had multiple deer test CWD positive in past years. Hesting said hunters who killed the animals are being notified of the results, and urged not to eat the venison from those animals as a precaution. The disease now nearly stretches from Kansas’ borders with Nebraska and Oklahoma. Biologists in Oklahoma have been notified the disease was found about 30 miles north of the state line.

 

Hesting said the six southwest Kansas deer that tested positive came from a test sample of 213 deer.

 

“It’s a small sample size so the prevalence is probably higher than we expected in that part of the state,” said Hesting, who added that none of the 338 deer recently checked from south-central Kansas tested positive for CWD. He said the state focused its testing last fall on southwest and south-central Kansas. The three deer from northwest Kansas were tested because the hunters who killed them suspected the animal was ill because of actions or appearances.

 

 

Chronic wasting disease, a contagious neurological disease, was first discovered along the Wyoming/Colorado border in the 1960s, impacting deer and elk. The disease spread slowly on its own but appears to have had some help as infected animals from game farms in that region were shipped across the country. CWD has now shown up as far away as New York, southern New Mexico and parts of Saskatchewan.

 

It’s believed the disease is passed from animal to animal through things like saliva and feces, though it’s been known to contaminate an area for years in the soil. It is mostly contained in the central nervous system and bones of infected deer.

 

Some states no longer allow hunters to bring the complete skulls and bones of deer and elk they’ve shot from states with CWD, like Kansas, into their home state. Hunters in many states are now advised to avoid contact with the brains, glands and to avoid cutting or breaking bones when they’re cleaning deer, elk and moose they’ve killed.

 

As the disease gradually spread into the Dakotas and Nebraska, Wildlife and Parks began testing deer in northwest Kansas for CWD in 1996. The state’s first positive in a wild deer was in 2005 in Cheyenne County, in extreme northwest Kansas. A captive elk transplanted from Colorado tested positive for the disease in Harper County in 2001.

 

Since 2005, 73 deer have tested positive in Kansas. Hesting said about 24,800 have been tested through the years. A loss of federal funding several years ago means the agency must focus it’s testing on one or two areas of the state annually. Four years ago testing in southwest Kansas showed now signs of the disease.

 

 Trained technicians, often taxidermists or veterinarians, remove the glands or tissue needed to test for the disease for the department. Testing is done at Colorado State University and Kansas State University. Hunters can also pay to have samples taken and tested.

 

Hesting said two of the positive bucks were mule deer, of which only 51 were tested last fall. The rest were whitetails. All were bucks at least 3 1/2 years old when they were shot. All seven of the southwest Kansas bucks appeared healthy to the hunter and the technician who took the sample tissue or glands.

 

Lloyd Fox, Wildlife and Parks big game program coordinator, said initially most animals found with the disease in northwest Kansas appeared healthy, too. More and more are being found showing weakness, poor physical conditions or wandering aimlessly in that region because of the disease. Also, some localized areas have produced CWD deer for several years.

 

So far the disease hasn’t had much of an impact on the deer populations in Kansas. Fox said that could change.

 

“The first few years we see little impact but most of us think it will, in decades, have to have a population effect as they environment becomes more contaminated,” he said. “When that happens, populations won’t jump back quickly from this. It’s a terrible disease.”

 


 


 

 Saturday, March 01, 2014

 

KANSAS Tests confirm 5 new CWD cases

 


 

 Sunday, March 10, 2013

 

Kansas Four more deer test positive for chronic wasting disease

 


 

KANSAS

 

Chronic Wasting Disease

 

The first case of CWD was found in a captive elk in Harper County in 2001. Since that time, CWD has been detected in 49 wild, free-ranging white-tailed and 1 mule deer in Deer Management Units (DMU) 1, 2, 3, 4, 5, 17.

 

In 2010-2011 the first positive mule deer was detected in Decatur County. Currently, the total number of positives since surveillance started in 1996 is 51 (1 captive elk, 1 mule deer, and 49 white-tailed deer). Hunters and other wildlife enthusiasts can avoid the human-assisted spread of CWD by not transporting a live or dead deer or elk from areas where CWD occurs to those areas which are CWD-free. There is currently no known treatment or eradication method for CWD, so preventing the introduction of the the disease into new areas is of utmost importance to the health of local deer herds. Baiting and feeding deer tend to concentrate deer at small point on the landscape, often with the trails leading to the feeding sites resembling the wheel spokes of a bicycle. Anytime animals are concentrated at the "hub," the likelihood of disease transmission increases in a deer herd. More alarming, CWD is not the only serious disease of concern. Diseases such as bovine tuberculosis and a host of detrimental parasites such as exotic lice, meningeal worms, flukes, and stomach worms are transmitted more efficiently when deer are concentrated in a small area.

 

Another major concern is the potential for spread of CWD from captive cervid farms into the wild cervid population. Once a disease gets into a wild population, it is virtually impossible eradicate. The only thing that can be done is control the spread of the disease at great expense. KDWPT recommends that every captive cervid rancher enroll in the voluntary CWD monitoring program administered by the Kansas Animal Health Department. The sooner diseases such as CWD can be detected in captives, the sooner control efforts can begin and possibly prevent the spread of disease to wild populations of the state. CWD is only one of many diseases that could go undetected in an unmonitored captive cervid herd. Bovine tuberculosis, for example, is a serious disease that could seriously damage not only populations of deer and an annual 350 million-dollar hunting economy, but could also threaten the 4 billion-dollar Kansas cattle industry via quarantines and loss of accreditation.

 

2012-2013 CWD CONFIRMED POSITIVES by County (Surveillance Reduced to Northcentral Zone Due to Funding Cuts)

 


 


 


 

Thursday, July 19, 2012

 

NINE DEER TEST POSITIVE FOR CHRONIC WASTING DISEASE

 


 

Thursday, February 09, 2012

 

THREE KANSAS DEER CONFIRMED POSITIVE IN EARLY STAGES OF CWD TESTING

 


 

Thursday, March 31, 2011

 

TEN KANSAS DEER CONFIRMED POSITIVE IN CWD TESTS

 


 

Thursday, January 06, 2011

 

KANSAS FIRST CASE OF CHRONIC WASTING IN 2010 DEER SEASON CONFIRMED

 


 

Thursday, January 21, 2010

 

Kansas has more CWD cases

 


 

 

Thursday, April 02, 2015

 

OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's properties near Millersburg

 


 

Wednesday, March 18, 2015

 

Chronic Wasting Disease CWD Confirmed Texas Trans Pecos March 18, 2015

 


 

Wednesday, March 25, 2015

 

Chronic Wasting Disease CWD Cases Confirmed In New Mexico 2013 and 2014 UPDATE 2015

 


 

Tuesday, October 21, 2014

 

*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

Sunday, July 13, 2014

 

Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape

 


 

Saturday, June 29, 2013

 

PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA

 


 

Tuesday, June 11, 2013

 

*** CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania

 


 

Wednesday, September 04, 2013

 

***cwd - cervid captive livestock escapes, loose and on the run in the wild...

 


 

Tuesday, October 07, 2014

 

*** Wisconsin white-tailed deer tested positive for CWD on a Richland County breeding farm, and a case of CWD has been discovered on a Marathon County hunting preserve

 


 

Thursday, October 02, 2014

 

*** IOWA TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 


 

Tuesday, December 20, 2011

 

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat Program inPortage County and approve the restrictions on public use of the site.SUMMARY:

 


 

For Immediate Release Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship,which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD. -30-

 


 

*** see history of this CWD blunder here ;

 


 

On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had beencut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.

 


 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

***please read this***

 

98 | Veterinary Record | January 24, 2015

 

EDITORIAL

 

Scrapie: a particularly persistent pathogen

 

Cristina Acín

 

Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’

 

From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).

 

Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.

 

Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.

 

The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).

 

In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.

 

Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).

 

In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.

 

The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).

 

Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).

 

So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?

 

What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.

 

References

 

snip...

 

98 | Veterinary Record | January 24, 2015

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Tuesday, December 16, 2014

 

Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

Friday, January 30, 2015

 

Scrapie: a particularly persistent pathogen

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip...

 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

*** We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

*** The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

PRION 2014 CONFERENCE

 

CHRONIC WASTING DISEASE CWD

 

A FEW FINDINGS ;

 

Conclusions. To our knowledge, this is the first established experimental model of CWD in TgSB3985. We found evidence for co-existence or divergence of two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. Finally, we observed phenotypic differences between cervid-derived CWD and CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway to characterize these strains.

 

We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

Our data establish that meadow voles are permissive to CWD via peripheral exposure route, suggesting they could serve as an environmental reservoir for CWD. Additionally, our data are consistent with the hypothesis that at least two strains of CWD circulate in naturally-infected cervid populations and provide evidence that meadow voles are a useful tool for CWD strain typing.

 

Conclusion. CWD prions are shed in saliva and urine of infected deer as early as 3 months post infection and throughout the subsequent >1.5 year course of infection. In current work we are examining the relationship of prionemia to excretion and the impact of excreted prion binding to surfaces and particulates in the environment.

 

Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) are shed in urine of infected deer as early as 6 months post inoculation and throughout the subsequent disease course. Further studies are in progress refining the real-time urinary prion assay sensitivity and we are examining more closely the excretion time frame, magnitude, and sample variables in relationship to inoculation route and prionemia in naturally and experimentally CWD-infected cervids.

 

Conclusions. Our results suggested that the odds of infection for CWD is likely controlled by areas that congregate deer thus increasing direct transmission (deer-to-deer interactions) or indirect transmission (deer-to-environment) by sharing or depositing infectious prion proteins in these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely controlled by separate factors than found in the Midwestern and endemic areas for CWD and can assist in performing more efficient surveillance efforts for the region.

 

Conclusions. During the pre-symptomatic stage of CWD infection and throughout the course of disease deer may be shedding multiple LD50 doses per day in their saliva. CWD prion shedding through saliva and excreta may account for the unprecedented spread of this prion disease in nature.

 

see full text and more ;

 

Monday, June 23, 2014

 

*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD

 


 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

 


 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

 


 

Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

 


 

A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing

 


 

Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

 


 

Sunday, December 21, 2014

 

Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease

 


 

Friday, December 19, 2014

 

Pan-Provincial Vaccine Enterprise Inc. (PREVENT) Conducting a Chronic Wasting Disease (CWD) Vaccine Efficacy Trial in Elk

 


 

CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD $$$

 

CWD, spreading it around...

 

for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;

 

===========================================

 

spreading cwd around...

 

Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.

 

***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.

 


 

spreading cwd around...

 

Friday, May 13, 2011

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea

 

Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.

 

On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.

 

All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.

 

Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.

 

Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.

 

Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).

 

In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.

 

Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.

 

All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.

 

Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.

 

In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.

 

In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.

 


 


 


 


 

Tuesday, February 10, 2015

 

Alberta Canada First case of chronic wasting disease found in farm elk since 2002

 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 

snip...

 

In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

 

Animals considered at high risk for CWD include:

 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

 

snip...

 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

 

snip...

 

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

 

snip...

 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

 

snip...

 

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

 

snip...

 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

 

snip...

 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 


 

BSE RUMINANT FEED BAN FOR CERVIDS AND PETS IN THE USA ?

 

in short, there is none, and never has been.

 

I am concerned with pets as well.

 

I strongly, strenuously, urge the FDA et al and scientist (minus the industry, politicians, and lobbyist there from on all issues), to revisit the foolish voluntary ban on ruminant feed to cervids, and adopt an immediate measure to make mandatory the ban of all ruminant feed to all cervids and pets. ... TSS

 

FDA WARNING LETTER (14-ATL-04) adulterated under Section 402(a)(4) [21 U.S.C. 342(a)(4)] of the Act, protein derived from mammalian tissues to feeds that may be used for ruminants [21 C.F.R. 589.2000(e)(1)(iii)(B)]

 

2013

 

Sunday, December 15, 2013

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE

 


 

Tuesday, December 23, 2014

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION

 


 

DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability Date: Fri, 16 May 2003 11:47:37 -0500 EMC 1 Terry S. Singeltary Sr. Vol #: 1 http://www.fda.gov/ohrms/dockets/dailys/03/Jun03/060903/060903.htm

 


 

PLEASE SEE FULL TEXT SUBMISSION ;

 


 

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. *** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *** It also suggests a similar cause or source for atypical BSE in these countries. ***

 

see page 176 of 201 pages...tss

 


 

*** Singeltary reply ;

 

Molecular, Biochemical and Genetic Characteristics of BSE in Canada

 


 

Susceptibility of European Red Deer (Cervus elaphus elaphus) to Alimentary Challenge with Bovine Spongiform Encephalopathy

 

Mark P. Dagleish , * E-mail: mark.dagleish@moredun.ac.uk

 

Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Stuart Martin, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Philip Steele, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Jeanie Finlayson, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Samantha L. Eaton, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Sílvia Sisó, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Paula Stewart, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Natalia Fernández-Borges, Affiliation: CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Spain

 

⨯ Scott Hamilton, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Yvonne Pang, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Francesca Chianini, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Hugh W. Reid, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Wilfred Goldmann, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Lorenzo González, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Joaquín Castilla, Affiliations: CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Spain, IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain

 

⨯ [ ... ], Martin Jeffrey Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ [ view all ] [ view less ] Susceptibility of European Red Deer (Cervus elaphus elaphus) to Alimentary Challenge with Bovine Spongiform Encephalopathy Mark P. Dagleish, Stuart Martin, Philip Steele, Jeanie Finlayson, Samantha L. Eaton, Sílvia Sisó, Paula Stewart, Natalia Fernández-Borges, … Scott Hamilton, Yvonne Pang PLOS x Published: January 23, 2015 DOI: 10.1371/journal.pone.0116094

 

Abstract

 

European red deer (Cervus elaphus elaphus) are susceptible to the agent of bovine spongiform encephalopathy, one of the transmissible spongiform encephalopathies, when challenged intracerebrally but their susceptibility to alimentary challenge, the presumed natural route of transmission, is unknown. To determine this, eighteen deer were challenged via stomach tube with a large dose of the bovine spongiform encephalopathy agent and clinical signs, gross and histological lesions, presence and distribution of abnormal prion protein and the attack rate recorded. Only a single animal developed clinical disease, and this was acute with both neurological and respiratory signs, at 1726 days post challenge although there was significant (27.6%) weight loss in the preceding 141 days. The clinically affected animal had histological lesions of vacuolation in the neuronal perikaryon and neuropil, typical of transmissible spongiform encephalopathies. Abnormal prion protein, the diagnostic marker of transmissible encephalopathies, was primarily restricted to the central and peripheral nervous systems although a very small amount was present in tingible body macrophages in the lymphoid patches of the caecum and colon. Serial protein misfolding cyclical amplification, an in vitro ultra-sensitive diagnostic technique, was positive for neurological tissue from the single clinically diseased deer. All other alimentary challenged deer failed to develop clinical disease and were negative for all other investigations. These findings show that transmission of bovine spongiform encephalopathy to European red deer via the alimentary route is possible but the transmission rate is low. Additionally, when deer carcases are subjected to the same regulations that ruminants in Europe with respect to the removal of specified offal from the human food chain, the zoonotic risk of bovine spongiform encephalopathy, the cause of variant Creutzfeldt-Jakob disease, from consumption of venison is probably very low.

 

snip...

 

Discussion This investigation resulted in the first and only known case, to date, of clinical disease or accumulation of abnormal PrPd in any cervid species due to oral challenge with BSE. The increase in incubation period compared to European red deer challenged with BSE intra-cerebrally (1060 days) [33] compared to oral challenge (1727 days) is approximately 60% and similar to the differences observed in incubation periods for sheep or goats when challenged with TSE agents by these two routes [40,41]. The neurological clinical signs observed could be broadly related to the spongiform encephalopathy and the accumulation of PrPd in that the restlessness, stereotypic head movements and pacing may be due to compromise of the nucleus accumbens [42], found in the striatum, and the laboured breathing due to the lesions in the medulla, where the respiratory centre is located [43]. Alternatively, the laboured and audible mouth breathing may have been due to, or contributed to by, compromise of either of the recurrent laryngeal nerves resulting in some degree of laryngeal paralysis but we were unable to determine this. Apart from the gradual loss of body weight, the speed of onset of clinical signs and progression was very rapid but animal welfare requirements precluded any further longitudinal study of these. The clinical signs described for this animal are broadly similar to those reported for clinical BSE in European red deer challenged via the intracerebral route [33], clinical cases of CWD in deer [44] and clinical cases of BSE in cattle [45].

 

snip...see full text ;

 


 

*** Singeltary reply ;

 

ruminant feed ban for cervids in the United States ?

 

31 Jan 2015 at 20:14 GMT

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

when an industry is catering to the public, with products which can risk human and animal health, in my opinion, you should have NO property rights. you should not be able to hide behind property rights when you are clearly risking human and animal health from your product, or the way you handle that product. if you are going to raise, grow, produce a product for the consumer, you have an obligation NOT to risk the public domain, public property, and or the wild animal populations. just my opinion, I still have that right in 2015. ... CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD $$$

 

CWD, spreading it around...

 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

Sunday, December 28, 2014

 

CHRONIC WASTING DISEASE CWD TSE PRION DISEASE AKA MAD DEER DISIEASE USDAUSAHA INC DECEMBER 28, 2014

 


 

Thursday, March 20, 2014

 

CHRONIC WASTING DISEASE CWD TSE PRION OF CERVID AND THE POTENTIAL FOR HUMAN TRANSMISSION THEREFROM 2014

 


 

Tuesday, July 01, 2014

 

*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND POTENTIAL RISK FACTORS THERE FROM ***

 


 

Thursday, July 03, 2014

 

*** How Chronic Wasting Disease is affecting deer population and what’s the risk to humans and pets? ***

 


 

Thursday

 

CWD TO HUMANS, AND RISK FACTORS THERE FROM (see latest science)

 

Tuesday, November 04, 2014

 

*** Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

 


 

 

TSS

OHIO CONFIRMS SECOND POSTIVE CHRONIC WASTING DISEASE CWD on Yoder's properties near Millersburg

Second Ohio white-tailed deer tests positive for deadly brain disease

 

 Print Email D'Arcy Egan, The Plain Dealer By D'Arcy Egan, The Plain Dealer Email the author | Follow on Twitter on April 01, 2015 at 2:10 PM, updated April 01, 2015 at 3:09 PM

 

 Ohio Dept. of Agriculture.jpg CLEVELAND, Ohio -- As state officials try to legally force Holmes County deer farmer Daniel Yoder to euthanize a herd of expensive white-tailed deer, a second deer has tested positive for chronic wasting disease (CWD) on Yoder's properties near Millersburg.

 

The first positive test ever for CWD in Ohio was from a deer killed Oct. 22 at Yoder's hunting preserve, World Class Whitetails. The second positive result came a few days ago while testing another Yoder deer that had died.

 

The National Veterinary Services Laboratories in Ames, Iowa confirmed the results.

 

"It has always been a case of not if, but when another deer would test positive on those properties," said Communications Director Erica Hawkins of the Ohio Department of Agriculture. "This wasn't unexpected. We expected to find positives at his facilities and, with de-population, we expect to find more."

 

Yoder's two breeding farms and hunting preserve were quarantined a year ago after it was discovered an infected Pennsylvania deer had been shipped there. It has become common for the breeding and hunting operations to ship deer to other states.

 

In Ohio, the ODA manages captive deer herds. The Ohio Division of Wildlife manages the wild deer herd.

 

Breeding large-antlered deer to supply the fenced deer-hunting operations has become a booming business. The price for a deer sporting trophy antlers can range from a few thousands dollars to more than $50,000.

 

Because the disease is highly contagious and almost impossible to eradicate, Yoder's breeding farms and fenced deer hunting operation was shut down and all deer 12 months and older that die on the properties were required to be tested for CWD, regardless of the circumstances, said Hawkins.

 

While CWD has become a major problem in Wisconsin and many western states, Yoder's captive deer have been the only Ohio animals to test positive for the always-fatal brain disease. CWD is found in the wild, but spreads far more quickly among crowded herds of captive deer or elk.

 

The ODOW constantly tests road-killed deer and deer killed by hunters for the disease. Because of the positive test in Holmes County, wildlife officials focused on deer harvested from that area during the recent hunting seasons.

 

The disease is related to mad cow disease, but has never been contracted by humans, according to the Centers for Disease Control and Prevention.

 

The ODOW reported last fall at least two deer had escaped from Yoder's farms and were killed by sport hunters. There have also been other instances of deer escaping from fenced hunting operations around state.

 

Hawkins said discussions are still underway to determine the best way to eliminate the herd because of the high cost of destruction and disposal of the deer.

 

"A lot of questions still need to be answered," Hawkins said. "This is the first situation like this in Ohio."

 

Yoder was charged in Holmes County Common Pleas Court on Feb. 25 with two counts of tampering with evidence, reported the Wooster Daily Record. Yoder had given a customer packages of venison obtained from a doe after the trophy buck he had killed appeared to be ill. The customer received the antlers, but Yoder disposed of the buck's head and carcass without performing the required tests, charged ODA enforcement agent William Lesho.

 

Three West Virginia hunters had paid to kill three deer on the preserve on another date and the required samples of the deer were not collected. In order to determine if a deer has CWD, the brain or brain stem must be tested

 


 

Thursday, October 23, 2014

 

*** FIRST CASE OF CHRONIC WASTING DISEASE CONFIRMED IN OHIO ON PRIVATE PRESERVE

 


 

Wednesday, February 11, 2015

 

World Class Whitetails quarantined CWD deer Daniel M. Yoder charged with two counts of tampering with evidence

 


 

Table 34. Other Animals and Animal Products – Inventory: 2012 and 2007 [For meaning of abbreviations and symbols, see introductory text.]

 

Deer in captivity TOTAL 2012 USA

 

4,042 Farms

 

231,431 Number

 

Elk in captivity TOTAL 2012 USA

 

1,199 Farms

 

38,061 Number

 

OHIO

 

Deer in captivity 2012 TOTAL

 

234 Farms

 

5,911 Number

 

Elk in captivity 2012 TOTAL

 

25 Farms

 

401 Number

 


 

see other Ohio figures here ;

 

Ohio currently has 684 deer propagation farms and 29 hunting preserves that include whitetails.

 


 

2010

 

ECONOMIC IMPACT OF OHIO DEER FARMING INDUSTRY

 

snip...

 

Ohio –– Industry Leader

 

•• 15,084 deer kept on farms in Ohio

 

•• 695 deer farms in Ohio in 2009

 

•• 440 commercial deer farms in 2009

 

•• 14,209 deer kept on commercial farms with farms of up to 390 deer in size

 

•• State of Ohio has 9% of commercial deer farms within the U.S. in 2009

 

•• Deer farms located within 82 of 88 Ohio counties as of 2009

 


 

see more here ;

 

Monday, June 11, 2012

 

*** OHIO Captive deer escapees and non-reporting ***

 


 

*** Ohio Division of Wildlife officers have killed five deer in the Holmes County area in recent months that had ear tags, most likely escapees from deer farms or high fence hunting preserves. Two of those deer were traced to the World Class Whitetails Hunting Preserve. None of the five deer tested positive for CWD.

 


 

On the last Saturday of Ohio’s shotgun season, 17-year-old Alex Wright killed a 30-point monster that had escaped from a nearby high-fence hunting outfitter. Wright had heard rumors about the escape, and after seeing a trail camera image of this buck wandering the property he hunts, the Ulrichsville teen took down the non-typical that would have cost him more than $19,900 to shoot behind Stillwater Trophy Outfitters’ fence.

 


 

Seven trophy whitetailed deer being raised by Byler meandered out of their suddenly not-so-fenced-in pen on April 26. It may prove to be a fatal escape. State wildlife officials intend to shoot and kill any runaways that Byler fails to round up within the next few days.

 

Three remained on the lam as of Monday afternoon. Byler managed to recapture the other big money bucks last week with the help of friends.

 

"All we need is more time," Byler said.

 

He won't get much.

 

The concern is chronic wasting disease entering Ohio, said Dan Kramer, a state wildlife management supervisor in Northeast Ohio.

 


 

Tuesday, October 21, 2014

 

*** Pennsylvania Department of Agriculture Tenth Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease CWD TSE PRION DISEASE

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

Sunday, July 13, 2014

 

Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape

 


 

Saturday, June 29, 2013

 

PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA

 


 

Tuesday, June 11, 2013

 

*** CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania

 


 

Wednesday, September 04, 2013

 

***cwd - cervid captive livestock escapes, loose and on the run in the wild...

 


 

Tuesday, October 07, 2014

 

*** Wisconsin white-tailed deer tested positive for CWD on a Richland County breeding farm, and a case of CWD has been discovered on a Marathon County hunting preserve

 


 

Thursday, October 02, 2014

 

*** IOWA TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 


 

Tuesday, December 20, 2011

 

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat Program inPortage County and approve the restrictions on public use of the site.SUMMARY:

 


 

For Immediate Release Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship,which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD. -30-

 


 

*** see history of this CWD blunder here ;

 


 

On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had beencut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.

 


 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

***please read this***

 

98 | Veterinary Record | January 24, 2015

 

EDITORIAL

 

Scrapie: a particularly persistent pathogen

 

Cristina Acín

 

Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’

 

From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).

 

Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.

 

Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.

 

The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).

 

In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.

 

Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).

 

In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.

 

The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).

 

Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).

 

So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?

 

What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.

 

References

 

snip...

 

98 | Veterinary Record | January 24, 2015

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Tuesday, December 16, 2014

 

Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

Friday, January 30, 2015

 

Scrapie: a particularly persistent pathogen

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip...

 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

*** We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

*** The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

PRION 2014 CONFERENCE

 

CHRONIC WASTING DISEASE CWD

 

A FEW FINDINGS ;

 

Conclusions. To our knowledge, this is the first established experimental model of CWD in TgSB3985. We found evidence for co-existence or divergence of two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. Finally, we observed phenotypic differences between cervid-derived CWD and CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway to characterize these strains.

 

We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

Our data establish that meadow voles are permissive to CWD via peripheral exposure route, suggesting they could serve as an environmental reservoir for CWD. Additionally, our data are consistent with the hypothesis that at least two strains of CWD circulate in naturally-infected cervid populations and provide evidence that meadow voles are a useful tool for CWD strain typing.

 

Conclusion. CWD prions are shed in saliva and urine of infected deer as early as 3 months post infection and throughout the subsequent >1.5 year course of infection. In current work we are examining the relationship of prionemia to excretion and the impact of excreted prion binding to surfaces and particulates in the environment.

 

Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) are shed in urine of infected deer as early as 6 months post inoculation and throughout the subsequent disease course. Further studies are in progress refining the real-time urinary prion assay sensitivity and we are examining more closely the excretion time frame, magnitude, and sample variables in relationship to inoculation route and prionemia in naturally and experimentally CWD-infected cervids.

 

Conclusions. Our results suggested that the odds of infection for CWD is likely controlled by areas that congregate deer thus increasing direct transmission (deer-to-deer interactions) or indirect transmission (deer-to-environment) by sharing or depositing infectious prion proteins in these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely controlled by separate factors than found in the Midwestern and endemic areas for CWD and can assist in performing more efficient surveillance efforts for the region.

 

Conclusions. During the pre-symptomatic stage of CWD infection and throughout the course of disease deer may be shedding multiple LD50 doses per day in their saliva. CWD prion shedding through saliva and excreta may account for the unprecedented spread of this prion disease in nature.

 

see full text and more ;

 

Monday, June 23, 2014

 

*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD

 


 


 

*** Infectious agent of sheep scrapie may persist in the environment for at least 16 years***

 

Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3

 


 

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

 


 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

 


 

Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

 


 

A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing

 


 

Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

 


 

Sunday, December 21, 2014

 

Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease

 


 

Friday, December 19, 2014

 

Pan-Provincial Vaccine Enterprise Inc. (PREVENT) Conducting a Chronic Wasting Disease (CWD) Vaccine Efficacy Trial in Elk

 


 

CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD $$$

 

CWD, spreading it around...

 

for the game farm industry, and their constituents, to continue to believe that they are _NOT_, and or insinuate that they have _NEVER_ been part of the problem, will only continue to help spread cwd. the game farming industry, from the shooting pens, to the urine mills, the antler mills, the sperm mills, velvet mills, shooting pens, to large ranches, are not the only problem, but it is painfully obvious that they have been part of the problem for decades and decades, just spreading it around, as with transportation and or exportation and or importation of cervids from game farming industry, and have been proven to spread cwd. no one need to look any further than South Korea blunder ;

 

===========================================

 

spreading cwd around...

 

Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.

 

***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.

 


 

spreading cwd around...

 

Friday, May 13, 2011

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea

 

Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.

 

On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.

 

All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.

 

Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.

 

Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.

 

Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).

 

In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.

 

Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.

 

All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.

 

Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.

 

In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.

 

In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.

 


 


 


 


 

Tuesday, February 10, 2015

 

Alberta Canada First case of chronic wasting disease found in farm elk since 2002

 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 

snip...

 

In the USA, under the Food and Drug Administration’s BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

 

Animals considered at high risk for CWD include:

 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

 

snip...

 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

 

snip...

 

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

 

snip...

 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

 

snip...

 

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

 

snip...

 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

 

snip...

 


 

Friday, December 14, 2012

 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

 


 

BSE RUMINANT FEED BAN FOR CERVIDS AND PETS IN THE USA ?

 

in short, there is none, and never has been.

 

I am concerned with pets as well.

 

I strongly, strenuously, urge the FDA et al and scientist (minus the industry, politicians, and lobbyist there from on all issues), to revisit the foolish voluntary ban on ruminant feed to cervids, and adopt an immediate measure to make mandatory the ban of all ruminant feed to all cervids and pets. ... TSS

 

FDA WARNING LETTER (14-ATL-04) adulterated under Section 402(a)(4) [21 U.S.C. 342(a)(4)] of the Act, protein derived from mammalian tissues to feeds that may be used for ruminants [21 C.F.R. 589.2000(e)(1)(iii)(B)]

 

2013

 

Sunday, December 15, 2013

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE

 


 

Tuesday, December 23, 2014

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION

 


 

DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability Date: Fri, 16 May 2003 11:47:37 -0500 EMC 1 Terry S. Singeltary Sr. Vol #: 1 http://www.fda.gov/ohrms/dockets/dailys/03/Jun03/060903/060903.htm

 


 

PLEASE SEE FULL TEXT SUBMISSION ;

 


 

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. *** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *** It also suggests a similar cause or source for atypical BSE in these countries. ***

 

see page 176 of 201 pages...tss

 


 

*** Singeltary reply ;

 

Molecular, Biochemical and Genetic Characteristics of BSE in Canada

 


 

Susceptibility of European Red Deer (Cervus elaphus elaphus) to Alimentary Challenge with Bovine Spongiform Encephalopathy

 

Mark P. Dagleish , * E-mail: mark.dagleish@moredun.ac.uk

 

Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Stuart Martin, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Philip Steele, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Jeanie Finlayson, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Samantha L. Eaton, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Sílvia Sisó, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Paula Stewart, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Natalia Fernández-Borges, Affiliation: CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Spain

 

⨯ Scott Hamilton, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Yvonne Pang, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Francesca Chianini, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Hugh W. Reid, Affiliation: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Wilfred Goldmann, Affiliation: Neurobiology Division, The Roslin Institute at, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

 

⨯ Lorenzo González, Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ Joaquín Castilla, Affiliations: CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Spain, IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain

 

⨯ [ ... ], Martin Jeffrey Affiliation: Animal Health & Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 0PZ, United Kingdom

 

⨯ [ view all ] [ view less ] Susceptibility of European Red Deer (Cervus elaphus elaphus) to Alimentary Challenge with Bovine Spongiform Encephalopathy Mark P. Dagleish, Stuart Martin, Philip Steele, Jeanie Finlayson, Samantha L. Eaton, Sílvia Sisó, Paula Stewart, Natalia Fernández-Borges, … Scott Hamilton, Yvonne Pang PLOS x Published: January 23, 2015 DOI: 10.1371/journal.pone.0116094

 

Abstract

 

European red deer (Cervus elaphus elaphus) are susceptible to the agent of bovine spongiform encephalopathy, one of the transmissible spongiform encephalopathies, when challenged intracerebrally but their susceptibility to alimentary challenge, the presumed natural route of transmission, is unknown. To determine this, eighteen deer were challenged via stomach tube with a large dose of the bovine spongiform encephalopathy agent and clinical signs, gross and histological lesions, presence and distribution of abnormal prion protein and the attack rate recorded. Only a single animal developed clinical disease, and this was acute with both neurological and respiratory signs, at 1726 days post challenge although there was significant (27.6%) weight loss in the preceding 141 days. The clinically affected animal had histological lesions of vacuolation in the neuronal perikaryon and neuropil, typical of transmissible spongiform encephalopathies. Abnormal prion protein, the diagnostic marker of transmissible encephalopathies, was primarily restricted to the central and peripheral nervous systems although a very small amount was present in tingible body macrophages in the lymphoid patches of the caecum and colon. Serial protein misfolding cyclical amplification, an in vitro ultra-sensitive diagnostic technique, was positive for neurological tissue from the single clinically diseased deer. All other alimentary challenged deer failed to develop clinical disease and were negative for all other investigations. These findings show that transmission of bovine spongiform encephalopathy to European red deer via the alimentary route is possible but the transmission rate is low. Additionally, when deer carcases are subjected to the same regulations that ruminants in Europe with respect to the removal of specified offal from the human food chain, the zoonotic risk of bovine spongiform encephalopathy, the cause of variant Creutzfeldt-Jakob disease, from consumption of venison is probably very low.

 

snip...

 

Discussion This investigation resulted in the first and only known case, to date, of clinical disease or accumulation of abnormal PrPd in any cervid species due to oral challenge with BSE. The increase in incubation period compared to European red deer challenged with BSE intra-cerebrally (1060 days) [33] compared to oral challenge (1727 days) is approximately 60% and similar to the differences observed in incubation periods for sheep or goats when challenged with TSE agents by these two routes [40,41]. The neurological clinical signs observed could be broadly related to the spongiform encephalopathy and the accumulation of PrPd in that the restlessness, stereotypic head movements and pacing may be due to compromise of the nucleus accumbens [42], found in the striatum, and the laboured breathing due to the lesions in the medulla, where the respiratory centre is located [43]. Alternatively, the laboured and audible mouth breathing may have been due to, or contributed to by, compromise of either of the recurrent laryngeal nerves resulting in some degree of laryngeal paralysis but we were unable to determine this. Apart from the gradual loss of body weight, the speed of onset of clinical signs and progression was very rapid but animal welfare requirements precluded any further longitudinal study of these. The clinical signs described for this animal are broadly similar to those reported for clinical BSE in European red deer challenged via the intracerebral route [33], clinical cases of CWD in deer [44] and clinical cases of BSE in cattle [45].

 

snip...see full text ;

 


 

*** Singeltary reply ;

 

ruminant feed ban for cervids in the United States ?

 

31 Jan 2015 at 20:14 GMT

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

when an industry is catering to the public, with products which can risk human and animal health, in my opinion, you should have NO property rights. you should not be able to hide behind property rights when you are clearly risking human and animal health from your product, or the way you handle that product. if you are going to raise, grow, produce a product for the consumer, you have an obligation NOT to risk the public domain, public property, and or the wild animal populations. just my opinion, I still have that right in 2015. ... CHRONIC WASTING DISEASE CWD TSE PRION, how much does it pay to find CWD $$$

 

CWD, spreading it around...

 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

Sunday, December 28, 2014

 

CHRONIC WASTING DISEASE CWD TSE PRION DISEASE AKA MAD DEER DISIEASE USDAUSAHA INC DECEMBER 28, 2014

 


 

Thursday, March 20, 2014

 

CHRONIC WASTING DISEASE CWD TSE PRION OF CERVID AND THE POTENTIAL FOR HUMAN TRANSMISSION THEREFROM 2014

 


 

Tuesday, July 01, 2014

 

*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND POTENTIAL RISK FACTORS THERE FROM ***

 


 

Thursday, July 03, 2014

 

*** How Chronic Wasting Disease is affecting deer population and what’s the risk to humans and pets? ***

 


 

Thursday

 

CWD TO HUMANS, AND RISK FACTORS THERE FROM (see latest science)

 

Tuesday, November 04, 2014

 

*** Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

 


 

TSS